Skip to main content
Log in

Experiments and optimization of the hole EDM electrode’s parameters

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Hole EDM process parameters are extensively addressed, but electrode design variables have not been optimized to boost output objectives. This investigation optimizes electrode parameters, including the tool rotational speed (S), water pressure (P), electrode length (L), and internal diameter (ID) to enhance the machined gap (MG), hole conicity (HC), noise emission (NE), particulate pollution (PP), and power factor coefficient (PFC) of the Ti6Al4V. The method based on the removal effects of criteria and multi-attributive border approximation area comparison is utilized to select weights and optimality. A novel model of the process sustainable index (PSI) is comprehensively proposed to evaluate the deployment of the EDM operation. The radial basis function interpolation models were proposed and applied to forecast the response outcomes. The findings presented that the optimal S, P, L, and ID were 200 rpm, 80 kg/cm2, 340 mm, and 0.6 mm, respectively. The enhancements in the MG, HC, NE, PP, and PFC were 58.2%, 44.1%, 24.2%, 12.0%, and 10.7%, respectively. Quality indicators were primarily affected by the electrode length and internal diameter, while ecological indices significantly were influenced by the tool rotational speed and water pressure, respectively. The optimality could be applied in the practical hole EDM for saving costs and efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

All data and materials have been included in the manuscript.

Abbreviations

S :

rpm

 Tool rotational speed

HC :

Hole conicity

ID :

mm

 Internal diameter

L :

mm

 Electrode length

MG :

μm

 Machined gap

NE :

dB

 Noise emission

P :

kg/cm2

 Water pressure

PFC :

Power factor coefficient

PP :

μg/m3

 Particulate pollution

PSI :

Process sustainable index

References

  1. Dilip DG, Panda S, Mathew J (2020) Characterization and parametric optimization of micro-hole surfaces in micro-EDM drilling on Inconel 718 superalloy using genetic algorithm. Arab J Sci Eng 45(7):5057–5074. https://doi.org/10.1007/s13369-019-04325-4

    Article  Google Scholar 

  2. Singh AK, Patowari PK, Chandrasekaran M (2020) Experimental study on drilling micro-hole through Micro-EDM and optimization of multiple performance characteristics. J Braz Soc Mech Sci Eng 42(9):506. https://doi.org/10.1007/s40430-020-02595-w

    Article  Google Scholar 

  3. Kumar K, Singh V, Katyal P, Sharma N (2019) EDM μ-drilling in Ti-6Al-7Nb: Experimental investigation and optimization using NSGA-II. Int J Adv Manuf Technol 104(5-8):2727–2738. https://doi.org/10.1007/s00170-019-04012-6

    Article  Google Scholar 

  4. Sarıkaya M, Yılmaz V (2018) Optimization and predictive modeling using S/N, RSM, RA and ANNs For micro-electrical discharge drilling of AISI 304 stainless steel. Neural Comput Appl 30(5):1503–1517. https://doi.org/10.1007/s00521-016-2775-9

    Article  Google Scholar 

  5. Machno M, Matras A, Szkoda M (2022) Modelling and analysis of the effect of EDM-drilling parameters on the machining performance of Inconel 718 using the RSM and ANNs methods. Mater (Basel) 15(3):1152. https://doi.org/10.3390/ma15031152

    Article  Google Scholar 

  6. Singh SK, Mali HS, Unune DR, Abdul-Rani AM, Wojciechowski S (2022) Material independent effectiveness of workpiece vibration in Μ-EDM drilling. J Mater Res Technol 18:531–546. https://doi.org/10.1016/j.jmrt.2022.02.063

    Article  Google Scholar 

  7. Bozdana A, Al-Kharkhi N (2018) Comparative experimental and numerical investigation on electrical discharge drilling of AISI 304 using circular and elliptical electrodes. Stroj Vestn J Mech Eng 64(4):269–279. https://doi.org/10.5545/sv-jme.2017.4806

