Skip to main content
Log in

Minimum quantity lubrication machining nickel base alloy: a comprehensive review

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Nickel-based alloys have great application value in aerospace, biomedical industry, chemical industry, and other fields. However, nickel-based alloys are known to be difficult to process, which will generate a lot of heat and friction during processing, which limits the application range of nickel-based alloys. Therefore, a large amount of cutting fluid needs to be used during processing, and the cutting fluid will cause harm to human health and the environment. In order to solve these problems, scholars proposed to use the minimum quantity lubrication (MQL) to replace the conventional flood cooling lubrication technique. Recently, many papers have proposed to use MQL for lubrication /cooling in the processing of nickel-based alloys. However, few studies have approached this topic comprehensively. To bridge this gap, this study conducts a comprehensive literature review of the progress made in the processing of nickel-based alloys using various MQL methods. It should be noted that these studies are divided into four categories: vegetable oil-based MQL, cryogenic cooling-based MQL, solid lubricant-based MQL, and electrostatic atomization-based MQL. It is crucial to compare the advantages of these cooling and lubricating technologies in machining nickel-based alloys, analyze their experimental results, and assess their impact on machining quality and tool wear. This review reveals that compared to traditional MQL, vegetable oil-based MQL is more energy-saving and environmentally friendly, resulting in approximately 30% improvement in surface quality and a 50% reduction in tool wear. The addition of solid lubricants to vegetable oil further enhances its lubrication performance. Cryogenic cooling-based MQL enables the attainment of finer grains and smaller sawtooth chips. Electrostatic atomization MQL, by altering the atomization process of traditional MQL, produces more uniform droplets, leading to a 42.4% reduction in tool wear and a 47% improvement in machined surface quality. The purpose of this paper is to help researchers identify existing gaps and to enable MQL to improve the processing quality and application range of nickel-based alloys. Finally, the present technical challenges and future research directions are put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

MQL:

Minimum quantity lubrication

Cryo-MQL, CMQL:

Cryogenic minimum quantity lubrication

EMQL, EL:

Electrostatic minimum quantity lubrication

Al2O3 :

Aluminum oxide

ZnO:

Zinc oxide

Gr:

Graphene

LN2 :

Liquid nitrogen

CO2 :

Liquid carbon dioxide

scCO2 :

Supercritical carbon dioxide

MWFs:

Metal working fluids

MoS2 :

Molybdenum disulfide

ZrO2 :

Zirconium dioxide

CNT:

Carbon nanotubes

PCD:

Polycrystalline diamond

SiO2 :

Silica dioxide

TOPSIS:

Technique for order preference by similarity to an ideal solution

CAPB:

Coco-amido-propyl-betaine

SDBS:

Sodium-dodecyl-benzenesulfonate

ANOVA:

Analysis of variance

CDA:

Composite desirability approach

AHP:

Analytical hierarchy process

SEM:

Scanning electron microscope

COPRAS:

Complex proportional assessment

scCO2 + OoW:

Supercritical carbon dioxide based minimum quantity lubrication with oil droplets cutting fluid

MRR:

Metal removal rate

RSM:

Response surface method

NMQL:

Nano-fluid minimum quantity lubrication

Ag:

Silver

Q:

Flow velocity

SDS:

Sodium dodecyl sulfate

TGRA:

Taguchi grey relational analysis

NP:

Nanoparticles

SiC:

Silicon carbide

WS2 :

Micron-scale tungsten disulfide

PVD:

Physical vapor deposition

MLG:

Multilayer graphene

CSI:

Conference on Surface Integrity

BUE:

Built up age

SCE:

Specific cutting energy

References

  1. Thakur A, Gangopadhyay S (2016) State-of-the-art in surface integrity in machining of nickel-based super alloys. Int J Mach Tools Manuf 100:25–35

    Google Scholar 

  2. Zhu D, Zhang X, Ding H (2013) Tool wear characteristics in machining of nickel-based superalloys. Int J Mach Tools Manuf 64:60–77

    Google Scholar 

  3. Kim EJ, Lee CM (2019) A study on the optimal machining parameters of the induction assisted milling with Inconel 718. Materials 12(2):233

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Abdul Halim NH, Che Haron CH, Abdul Ghani J (2020) Sustainable machining of hardened Inconel 718: a comparative study. Int J Precis Eng Manuf 21:1375–1387

    Google Scholar 

  5. Ratnam C, Kumar KA, Murthy B et al (2018) An experimental study on boring of Inconel 718 and multi response optimization of machining parameters using response surface methodology. Materials Today: Proceedings 5(13):27123–27129

    CAS  Google Scholar 

  6. Dai H, Dai W, Hu Z, et al (2023) Advanced composites inspired by biological structures and functions in nature: architecture design, strengthening mechanisms, and mechanical-functional responses. Advanced Science 2207192

  7. Liang X, Liu Z, Wang B (2019) State-of-the-art of surface integrity induced by tool wear effects in machining process of titanium and nickel alloys: a review. Measurement 132:150–181

    Google Scholar 

  8. Asala G, Andersson J, Ojo OA (2019) A study of the dynamic impact behaviour of IN 718 and ATI 718plus® superalloys. Phil Mag 99(4):419–437

    CAS  Google Scholar 

  9. Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys: a review. Int J Mach Tools Manuf 51(3):250–280

    Google Scholar 

  10. Venkatesan K, Ramanujam R (2016) Statistical approach for optimization of influencing parameters in laser assisted machining (lam) of Inconel alloy. Measurement 89:97–108

    Google Scholar 

  11. Ay M, Çaydaş U, Hasçalik A (2010) Effect of traverse speed on abrasive water jet machining of age hardened Inconel 718 nickel-based superalloy. Mater Manuf Processes 25(10):1160–1165

    CAS  Google Scholar 

  12. Dudzinski D, Devillez A, Moufki A et al (2004) A review of developments towards dry and high speed machining of Inconel 718 alloy. Int J Mach Tools Manuf 44(4):439–456

