Skip to main content
Log in

Quaternion-based placement orientation trajectory smoothing method under the Domain of Admissible Orientation

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract    

In automated fiber placement (AFP), the abrupt variations of orientations affect layup quality and kinematic performance. This paper proposes a quaternion-based orientation smoothing method constrained by the Domain of Admissible Orientation (DAO) to solve this problem. The DAO is the orientation domain attached to each orientation and defined by the interference avoidance and layup process constraints. All the placement orientations are interpolated into a quaternion curve, and the quaternion curve is smoothed by minimizing its energy function. The energy function is presented in three-dimensional (3D) space, so to facilitate this minimization, the DAO is also transformed into 3D space to constrain the orientation. Then, a spline shortcut generation (SPSG) algorithm is proposed to geometric smooth the curve by generating a spline passing through all DAOs. After that, a Resampling method nonlinearly optimizes the energy function by sampling the curve parameters to redefine the layup orientation within the DAO. Experiments show that the method effectively smooths the orientation trajectory under layup constraints and improves the kinematic performance of APF machines.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

Data availability

All data, models generated or used during the study appear in the submitted article.

Code availability

The codes used in this study are available from the corresponding author on reasonable request.

References 

  1. Cao D, Malakooti S, Kulkarni VN, Ren Y, Liu Y, Nie X, Qian D, Griffith DT, Lu H (2021) Nanoindentation measurement of core-skin interphase viscoelastic properties in a sandwich glass composite. Mech Time-Depend Mater 25:353–363. https://doi.org/10.1007/s11043-020-09448-y

    Article  Google Scholar 

  2. Cao D, Malakooti S, Kulkarni VN, Ren Y, Liu Y, Nie X, Qian D, Griffith DT, Lu H (2021) The effect of resin uptake on the flexural properties of compression molded sandwich composites. Wind Energy 25:71–93

    Article  Google Scholar 

  3. Wang X, Xu T, Andrade MJ, Rampalli I, Cao D, Haque MH, Roy S, Baughman RH, Lu H (2021) The Interfacial Shear Strength of Carbon Nanotube Sheet Modified Carbon Fiber Composites. Challenges Mech Time Dependent Mater 2:25–32. https://doi.org/10.1007/978-3-030-59542-5_4

    Article  Google Scholar 

  4. Chae HG, Newcomb BA, Gulgunje PV, Liu Y, Gupta KK, Kamath MG, Lyons KM, Ghoshal S, Pramanik C, Giannuzzi L, Şahin K, Chasiotis I, Kumar S (2015) High strength and high modulus carbon fibers. Carbon 93:81–87. https://doi.org/10.1016/j.carbon.2015.05.016

    Article  Google Scholar 

  5. Lukaszewicz DHJA, Ward C, Potter KD (2012) The engineering aspects of automated prepreg layup: History, present and future. Compos B Eng 43:997–1009. https://doi.org/10.1016/J.COMPOSITESB.2011.12.003

    Article  Google Scholar 

  6. Brasington A, Sacco C, Halbritter J, Wehbe R, Harik R (2021) Automated fiber placement: A review of history, current technologies, and future paths forward. Compos Part C: Open Access 6:100182. https://doi.org/10.1016/J.JCOMC.2021.100182

    Article  Google Scholar 

  7. Debout P, Chanal H, Duc E (2011) Tool path smoothing of a redundant machine: Application to Automated Fiber Placement. Comput Aided Des 43:122–132. https://doi.org/10.1016/j.cad.2010.09.011

    Article  Google Scholar 

  8. Wu L, Chen M, Xu J, Sun S, Li L (2021) Minimum-acceleration local modification method for planning tool orientations in 5-axis ball-end machining. Int J Adv Manuf Technol 114:2271–2287. https://doi.org/10.1007/s00170-021-06968-w