    Article  Google Scholar 

  8. Lo JS, Deng CS, Jiang CT, Lu CT (2019) Slotted electrodes for the improvement of machining performances in EDM drilling. J Chin Inst Eng 42(5):401–410. https://doi.org/10.1080/02533839.2019.1599300

    Article  Google Scholar 

  9. Suresh K, Karuppasamy K, Palani S, Krishnan SSJ, Maridurai T (2022) Effect of silane treated wheat husk biosilica (WHB) deionized water dielectric on EDM drilling of Ti-6Al-4 V alloy. Silicon 14(14):9143–9151. https://doi.org/10.1007/s12633-021-01526-1

    Article  Google Scholar 

  10. Pandey GK, Yadav SKS (2022) Experimental investigation of vibration assisted electrical discharge drilling of Al-Tib2. Int J Interact Des Manuf. https://doi.org/10.1007/s12008-022-01002-z

  11. Eyercioglu O, Gov K (2021) The effect of magnesium content on drilling of Al-Mg-Ti alloy by hole electrical discharge machining process. P I Mech Eng B J Eng 235(1-2):125–133. https://doi.org/10.1177/0954405420949211

    Article  Google Scholar 

  12. Dutta S, Sarma DK (2022) Multi-objective optimization of μ-EDM parameters for μ-hole drilling on hastelloy C 276 super alloy using response surface methodology and multi-objective genetic algorithm. CIRP J Manuf Sci Technol 39:115–133. https://doi.org/10.1016/j.cirpj.2022.07.011

    Article  Google Scholar 

  13. Wang J, Xi XC, Zhang YO, Zhao FC, Zhao WS (2023) Stage identification and process optimization for fast drilling EDM of film cooling holes using KBSI method. Adv Manuf. https://doi.org/10.1007/s40436-022-00434-w

  14. Pattanayak S, Sahoo AK, Sahoo SK (2022) CFRP composite drilling through electrical discharge machining using aluminum as fixture plate. P. I Mech Eng C J Mec 236(10):5468–5483. https://doi.org/10.1177/09544062211058675

    Article  Google Scholar 

  15. Wang J, Xi XC, Qin L, Zhang YO, Zhao WS (2021) Non-productive time optimization for 5-axis EDM drilling using HVNTS algorithm. Int J Prod Res 59(16):5068–5082. https://doi.org/10.1080/00207543.2020.1779961

    Article  Google Scholar 

  16. Piyush P, Pushpendra SB (2023) Experimental investigation on micro-electrical discharge machining process for heat treated nickel-based nimonic 80A. Mater Manuf Process 38(1):1–12. https://doi.org/10.1080/10426914.2022.2105889

    Article  Google Scholar 

  17. Wang J, Xi XC, Zhang YO, Qin L, Liu YJ, Zhao WS (2021) Path optimization for multi-axis EDM drilling of combustor liner cooling holes using SCGA algorithm. Comput Ind Eng 157:107319. https://doi.org/10.1016/j.cie.2021.107319

    Article  Google Scholar 

  18. Parsana S, Radadia N, Sheth M, Shath N, Savsani V, Eswara Prasad N, Ramprabhu T (2018) Machining parameter optimization for EDM machining of Mg–RE–Zn–Zr alloy using multi-objective passing vehicle search algorithm. Arch Civ Mech Eng 18(3):799–817. https://doi.org/10.1016/j.acme.2017.12.007

    Article  Google Scholar 

  19. Mohanty CP, Mahapatra SS, Sing MR (2016) A Particle swarm approach for multi-objective optimization of electrical discharge machining process. J Intell Manuf 27(6):1171–1190. https://doi.org/10.1007/s10845-014-0942-3