    Google Scholar 

  13. Ray A et al (2014) Cutting fluid selection for sustainable design for manufacturing: an integrated theory. Procedia Mater Sci 6:450–459

    Google Scholar 

  14. Reddy NSK, Nouari M, Yang M (2010) Development of electrostatic solid lubrication system for improvement in machining process performance. Int J Mach Tools Manuf 50(9):789–797

    Google Scholar 

  15. Sharma VS, Dogra M, Suri N (2009) Cooling techniques for improved productivity in turning. Int J Mach Tools Manuf 49(6):435–453

    Google Scholar 

  16. Rahim E, Ibrahim M, Rahim A et al (2015) Experimental investigation of minimum quantity lubrication (MQL) as a sustainable cooling technique. Procedia CIRP 26:351–354

    Google Scholar 

  17. He T, Liu N, Xia H, et al (2022) Progress and trend of minimum quantity lubrication (MQL): a comprehensive review. J Clean Prod 135809

  18. Fratila D, Caizar C (2011) Application of Taguchi method to selection of optimal lubrication and cutting conditions in face milling of ALMg3. J Clean Prod 19(6–7):640–645

    CAS  Google Scholar 

  19. Eltaggaz A, Hegab H, Deiab I, Kishawy H (2018) Hybrid nano-fluid-minimum quantity lubrication strategy for machining austempered ductile iron (ADI). Int J Interact Design Manuf (IJIDeM) 12(4):1273–1281

    Google Scholar 

  20. Osman KA, Ünver HÖ, Şeker U (2019) Application of minimum quantity lubrication techniques in machining process of titanium alloy for sustainability: a review. Int J Adv Manuf Technol 100:2311–2332

    Google Scholar 

  21. Banerjee N, Sharma A (2019) Improving machining performance of TI-6AL-4V through multi-point minimum quantity lubrication method. Proc Inst Mech Eng Part B: J Eng Manuf 233(1):321–336

    CAS  Google Scholar 

  22. Fitrina S, Kristiawan B, Surojo E, et al (2018) Influence of minimum quantity lubrication with Al2O3 nanoparticles on cutting parameters in drilling process. In: AIP Conference Proceedings, AIP Publishing LLC 030056

  23. Sharif MN, Pervaiz S, Deiab I (2017) Potential of alternative lubrication strategies for metal cutting processes: a review. Int J Adv Manuf Technol 89:2447–2479

    Google Scholar 

  24. Boubekri N, Shaikh V, Foster PR (2010) A technology enabler forgreen machining: minimum quantity lubrication (MQL). J Manuf Technol Manag 21(5):556–566

    Google Scholar 

  25. Kurgin S, M. Dasch J, L. Simon D, et al (2014) A comparison of two minimum quantity lubrication delivery systems. Industrial Lubrication and Tribology 66(1):151–159

    Google Scholar 

  26. Goindi GS, Sarkar P (2017) Dry machining: a step towards sustainable machining–challenges and future directions. J Clean Prod 165:1557–1571

    Google Scholar 

  27. Boswell B, Islam MN, Davies IJ et al (2017) A review identifying the effectiveness of minimum quantity lubrication (MQL) during conventional machining. Int J Adv Manuf Technol 92:321–340

    Google Scholar 

  28. De Bartolomeis A, Newman ST, Jawahir I et al (2021) Future research directions in the machining of Inconel 718. J Mater Process Technol 297:117260

    Google Scholar 

  29. Gupta MK, Mia M, Jamil M et al (2020) Machinability investigations of hardened steel with biodegradable oil-based MQL spray system. Int J Adv Manuf Technol 108:735–748

    Google Scholar 

  30. Wang X, Li C, Zhang Y, et al (2022) Tribology of enhanced turning using biolubricants: a comparative assessment. Tribology International 107766

  31. Lawal SA, Choudhury IA, Nukman Y (2012) Application of vegetable oil-based metalworking fluids in machining ferrous metals—a review. Int J Mach Tools Manuf 52(1):1–12

    Google Scholar 

  32. Alaba E, Kazeem R, Adebayo A et al (2023) Evaluation of palm kernel oil as cutting lubricant in turning AISI 1039 steel using Taguchi-grey relational analysis optimization technique. Adv Ind Manuf Eng 6:100115

    Google Scholar 

  33. Ross NS, Ananth MBJ, Jafferson J, et al (2022) Performance assessment of vegetable oil–based MQL in milling of additively manufactured alsi10mg for sustainable production. Biomass Conversion and Biorefinery 1–18

  34. Rahim EA, Sasahara H (2011) An analysis of surface integrity when drilling Inconel 718 using palm oil and synthetic ester under MQL condition. Mach Sci Technol 15(1):76–90

    CAS  Google Scholar 

  35. Wang Y, Li C, Zhang Y et al (2016) Experimental evaluation of the lubrication properties of the wheel/workpiece interface in minimum quantity lubrication (MQL) grinding using different types of vegetable oils. J Clean Prod 127:487–499

    CAS  Google Scholar 

  36. Li B, Li C, Zhang Y et al (2016) Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil. Chin J Aeronaut 29(4):1084–1095

    Google Scholar 

  37. Gupta MK, Song Q, Liu Z et al (2021) Environment and economic burden of sustainable cooling/lubrication methods in machining of Inconel-800. J Clean Prod 287:125074

    CAS  Google Scholar 

  38. Cui X, Li C, Zhang Y et al (2023) Comparative assessment of force, temperature, and wheel wear in sustainable grinding aerospace alloy using biolubricant. Front Mech Eng 18(1):3

    Google Scholar 

  39. Saleem MQ, Mehmood A (2022) Eco-friendly precision turning of superalloy Inconel 718 using MQL based vegetable oils: tool wear and surface integrity evaluation. J Manuf Process 73:112–127

    Google Scholar 

  40. Sahoo SP, Pandey K, Datta S (2022) Performance of uncoated/coated carbide inserts during MQL (sunflower oil) assisted machining of Inconel 718 superalloy. Sādhanā 47(4):193