    Article  Google Scholar 

  9. Castagnetti C, Duc E, Ray P (2008) The Domain of Admissible Orientation concept: A new method for five-axis tool path optimisation. Comput Aided Des 40:938–950. https://doi.org/10.1016/j.cad.2008.07.002

    Article  Google Scholar 

  10. Qu W, Gao J, Ye Y, Yang D, He M, Yang Q, Cheng L, Ke Y (2022) Determination and application of posture adjustable domain under constraints of placement quality. J Reinf Plast Compos. https://doi.org/10.1177/07316844221105657

    Article  Google Scholar 

  11. Kang IG, Park FC (1999) Cubic spline algorithms for orientation interpolation. Int J Numer Methods Eng 46:45–64. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1%3c45::AID-NME662%3e3.0.CO;2-K

    Article  MathSciNet  MATH  Google Scholar 

  12. Wisama Khalil ED (2002) Modeling, Identification and Control of Robots, 3rd edn. Taylor & Francis, New York

    MATH  Google Scholar 

  13. Ahn J, Chung W, Jung C (2012) Realization of orientation interpolation of 6-axis articulated robot using quaternion. J Cent South Univ 19:3407–3414. https://doi.org/10.1007/S11771-012-1422-6

    Article  Google Scholar 

  14. Murray RM, Li Z, Sastry SS (1994) A Mathematical Introduction to Robotic Manipulation, 1st edn. CRC Press, Boca Raton

    MATH  Google Scholar 

  15. Shahbazi M, Kashiri N, Caldwell D, Tsagarakis N (2018) On the orientation planning with constrained angular velocity and acceleration at endpoints. In: 2018 IEEE/RSJ International conference on intelligent robots and systems (IROS). IEEE, pp 7033–7038. https://doi.org/10.1109/IROS.2018.8593657

  16. Yang J, Altintas Y (2013) Generalized kinematics of five-axis serial machines with non-singular tool path generation. Int J Mach Tools Manuf 75:119–132. https://doi.org/10.1016/J.IJMACHTOOLS.2013.09.002

    Article  Google Scholar 

  17. Hanotaux G, Peroche B (1993) Interactive control of interpolations for animation and modeling. In: Proceedings of graphics interface '93. CIPS, pp 201–208. https://doi.org/10.20380/GI1993.29

  18. Shoemake K (1985) Animating rotation with quaternion curves. Comput Graph (New York, N.Y.) 19:245–254. https://doi.org/10.1145/325334.325242

    Article  Google Scholar 

  19. Nielson GM (2004) v-quaternion splines for the smooth interpolation of orientations. IEEE Trans Vis Comput Graph 10:224–229. https://doi.org/10.1109/TVCG.2004.1260774

    Article  Google Scholar 

  20. Nielson GM (1993) Smooth interpolation of orientations. In Models and techniques in computer animation. Springer, pp 75–93. https://doi.org/10.1007/978-4-431-66911-1_8

  21. Kim MJ, Kim MS, Shin SY (1995) A general construction scheme for unit quaternion curves with simple high order derivatives. In: Proceedings of the 22nd annual conference on computer graphics and interactive techniques. ACM, pp 369–376. https://doi.org/10.1145/218380.218486

  22. Kim MJ, Kim MS, Shin SY (1996) A compact differential formula for the first derivative of a unit quaternion curve. J Visual Comput Animat 7:43–57. https://doi.org/10.1002/(SICI)1099-1778(199601)7:1%3C43::AID-VIS136%3E3.0.CO;2-T

    Article  Google Scholar 

  23. Kim MJ, Kim MS, Shin SY (1995) A C2-continuous B-spline quaternion curve interpolating a given sequence of solid orientations. In: Proceedings Computer Animation'95. IEEE, pp 72–81. https://doi.org/10.1109/CA.1995.393545

  24. Xing Y, Xu RZ, Tan JQ, Fan W, Hong L (2015) A class of generalized B-spline quaternion curves. Appl Math Comput 271:288–300. https://doi.org/10.1016/j.amc.2015.09.025