    Article  Google Scholar 

  20. D’Urso G, Maccarini G, Quarto M, Ravasio C (2015) Investigation on power discharge in Micro-EDM stainless steel drilling using different electrodes. J Mech Sci Technol 29(10):4341–4349. https://doi.org/10.1007/s12206-015-0932-1

    Article  Google Scholar 

  21. Hou S, Bai J (2022) Electrode wear prediction and offline compensation for micro-EDM drilling through-hole array using geometry simulation. Int J Adv Manuf Technol 120:6877–6889. https://doi.org/10.1007/s00170-022-09224-x

    Article  Google Scholar 

  22. Zhang Y, Xia W, Li Z et al (2021) Completion detection and efficiency improvement for breakout stage of fast EDM drilling. Int J Adv Manuf Technol 114:1565–1574. https://doi.org/10.1007/s00170-021-06936-4

    Article  Google Scholar 

  23. Nguyen TT, Tran VT, Le MT (2022) Comprehensive optimization of the electrical discharge drilling in terms of energy efficiency and hole characteristics. Int J Precis Eng Manuf 23:807–824. https://doi.org/10.1007/s12541-022-00675-6

    Article  Google Scholar 

  24. Kar S, Sarmah P, Baroi BK et al (2021) Parametric optimization of μEDM drilling on titanium using principal component analysis. J Braz Soc Mech Sci Eng 43:543. https://doi.org/10.1007/s40430-021-03249-1

    Article  Google Scholar 

  25. Yawas DS, Sumaila M, Sarki J et al (2023) Manufacturing and optimization of the mechanical properties (tensile strength, flexural strength, and impact energy) of a chicken feather/egg shell/kaolin hybrid reinforced epoxy composite using the Taguchi technique. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-023-11108-7

  26. Jatau S, Yawas DS, Kuburi LS et al (2022) Production and optimization of the modulus of elasticity, modulus of rupture, and impact energy of GLP-HDPE composite materials using the robust Taguchi technique. Int J Adv Manuf Technol 121:3295–3308. https://doi.org/10.1007/s00170-022-09497-2

    Article  Google Scholar 

  27. Nas E, Akıncıoğlu S (2019) Optimization of cryogenic treated nickel-based superalloy in terms of electro erosion processing performance. Acad Platf J Eng Sci 2019 7(1):115–126. https://doi.org/10.21541/apjes.412042

    Article  Google Scholar 

  28. Akincioğlu S, Gökkaya H, Akincioğlu G, Karataş MA (2020) Taguchi optimization of surface roughness in the turning of Hastelloy C22 super alloy using cryogenically treated ceramic inserts. P. I Mech Eng C J Mec 234(19):3826–3836. https://doi.org/10.1177/0954406220917708

    Article  Google Scholar 

  29. Haoues S, Yallese MA, Belhadi S et al (2023) Modeling and optimization in turning of PA66-GF30% and PA66 using multi-criteria decision-making (PSI, MABAC, and MAIRCA) methods: a comparative study. Int J Adv Manuf Technol 124:2401–2421. https://doi.org/10.1007/s00170-022-10583-8

    Article  Google Scholar 

Download references

Funding

This research is funded by Le Quy Don Technical University.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, T. T. Nguyen, A. L. Van, X. B. Dang; methodology, T. T. Nguyen, A. L. Van, X. B. Dang; software, T. T. Nguyen, A. L. Van, X. B. Dang; validation, T. T. Nguyen, A. L. Van, X. B. Dang; data curation, T. T. Nguyen, A. L. Van, X. B. Dang; writing—original draft preparation, T. T. Nguyen; writing—review and editing, T. T. Nguyen, A. L. Van, X. B. Dang; all authors have participated in the manuscript preparation and have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to An-Le Van.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, TT., Van, AL., Dang, XB. et al. Experiments and optimization of the hole EDM electrode’s parameters. Int J Adv Manuf Technol 127, 5373–5390 (2023). https://doi.org/10.1007/s00170-023-11855-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11855-7

Keywords

Navigation