    CAS  Google Scholar 

  41. Guo S, Li C, Zhang Y et al (2018) Analysis of volume ratio of castor/soybean oil mixture on minimum quantity lubrication grinding performance and microstructure evaluation by fractal dimension. Ind Crops Prod 111:494–505

    CAS  Google Scholar 

  42. Wickramasinghe K, Sasahara H, Abd Rahim E et al (2021) Recent advances on high performance machining of aerospace materials and composites using vegetable oil-based metal working fluids. J Clean Prod 310:127459

    CAS  Google Scholar 

  43. Duan Z, Li C, Zhang Y et al (2023) Mechanical behavior and semiem pirical force model of aerospace aluminum alloy milling using nano biological lubricant. Front Mech Eng 18(1):4

    Google Scholar 

  44. Vardhanapu M, Chaganti PK, Tarigopula P (2023) Characterization and machine learning-based parameter estimation in mql machining of a superalloy for developed green nano-metalworking fluids. J Braz Soc Mech Sci Eng 45(3):154

    CAS  Google Scholar 

  45. Pal A, Chatha SS, Sidhu HS (2022) Assessing the lubrication performance of various vegetable oil-based nano-cutting fluids via eco-friendly MQL technique in drilling of AISI 321 stainless steel. J Braz Soc Mech Sci Eng 44(4):148

    CAS  Google Scholar 

  46. Mao C, Zhang J, Huang Y et al (2013) Investigation on the effect of nanofluid parameters on MQL grinding. Mater Manuf Processes 28(4):436–442

    CAS  Google Scholar 

  47. Kang M, Kim K, Shin S et al (2008) Effect of the minimum quantity lubrication in high-speed end-milling of AIS D2 cold-worked die steel (62 HRC) by coated carbide tools. Surf Coat Technol 202(22–23):5621–5624

    CAS  Google Scholar 

  48. Kumar CRV, Ramamoorthy B (2007) Performance of coated tools during hard turning under minimum fluid application. J Mater Process Technol 185(1–3):210–216

    CAS  Google Scholar 

  49. Dhar N, Kamruzzaman M, Ahmed M (2006) Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning aisi-4340 steel. J Mater Process Technol 172(2):299–304

    Google Scholar 

  50. Yücel A, Yıldırım ÇV, Sarıkaya M et al (2021) Influence of MoS2 based nanofluid-MQL on tribological and machining characteristics in turning of AA 2024 T3 aluminum alloy. J Market Res 15:1688–1704

    Google Scholar 

  51. Singh G, Gupta MK, Hegab H et al (2020) Progress for sustainability in the mist assisted cooling techniques: a critical review. Int J Adv Manuf Technol 109:345–376

    Google Scholar 

  52. Wang X, Song Y, Li C, et al (2023) Nanofluids application in machining: a comprehensive review. The International Journal of Advanced Manufacturing Technology 1–52

  53. Chinchanikar S, Kore SS, Hujare P (2021) A review on nanofluids in minimum quantity lubrication machining. J Manuf Process 68:56–70

    Google Scholar 

  54. Zhang Y, Li C, Jia D et al (2015) Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding. Int J Mach Tools Manuf 99:19–33

    Google Scholar 

  55. Saatçi E, Yapan YF, Uysal MU, et al (2023) Orthogonal turning of AISI 310S austenitic stainless steel under hybrid nanofluid-assisted MQL and a sustainability optimization using NSGA-II and TOPSIS. Sustainable Materials and Technologies. e00628

  56. Usluer E, Emiroğlu U, Yapan YF et al (2023) Investigation on the effect of hybrid nanofluid in MQL condition in orthogonal turning and a sustainability assessment. Sustain Mater Technol 36:e00618

    Google Scholar 

  57. Makhesana MA, Patel KM, Krolczyk GM et al (2023) Influence of MoS2 and graphite-reinforced nanofluid-MQL on surface roughness, tool wear, cutting temperature and microhardness in machining of Inconel 625. CIRP J Manuf Sci Technol 41:225–238

    Google Scholar 

  58. Yang Y, Yang M, Li C et al (2023) Machinability of ultrasonic vibration-assisted micro-grinding in biological bone using nanolubricant. Front Mech Eng 18(1):1

    Google Scholar 

  59. Khanna N, Airao J, Nirala CK et al (2022) Novel sustainable cryo-lubrication strategies for reducing tool wear during ultrasonic-assisted turning of Inconel 718. Tribol Int 174:107728

    CAS  Google Scholar 

  60. Demirsöz R, Korkmaz ME, Gupta MK (2022) A novel use of hybrid cryo-MQL system in improving the tribological characteristics of additively manufactured 316 stainless steel against 100 cr6 alloy. Tribol Int 173:107613

    Google Scholar 

  61. Pusavec F, Hamdi H, Kopac J et al (2011) Surface integrity in cryogenic machining of nickel based alloy-Inconel 718. J Mater Process Technol 211(4):773–783

    CAS  Google Scholar 

  62. Jerold BD, Kumar MP (2013) The influence of cryogenic coolants in machining of TI-6AL-4V. Journal of manufacturing science and engineering 135(3)

  63. Priarone PC, Klocke F, Faga MG et al (2016) Tool life and surface integrity when turning titanium aluminides with PCD tools under conventional wet cutting and cryogenic cooling. Int J Adv Manuf Technol 85:807–816

    Google Scholar 

  64. Cordes S, Hübner F, Schaarschmidt T (2014) Next generation high performance cutting by use of carbon dioxide as cryogenics. Procedia Cirp 14:401–405

    Google Scholar 

  65. Yeo SD, Kiran E (2005) Formation of polymer particles with supercritical fluids: a review. The Journal of Supercritical Fluids 34(3):287–308

    CAS  Google Scholar 

  66. Stephenson D, Skerlos SJ, King AS et al (2014) Rough turning Inconel 750 with supercritical CO2-based minimum quantity lubrication. J Mater Process Technol 214(3):673–680