    Article  MathSciNet  MATH  Google Scholar 

  25. Barr AH, Currin B, Gabriel S, Hughes JF (1992) Smooth interpolation of orientations with angular velocity constraints using quaternions. ACM SIGGRAPH Computer Graphics 26:313–320. https://doi.org/10.1145/133994.134086

  26. Fangt YC, Hsieh CC, Kim MJ, Chang JJ, Woo TC (1998) Real time motion fairing with unit quaternions. Comput Aided Des 30:191–198. https://doi.org/10.1016/S0010-4485(97)00057-2

    Article  MATH  Google Scholar 

  27. Niu X, Wang T (2018) C2-continuous orientation trajectory planning for robot based on spline quaternion curve. Assem Autom 38:282–290. https://doi.org/10.1108/AA-04-2017-050

    Article  Google Scholar 

  28. Xiang Y, Li Q, Jiang X (2021) Dynamic rotational trajectory planning of a cable-driven parallel robot for passing through singular orientations. Mech Mach Theory 158:104223. https://doi.org/10.1016/j.mechmachtheory.2020.104223

    Article  Google Scholar 

  29. Jiang X, Barnett E, Gosselin C (2018) Dynamic Point-to-Point Trajectory Planning Beyond the Static Workspace for Six-DOF Cable-Suspended Parallel Robots. IEEE Trans Robot 34:781–793. https://doi.org/10.1109/TRO.2018.2794549

    Article  Google Scholar 

  30. Yuen A, Zhang K, Altintas Y (2013) Smooth trajectory generation for five-axis machine tools. Int J Mach Tools Manuf 71:11–19. https://doi.org/10.1016/J.IJMACHTOOLS.2013.04.002

    Article  Google Scholar 

  31. Kallmann M, Aubel A, Abaci T, Thalmann D (2003) Planning Collision-Free Reaching Motions for Interactive Object Manipulation and Grasping. Comput Graph Forum 22:313–322. https://doi.org/10.1145/1401132.1401209

    Article  Google Scholar 

  32. Yang K, Sukkarieh S (2010) An Analytical Continuous-Curvature Path-Smoothing Algorithm. IEEE Trans Robot 26:561–568. https://doi.org/10.1109/TRO.2010.2042990

    Article  Google Scholar 

  33. Douglas DH, Peucker TK (1973) Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartogr: Int. J Geogr Inf Geovisualization 10:112–122. https://doi.org/10.3138/FM57-6770-U75U-7727

    Article  Google Scholar 

  34. Ho MC, Hwang YR, Hu CH (2003) Five-axis tool orientation smoothing using quaternion interpolation algorithm. Int J Mach Tools Manuf 43:1259–1267. https://doi.org/10.1016/S0890-6955(03)00107-X

    Article  Google Scholar 

  35. Chang JW, Wang W, Kim MS (2010) Efficient collision detection using a dual OBB-sphere bounding volume hierarchy. Comput Aided Des 42:50–57. https://doi.org/10.1016/j.cad.2009.04.010

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China [No.52105535].

Author information

Authors and Affiliations

Authors

Contributions

Qian Yang: writing original draf, methodology, experiment, writing-review and editing. Weiwei Qu: software, writing-review and editing. Jiaxin Gao: formal analysis, resources. Yanzhe Wang: writing guidance, validation. Xiaowen Song: writing guidance. Yingjie Guo: writing guidance. Yinglin Ke: supervison.

Corresponding author

Correspondence to Weiwei Qu.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

All authors agree to publication in The International Journal of Advanced Manufacturing Technology.

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Qu, W., Gao, J. et al. Quaternion-based placement orientation trajectory smoothing method under the Domain of Admissible Orientation. Int J Adv Manuf Technol 128, 491–510 (2023). https://doi.org/10.1007/s00170-023-11810-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11810-6

Keywords

Navigation