    CAS  Google Scholar 

  67. Lewis J (1997) Supercritical carbon dioxide spray systems~0 8. Metal finishing

  68. Hyatt JA (1984) Liquid and supercritical carbon dioxide as organic solvents. J Org Chem 49(26):5097–5101

    CAS  Google Scholar 

  69. Khosravi J, Azarhoushang B, Barmouz M et al (2022) High-speed milling of TI6AL4V under a supercritical CO2+ MQL hybrid cooling system. J Manuf Process 82:1–14

    Google Scholar 

  70. Paturi UMR, Maddu YR, Maruri RR et al (2016) Measurement and analysis of surface roughness in ws2 solid lubricant assisted minimum quantity lubrication (MQL) turning of Inconel 718. Procedia Cirp 40:138–143

    Google Scholar 

  71. Marques A, Suarez MP, Sales WF et al (2019) Turning of Inconel 718 with whisker-reinforced ceramic tools applying vegetable-based cutting fluid mixed with solid lubricants by MQL. J Mater Process Technol 266:530–543

    CAS  Google Scholar 

  72. Makhesana M, Patel K, Mawandiya B (2021) Environmentally conscious machining of Inconel 718 with solid lubricant assisted minimum quantity lubrication. Met Powder Rep 76:S24–S29

    Google Scholar 

  73. de Souza RR, de Paiva RL, Gelamo RV et al (2021) Study on grinding of Inconel 625 and 718 alloys with cutting fluid enriched with multilayer graphene platelets. Wear 476:203697

    Google Scholar 

  74. Tebaldo V, di Confiengo GG, Faga MG (2017) Sustainability in machining:“eco-friendly” turning of Inconel 718. surface characterisation and economic analysis. J Clean Prod 140:1567–1577

    CAS  Google Scholar 

  75. Xu W, Li C, Zhang Y, et al (2022) Electrostatic atomization minimum quantity lubrication machining: from mechanism to application. Int J Extreme Manuf

  76. Reddy N, Yang M (2010) Development of an electrostatic lubrication system for drilling of SCM 440 steel. Proc Inst Mech Eng Part B: J Eng Manuf 224(2):217–224

    Google Scholar 

  77. Li C, Jia D, Wang S, et al (2016) Nano fluid electrostatic atomization controllable jet minimal quantity lubrication grinding system. US Patent 9 511 478

  78. Xu X, Huang S, Wang M et al (2017) A study on process parameters in end milling of aisi-304 stainless steel under electrostatic minimum quantity lubrication conditions. Int J Adv Manuf Technol 90:979–989

    Google Scholar 

  79. Huang S, Yao W, Hu J et al (2015) Tribological performance and lubrication mechanism of contact-charged electrostatic spray lubrication technique. Tribol Lett 59(2):28

    Google Scholar 

  80. Huang S, Lv T, Wang M et al (2018) Effects of machining and oil mist parameters on electrostatic minimum quantity lubrication–EMQL turning process. Int J Precision Eng Manuf-Green Technol 5:317–326

    Google Scholar 

  81. Rajaguru J, Arunachalam N (2020) A comprehensive investigation on the effect of flood and MQL coolant on the machinability and stress corrosion cracking of super duplex stainless steel. J Mater Process Technol 276:116417

    Google Scholar 

  82. Li K, Aghazadeh F, Hatipkarasulu S et al (2003) Health risks from exposure to metal-working fluids in machining and grinding operations. Int J Occup Saf Ergon 9(1):75–95

    PubMed  Google Scholar 

  83. Guo S, Li C, Zhang Y et al (2017) Experimental evaluation of the lubrication performance of mixtures of castor oil with other vegetable oils in MQL grinding of nickel-based alloy. J Clean Prod 140:1060–1076

    CAS  Google Scholar 

  84. Sen B, Gupta MK, Mia M et al (2021) Performance assessment of minimum quantity castor-palm oil mixtures in hard-milling operation. Materials 14(1):198

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Jia D, Li C, Zhang Y et al (2017) Specific energy and surface roughness of minimum quantity lubrication grinding Ni-based alloy with mixed vegetable oil-based nanofluids. Precis Eng 50:248–262

    Google Scholar 

  86. Sankaranarayanan R, Krolczyk G et al (2021) A comprehensive review on research developments of vegetable-oil based cutting fluids for sustainable machining challenges. J Manuf Process 67:286–313

    Google Scholar 

  87. Emami M, Sadeghi MH, Sarhan AAD et al (2014) Investigating the minimum quantity lubrication in grinding of AL2O3 engineering ceramic. J Clean Prod 66:632–643

    CAS  Google Scholar 

  88. Sharma J, Sidhu BS (2014) Investigation of effects of dry and near dry machining on AISI D2 steel using vegetable oil. J Clean Prod 66:619–623

    CAS  Google Scholar 

  89. Sarıkaya M, Güllü A (2015) Multi-response optimization of minimum quantity lubrication parameters using Taguchi-based grey relational analysis in turning of difficult-to-cut alloy Haynes 25. J Clean Prod 91:347–357

    Google Scholar 

  90. Rahim E, Sasahara H (2011) A study of the effect of palm oil as MQL lubricant on high speed drilling of titanium alloys. Tribol Int 44(3):309–317

    CAS  Google Scholar 

  91. Hu Y, Dang H, Liu W et al (2000) Friction characteristics of vegetable oil fatty acids. Lubr Oil 15(4):38–40

    CAS  Google Scholar 

  92. Zhang Y, Li C, Jia D et al (2015) Experimental evaluation of nanoparticles in jet MQL grinding nickel-based alloys. Modular Mach Tool Autom Manuf Tech 6:113–117

    Google Scholar 

  93. Ye B, Yu W, Wang B et al (2005) Rheological and tribological characteristics of chemically modified castor oil. Lubr Eng 1:37–38

    Google Scholar 

  94. Jiugen W, Jianzhong Z (2005) On formation and breakup of boundary lubricating layer. Lubrication Engineering-Huangpu- 6(172):4

    Google Scholar 

  95. Debnath S, Reddy MM, Yi QS (2014) Environmental friendly cutting fluids and cooling techniques in machining: a review. J Clean Prod 83:33–47

    CAS  Google Scholar 

  96. Huang B, Changhe L, Zhang Y et al (2021) Advances in fabrication of ceramic corundum abrasives based on sol–gel process. Chin J Aeronaut 34(6):1–17

    Google Scholar 

  97. Li B, Li C, Zhang Y et al (2017) Heat transfer performance of MQL grinding with different nanofluids for Ni-based alloys using vegetable oil. J Clean Prod 154:1–11

    CAS  Google Scholar 

  98. Virdi RL, Chatha SS, Singh H (2021) Experimental investigations on the tribological and lubrication behaviour of minimum quantity lubrication technique in grinding of Inconel 718 alloy. Tribol Int 153:106581

    CAS  Google Scholar 

  99. Virdi RL, Chatha SS, Singh H (2020) Machining performance of Inconel-718 alloy under the influence of nanoparticles based minimum quantity lubrication grinding. J Manuf Process 59:355–365

    Google Scholar 

  100. Makhesana MA, Patel KM (2022) Performance assessment of vegetable oil-based nanofluid in minimum quantity lubrication (MQL) during machining of Inconel 718. Adv Mater Process Technol 8(3):3182–3198

    Google Scholar 

  101. Virdi RL, Chatha SS, Singh H (2022) Processing characteristics of different vegetable oil-based nanofluid MQL for grinding of Ni-Cr alloy advances in materials and processing technologies 8(1):210–223

  102. Makhesana MA, Patel KM, Khanna N (2022) Analysis of vegetable oil-based nano-lubricant technique for improving machinability of Inconel 690. J Manuf Process 77:708–721

    Google Scholar 

  103. Danish M, Gupta MK, Rubaiee S et al (2021) Influence of graphene reinforced sunflower oil on thermo-physical, tribological and machining characteristics of Inconel 718. J Market Res 15:135–150

    CAS  Google Scholar 

  104. Ali MAM, Azmi AI, Murad MN et al (2020) Roles of new bio-based nanolubricants towards eco-friendly and improved machinability of Inconel 718 alloys. Tribol Int 144:106106

    CAS  Google Scholar 

  105. Ghadimi A, Metselaar IH (2013) The influence of surfactant and ultrasonic processing on improvement of stability, thermal conductivity and viscosity of titania nanofluid. Exp Thermal Fluid Sci 51:1–9

    CAS  Google Scholar 

  106. Ali M, Azmi A, Khalil A (2017) Parametric effects of turning TI-6AL-4V alloys with aluminum oxide nanolubricants with sdbs. In: AIP Conference Proceedings, AIP Publishing LLC 020116

  107. Khooshechin M, Fathi S, Salimi F et al (2020) The influence of surfactant and ultrasonic processing on improvement of stability and heat transfer coefficient of CuO nanoparticles in the pool boiling. Int J Heat Mass Transf 154:119783

    CAS  Google Scholar 

  108. Gupta MK, Jamil M, Wang X et al (2019) Performance evaluation of vegetable oil-based nano-cutting fluids in environmentally friendly machining of inconel-800 alloy. Materials 12(17):2792

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Venkatesan K, Mathew AT, Devendiran S et al (2019) Machinability study and multi-response optimization of cutting force, surface roughness and tool wear on CNC turned Inconel 617 superalloy using AL2O3 nanofluids in coconut oil. Procedia Manufacturing 30:396–403

    Google Scholar 

  110. Zhou F, Liang Y, Liu W (2009) Ionic liquid lubricants: designed chemistry for engineering applications. Chem Soc Rev 38(9):2590–2599

    CAS  PubMed  Google Scholar 

  111. Goindi G, Sarkar P, Jayal A et al (2018) Investigation of ionic liquids as additives to canola oil in minimum quantity lubrication milling of plain medium carbon steel. Int J Adv Manuf Technol 94:881–896

    Google Scholar 

  112. Wypych G (2022) Self-healing materials: principles and technology. Elsevier

    Google Scholar 

  113. Reeves CJ, Siddaiah A, Menezes PL (2018) Tribological study of imidazolium and phosphonium ionic liquid-based lubricants as additives in carboxylic acid-based natural oil: Advancements in environmentally friendly lubricants. J Clean Prod 176:241–250

    CAS  Google Scholar 

  114. Jiménez AE, Bermúdez MD (2008) Imidazolium ionic liquids as additives of the synthetic ester propylene glycol dioleate in aluminium–steel lubrication. Wear 265(5–6):787–798

    Google Scholar 

  115. Mordukhovich G, Qu J, Howe JY et al (2013) A low-viscosity ionic liquid demonstrating superior lubricating performance from mixed to boundary lubrication. Wear 301(1–2):740–746

    CAS  Google Scholar 

  116. Sani ASA, Abd Rahim E, Sharif S et al (2019) The influence of modified vegetable oils on tool failure mode and wear mechanisms when turning AISI 1045. Tribol Int 129:347–362

    Google Scholar 

  117. Pandey A, Kumar R, Sahoo A et al (2020) Performance analysis of trihexyltetradecylphosphonium chloride ionic fluid under MQL condition in hard turning. Int J Automot Mech Eng 17(1):7629–7647

    Google Scholar 

  118. Wang A, Chen L, Jiang D et al (2014) Vegetable oil-based ionic liquid microemulsion biolubricants: Effect of integrated surfactants. Ind Crops Prod 62:515–521

    CAS  Google Scholar 

  119. Qu J, Luo H, Chi M et al (2014) Comparison of an oil-miscible ionic liquid and ZZDP as a lubricant anti-wear additive. Tribol Int 71:88–97

    CAS  Google Scholar 

  120. Pandey A, Kumar R, Sahoo AK et al (2019) A brief review on ionic fluids and its application in machining. Materials Today: Proceedings 18:4441–4448

    CAS  Google Scholar 

  121. Sani ASA, Abd Rahim E, Sharif S et al (2019) Machining performance of vegetable oil with phosphonium-and ammonium-based ionic liquids via MQL technique. J Clean Prod 209:947–964

    Google Scholar 

  122. Zhu L, Dong J, Ma Y et al (2019) Synthesis and investigation of halogen-free phosphonium-based ionic liquids for lubrication applications. Tribol Trans 62(6):943–954

    CAS  Google Scholar 

  123. Maruda RW, Krolczyk GM, Wojciechowski S et al (2020) Evaluation of turning with different cooling-lubricating techniques in terms of surface integrity and tribologic properties. Tribol Int 148:106334

    Google Scholar 

  124. Maruda RW, Legutko S, Krolczyk GM et al (2015) An influence of active additives on the formation of selected indicators of the condition of the x10crni18-8 stainless steel surface layer in MQCL conditions. Int J Surf Sci Eng 9(5):452–465

    CAS  Google Scholar 

  125. Davis B, Schueller JK, Huang Y (2015) Study of ionic liquid as effective additive for minimum quantity lubrication during titanium machining. Manuf Lett 5:1–6

    Google Scholar 

  126. Babu MN, Anandan V, Babu MD (2021) Performance of ionic liquid as a lubricant in turning Inconel 825 via minimum quantity lubrication method. J Manuf Process 64:793–804

    Google Scholar 

  127. Grzesik W, Niesłony P, Habrat W et al (2018) Investigation of tool wear in the turning of Inconel 718 superalloy in terms of process performance and productivity enhancement. Tribol Int 118:337–346

    CAS  Google Scholar 

  128. Cantero J, Díaz-Álvarez J, Miguélez M et al (2013) Analysis of tool wear patterns in finishing turning of Inconel 718. Wear 297(1–2):885–894

    CAS  Google Scholar 

  129. Khanna N, Shah P et al (2020) Comparative analysis of dry, flood, MQL and cryogenic CO2 techniques during the machining of 15-5-PH SS alloy. Tribol Int 146:106196

    CAS  Google Scholar 

  130. Şirin Ş, Yıldırım ÇV, Kıvak T et al (2021) Performance of cryo-genically treated carbide inserts under sustainable cryo-lubrication assisted milling of Inconel x750 alloy. Sustain Mater Technol 29:e00314

    Google Scholar 

  131. Pereira O, Rodríguez A, Fernández-Abia A et al (2016) Cryogenic and minimum quantity lubrication for an eco-efficiency turning of AISI 304. J Clean Prod 139:440–449

    CAS  Google Scholar 

  132. Busch K, Hochmuth C, Pause B et al (2016) Investigation of cooling and lubrication strategies for machining high-temperature alloys. Procedia CIRP 41:835–840

    Google Scholar 

  133. Manimaran G, Anwar S, Rahman MA et al (2021) Investigation of surface modification and tool wear on milling Nimonic 80a under hybrid lubrication. Tribol Int 155:106762

    Google Scholar 

  134. Jamil M, Khan AM, Gupta MK et al (2020) Influence of CO2-snow and subzero MQL on thermal aspects in the machining of TI-6AL-4V. Appl Therm Eng 177:115480

    CAS  Google Scholar 

  135. Nimel Sworna Ross K, Manimaran G (2019) Effect of cryogenic coolant on machinability of difficult-to-machine Ni–Cr alloy using PVD-TIAIN ncoated WC tool. J Braz Soc Mech Sci Eng 41:1–14

    CAS  Google Scholar 

  136. Ross NS, Mia M, Anwar S et al (2021) A hybrid approach of cooling lubrication for sustainable and optimized machining of Ni-based industrial alloy. J Clean Prod 321:128987

    CAS  Google Scholar 

  137. Pereira O, Celaya A, Urbikaín G et al (2020) CO2 cryogenic milling of Inconel 718: cutting forces and tool wear. J Market Res 9(4):8459–8468

    CAS  Google Scholar 

  138. Zhang H, Dang J, An Q et al (2022) Investigation of machinability in milling of Inconel 718 with solid Sialon ceramic tool using supercritical carbon dioxide (scCO2)-based cooling conditions. Ceram Int 48(4):4940–4952

    CAS  Google Scholar 

  139. Yildiz Y, Nalbant M (2008) A review of cryogenic cooling in machining processes. Int J Mach Tools Manuf 48(9):947–964

    Google Scholar 

  140. Pusavec F, Deshpande A, Yang S et al (2014) Sustainable machining of high temperature nickel alloy–Inconel 718: part 1–predictive performance models. J Clean Prod 81:255–269

    CAS  Google Scholar 

  141. Danish M, Gupta MK, Rubaiee S et al (2021) Influence of hybrid cryo-MQL lubri-cooling strategy on the machining and tribological characteristics of Inconel 718. Tribol Int 163:107178

    CAS  Google Scholar 

  142. Yıldırım ÇV, Kıvak T, Sarıkaya M et al (2020) Evaluation of tool wear, surface roughness/topography and chip morphology when machining of Ni-based alloy 625 under MQL, cryogenic cooling and cryo-MQL. J Market Res 9(2):2079–2092

    Google Scholar 

  143. Yıldırım ÇV (2019) Experimental comparison of the performance of nanofluids, cryogenic and hybrid cooling in turning of Inconel 625. Tribol Int 137:366–378

    Google Scholar 

  144. Sarıkaya M, Yılmaz V, Güllü A (2016) Analysis of cutting parameters and cooling/lubrication methods for sustainable machining in turning of Haynes 25 superalloy. J Clean Prod 133:172–181

    Google Scholar 

  145. Yıldırım ÇV, Kıvak T, Sarıkaya M et al (2017) Determination of MQL parameters contributing to sustainable machining in the milling of nickel-base superalloy waspaloy. Arab J Sci Eng 42:4667–4681

    Google Scholar 

  146. Su Y, Gong L, Li B et al (2016) Performance evaluation of nanofluid MQL with vegetable-based oil and ester oil as base fluids in turning. Int J Adv Manuf Technol 83:2083–2089

    Google Scholar 

  147. Nguyen TK, Do I, Kwon P (2012) A tribological study of vegetable oil enhanced by nano-platelets and implication in MQL machining. Int J Precis Eng Manuf 13:1077–1083

    Google Scholar 

  148. Vasu V, Kumar KM (2011) Analysis of nanofluids as cutting fluid in grinding en-31 steel. Nano-Micro Letters 3:209–214

    Google Scholar 

  149. Hosokawa A, Hoshino G, Koyano T et al (2018) Cutting characteristics of PVD-coated tools deposited by filtered arc deposition (FAD) method. CIRP Ann 67(1):83–86

    Google Scholar 

  150. ulHaq MA, Hussain S, Ali MA et al (2021) Evaluating the effects of nano-fluids based MQL milling of IN 718 associated to sustainable productions. J Clean Prod 310:127463

    Google Scholar 

  151. Sarhan AA, Sayuti M, Hamdi M (2012) Reduction of power and lubricant oil consumption in milling process using a new SiO2 nanolubrication system. Int J Adv Manuf Technol 63:505–512

    Google Scholar 

  152. Behera BC, Ghosh S, Rao PV et al (2016) Application of nanofluids during minimum quantity lubrication: a case study in turning process. Tribol Int 101:234–246

    Google Scholar 

  153. Sarkar J (2011) A critical review on convective heat transfer correlations of nanofluids. Renew Sustain Energy Rev 15(6):3271–3277

    CAS  Google Scholar 

  154. Sarıkaya M, Şirin Ş, Yıldırım ÇV et al (2021) Performance evaluation of whisker-reinforced ceramic tools under nano-sized solid lubricants assisted MQL turning of co-based Haynes 25 superalloy. Ceram Int 47(11):15542–15560

    Google Scholar 

  155. Bertolini R, Ghiotti A, Bruschi S (2021) Graphene nanoplatelets as additives to MQL for improving tool life in machining Inconel 718 alloy. Wear 476:203656

    CAS  Google Scholar 

  156. Sharma AK, Tiwari AK, Dixit AR (2015) Mechanism of nanoparticles functioning and effects in machining processes: a review. Materials Today: Proceedings 2(4–5):3539–3544

    CAS  Google Scholar 

  157. Yıldırım ÇV, Sarıkaya M, Kıvak T et al (2019) The effect of addition of hBN nanoparticles to nanofluid-MQL on tool wear patterns, tool life, roughness and temperature in turning of Ni-based Inconel 625. Tribol Int 134:443–456

    Google Scholar 

  158. Şirin Ş, Sarıkaya M, Yıldırım ÇV et al (2021) Machinability performance of nickel alloy x–750 with Sialon ceramic cutting tool under dry, MQL and hBN mixed nanofluid-MQL. Tribol Int 153:106673

    Google Scholar 

  159. Chetan BC, Behera S, Ghosh PV, Rao (2016) Application of nanofluids during minimum quantity lubrication: A case study in turning process. Tribol Int 101:234–246

    CAS  Google Scholar 

  160. Zhang Y, Li C, Jia D et al (2016) Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy. J Mater Process Technol 232:100–115

    CAS  Google Scholar 

  161. Musavi SH, Davoodi B, Niknam S (2019) Effects of reinforced nanoparticles with surfactant on surface quality and chip formation morphology in MQL-turning of superalloys. J Manuf Process 40:128–139

    Google Scholar 

  162. Korkmaz ME, Gupta MK, Boy M et al (2021) Influence of duplex jets MQL and nano-MQL cooling system on machining performance of Nimonic 80a. J Manuf Process 69:112–124

    Google Scholar 

  163. Behera BC, Alemayehu H, Ghosh S et al (2017) A comparative study of recent lubri-coolant strategies for turning of Ni-based superalloy. J Manuf Process 30:541–552

    Google Scholar 

  164. Şirin Ş, Kıvak T (2021) Effects of hybrid nanofluids on machining performance in MQL-milling of Inconel x–750 superalloy. J Manuf Process 70:163–176

    Google Scholar 

  165. Bermingham M, Kirsch J, Sun S et al (2011) New observations on tool life, cutting forces and chip morphology in cryogenic machining TI-6AL-4V. Int J Mach Tools Manuf 51(6):500–511

    Google Scholar 

  166. Barewar SD, Kotwani A, Chougule SS et al (2021) Investigating a novel Ag/ZnO based hybrid nanofluid for sustainable machining of Inconel 718 under nanofluid based minimum quantity lubrication. J Manuf Process 66:313–324

    Google Scholar 

  167. Zhang X, Li C, Zhang Y et al (2017) Lubricating property of MQL grinding of al2o3/sic mixed nanofluid with different particle sizes and microtopography analysis by cross-correlation. Precis Eng 47:532–545

    MathSciNet  Google Scholar 

  168. Allam I (1991) Solid lubricants for applications at elevated temperatures: A review. J Mater Sci 26:3977–3984

    CAS  Google Scholar 

  169. Reddy NSK, Rao PV (2006) Experimental investigation to study the effect of solid lubricants on cutting forces and surface quality in end milling. Int J Mach Tools Manuf 46(2):189–198

    Google Scholar 

  170. Paturi UMR, Narala SKR (2015) Experimental investigation to study the effect of electrostatic micro-solid lubricant–coated carbide tools on machinability parameters in turning. Proc Inst Mech Eng Part B: J Eng Manuf 229(5):693–702

    CAS  Google Scholar 

  171. Pavan RB, Venu Gopal A, Amrita M et al (2019) Experimental investigation of graphene nanoplatelets–based minimum quantity lubrication in grinding Inconel 718. Proc Inst Mech Eng Part B: J Eng Manuf 233(2):400–410

    CAS  Google Scholar 

  172. Alberts M, Kalaitzidou K, Melkote S (2009) An investigation of graphite nanoplatelets as lubricant in grinding. Int J Mach Tools Manuf 49(12–13):966–970

    Google Scholar 

  173. De Oliveira D, Da Silva R, Gelamo R (2019) Influence of multilayer graphene platelet concentration dispersed in semi-synthetic oil on the grinding performance of Inconel 718 alloy under various machining conditions. Wear 426:1371–1383

    Google Scholar 

  174. Tazehkandi AH, Shabgard M, Pilehvarian F (2015) On the feasibility of a reduction in cutting fluid consumption via spray of biodegradable vegetable oil with compressed air in machining Inconel 706. J Clean Prod 104:422–435

    Google Scholar 

  175. Cui X, Li C, Zhang Y et al (2022) Grindability of titanium alloy using cryogenic nanolubricant minimum quantity lubrication. J Manuf Process 80:273–286

    Google Scholar 

  176. Singh G, Aggarwal V, Singh S et al (2022) Experimental investigation and performance optimization during machining of Hastelloy C-276 using green lubricants. Materials 15(15):5451

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Cui X, Sun N, Guo J et al (2022) Green multi-biomimetic spontaneous oil-transport microstructure and its effects on energy consumption in sustainable intermittent cutting. J Clean Prod 367:133035

    CAS  Google Scholar 

  178. Cabanettes F, Faverjon P, Sova A et al (2017) MQL machining: from mist generation to tribological behavior of different oils. Int J Adv Manuf Technol 90:1119–1130

    Google Scholar 

  179. Gupta K, Laubscher R, Davim JP et al (2016) Recent developments in sustainable manufacturing of gears: a review. J Clean Prod 112:3320–3330

    Google Scholar 

  180. Lv T, Xu X, Yu A et al (2021) Ambient air quantity and cutting performances of water-based fe3o4 nanofluid in magnetic minimum quantity lubrication. Int J Adv Manuf Technol 115(5–6):1711–1722

    Google Scholar 

  181. Krolczyk GM, Maruda RW, Krolczyk JB et al (2019) Ecological trends in machining as a key factor in sustainable production–a review. J Clean Prod 218:601–615

    CAS  Google Scholar 

  182. Wei Z, Ning H, Liang L et al (2014) Investigation on the influence of system parameters on ambient air quality in minimum quantity lubrication milling process. J Mech Eng 50(13):184–189

    Google Scholar 

  183. Zhai SR, Albritton D (2020) Airborne particles from cooking oils: Emission test and analysis on chemical and health implications. Sustain Cities Soc 52:101845

    Google Scholar 

  184. Lee T, Gany F (2013) Cooking oil fumes and lung cancer: a review of the literature in the context of the us population. J Immigr Minor Health 15:646–652

    PubMed  Google Scholar 

  185. Hadad M (2015) An experimental investigation of the effects of machining parameters on environmentally friendly grinding process. J Clean Prod 108:217–231

    Google Scholar 

  186. Huo Y, Wang J, Zuo Z et al (2015) Visualization of the evolution of charged droplet formation and jet transition in electrostatic atomization. Phys Fluids 27(11):114105

    Google Scholar 

  187. Jia D, Li C, Liu J, et al (2023) Prediction model of volume average diameter and analysis of atomization characteristics in electrostatic atomization minimum quantity lubrication. Friction pp 1–25

  188. Lv T, Huang S, Liu E et al (2018) Tribological and machining characteristics of an electrostatic minimum quantity lubrication (EMQL) technology using graphene nano-lubricants as cutting fluids. J Manuf Process 34:225–237

    Google Scholar 

  189. Huang S, Lv T, Wang M et al (2018) Enhanced machining performance and lubrication mechanism of electrostatic minimum quantity lubrication-EMQL milling process. Int J Adv Manuf Technol 94:655–666

    Google Scholar 

  190. Huang S, Lv T, Xu X et al (2018) Experimental evaluation on the effect of electrostatic minimum quantity lubrication (EMQL) in end milling of stainless steels. Mach Sci Technol 22(2):271–286

    CAS  Google Scholar 

  191. Shah P, Gadkari A, Sharma A et al (2021) Comparison of machining performance under MQL and ultra-high voltage EMQL conditions based on tribological properties. Tribol Int 153:106595

    Google Scholar 

  192. Xu X, Lv T, Luan Z et al (2019) Capillary penetration mechanism and oil mist concentration of AL2O3 nanoparticle fluids in electrostatic minimum quantity lubrication (EMQL) milling. Int J Adv Manuf Technol 104:1937–1951

    Google Scholar 

  193. Su Y, Gong L, Cao H, et al (2016) Optimization of electrostatic atomization cutting using 3d fesimulation of electrostatic field. In: Key Engineering Materials, Trans Tech Publ, 1255–1262

  194. De Bartolomeis A, Newman ST, Shokrani A (2020) Initial investigation on surface integrity when machining Inconel 718 with conventional and electrostatic lubrication. Procedia CIRP 87:65–70

    Google Scholar 

  195. De Bartolomeis A, Newman ST, Shokrani A (2021) High-speed milling Inconel 718 using electrostatic minimum quantity lubrication (EMQL). Procedia CIRP 101:354–357

    Google Scholar 

  196. Airao J, Khanna N, Nirala CK (2022) Tool wear reduction in machining Inconel 718 by using novel sustainable cryo-lubrication techniques. Tribol Int 175:107813

    CAS  Google Scholar 

  197. Salvi H, Vesuwala H, Raval P et al (2023) Sustainability analysis of additive+ subtractive manufacturing processes for Inconel 625. Sustain Mater Technol 35:e00580

    CAS  Google Scholar 

  198. Bailey A (1984) Electrostatic phenomena during powder handling. Powder Technol 37(1):71–85

    Google Scholar 

Download references

Funding

This study was supported by a research project financed by the National Natural Science Foundation of China (number 5217052158).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Shu Zhou; software, Dazhong Wang and Shujing Wu; writing review, Guquan Gu and Guojun Dong; editing, Qinglong An, Hun Guo, and Changhe Li. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Dazhong Wang.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10308 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Wang, D., Wu, S. et al. Minimum quantity lubrication machining nickel base alloy: a comprehensive review. Int J Adv Manuf Technol 131, 2407–2445 (2024). https://doi.org/10.1007/s00170-023-11721-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11721-6

Keywords

Navigation