Skip to main content

Advertisement

Log in

Recent research progress of foam metals welding: a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The unique porous structure of foam metal imparts a variety of advantageous properties, including low weight, reduced density, extensive specific surface area, efficient sound and energy absorption, exceptional thermal insulation, effective electromagnetic shielding, and outstanding electrochemical behavior. As a result, foam metals are deemed crucial for both functionalizing structural materials and structuring functional materials, finding widespread application in electronics, chemicals, machinery, and aerospace sectors. Currently, the welding of foam metals is a subject of significant interest and ongoing research, with numerous studies aimed at refining the welding process. This review provides an overview of the current state-of-the-art research on foam metal welding and evaluates the feasibility of different welding techniques from a methodological perspective. A comparison of the efficiency and efficacy of various welding approaches in the preparation of foam metal joints is performed to highlight their strengths and limitations. Finally, this paper summarizes the current developments in foam metal welding and provides insights into the future trajectory of this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Banhart J, Ashby M, Fleck N (1999) Metal foams and porous metal structures. In: Metal Foams and Porous Metal Structures, vol 56, pp 14–16

    Google Scholar 

  2. Baumgärtner F, Duarte I, Banhart J (2000) Industrialization of powder compact toaming process. Adv Eng Mater 2(4):168–174. https://doi.org/10.1002/(SICI)1527-2648(200004)2:4<168::AID-ADEM168>3.0.CO;2-O

    Article  Google Scholar 

  3. Fusheng H, Zhengang Z (1999) The mechanical behavior of foamed aluminum. J Mater Sci 34(2):291–299. https://doi.org/10.1023/A:1004401521842

    Article  Google Scholar 

  4. Zardiackas LD, Parsell DE, Dillon LD, Mitchell DW, Nunnery LA, Poggie R (2001) Structure metallurgy and mechanical properties of a porous tantalum foam. J Biomed Mater Res 58(2):180–187. https://doi.org/10.1002/1097-4636(2001)58:2<180::AID-JBM1005>3.0.CO;2-5

    Article  Google Scholar 

  5. Imwinkelried T (2007) Mechanical properties of open-pore titanium foam. J Biomed Mater Res A 81(4):964–970. https://doi.org/10.1002/jbm.a.31118

    Article  Google Scholar 

  6. Dinesh BVS, Bhattacharya A (2020) Comparison of energy absorption characteristics of PCM-metal foam systems with different pore size distributions. J Energy Storage 28:101190. https://doi.org/10.1016/j.est.2019.101190

    Article  Google Scholar 

  7. Guo J, Liu Z, Du Z, Yu J, Yang X, Yan J (2021) Effect of fin-metal foam structure on thermal energy storage: an experimental study. Renew Energy 172:57–70. https://doi.org/10.1016/j.renene.2021.03.018

    Article  Google Scholar 

  8. Sevilla P, Aparicio C, Planell JA, Gil FJ (2007) Comparison of the mechanical properties between tantalum and nickel-titanium foams implant materials for bone ingrowth applications. J Alloys Compd 439(1-2):67–73. https://doi.org/10.1016/j.jallcom.2006.08.069

    Article  Google Scholar 

  9. Sun G, Wang Z, Yu H, Gong Z, Li Q (2019) Experimental and numerical investigation into the crashworthiness of metal-foam-composite hybrid structures. Compos Struct 209:535–547. https://doi.org/10.1016/j.compstruct.2018.10.051

    Article  Google Scholar 

  10. Ji K, Zhao H, Huang Z, Dai Z (2014) Performance of open-cell foam of Cu-Ni alloy integrated with graphene as a shield against electromagnetic interference. Mater Lett 122:244–247. https://doi.org/10.1016/j.matlet.2014.02.025

    Article  Google Scholar 

  11. Queheillalt DT, Katsumura Y, Wadley HNG (2004) Synthesis of stochastic open cell Ni-based foams. Scr Mater 50(3):313–317. https://doi.org/10.1016/j.scriptamat.2003.10.016

    Article  Google Scholar 

  12. Aramesh M, Shabani B (2022) Metal foam-phase change material composites for thermal energy storage: a review of performance parameters. Renewable Sustainable Energy Rev 155:111919. https://doi.org/10.1016/j.rser.2021.111919

    Article  Google Scholar 

  13. Li H, Chen S, He M, Jin J, Zhu K, Peng F, Gao F (2022) Self-supported V-doped NiO electrocatalyst achieving a high ammonia yield of 30.55 μg h−1 cm−2 under ambient conditions. New J Chem. https://doi.org/10.1039/d2nj02867k

  14. Changdar A, Chakraborty SS (2021) Laser processing of metal foam - a review. J Manuf Process 61:208–225. https://doi.org/10.1016/j.jmapro.2020.10.012

    Article  Google Scholar 

  15. Yu CF, Lin LY (2016) Effect of the bimetal ratio on the growth of nickel cobalt sulfide on the Ni foam for the battery-like electrode. J Colloid Interface Sci 482:1–7. https://doi.org/10.1016/j.jcis.2016.07.059

    Article  Google Scholar 

  16. Bidault F, Brett DJL, Middleton PH, Abson N, Brandon NP (2009) A new application for nickel foam in alkaline fuel cells. Int J Hydrog Energy 34(16):6799–6808. https://doi.org/10.1016/j.ijhydene.2009.06.035

    Article  Google Scholar 

  17. Zhou ZQ, Lin GW, Zhang JL, Ge JS, Shen JR (1999) Degradation behavior of foamed nickel positive electrodes of Ni-MH batteries. J Alloys Compd 293-295:795–798. https://doi.org/10.1016/s0925-8388(99)00465-x

    Article  Google Scholar 

  18. Longerich S, Piontek D, Ohse P, Harms A, Dilthey U, Angel S, Bleck W (2007) Joining strategies for open porous metallic foams on iron and nickel base materials. Adv Eng Mater 9(8):670–678. https://doi.org/10.1002/adem.200700114

    Article  Google Scholar 

  19. Banhart J (2001) Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci 46(6):559–632. https://doi.org/10.12691/ajme-6-3-5

    Article  Google Scholar 

  20. Wang L, Xie Y, Wei C, Lu X, Li X, Song Y (2015) Hierarchical NiO superstructures/foam Ni electrode derived from Ni metal-organic framework flakes on foam Ni for glucose sensing. Electrochim Acta 174:846–852. https://doi.org/10.1016/j.electacta.2015.06.086

    Article  Google Scholar 

  21. Jiang T, Zhang S, Qiu X, Zhu W, Chen L (2007) Preparation and characterization of silicon-based three-dimensional cellular anode for lithium ion battery. Electrochem Commun 9(5):930–934. https://doi.org/10.1016/j.elecom.2006.11.031

    Article  Google Scholar 

  22. Fan X, Zhuang Q, Jiang H, Huang L, Dong Q, Sun S (2007) Three-dimensional porous Cu6Sn5 alloy anodes for lithium-ion batteries. Acta Phys-Chimica Sin 23(7):973–977. https://doi.org/10.1016/s1872-1508(07)60051-5

    Article  Google Scholar 

  23. Chen C, Wu J, Li H (2021) Optimization design of cylindrical rivet in flat bottom riveting. Thin-Walled Struct 168:108292. https://doi.org/10.1016/j.tws.2021.108292

    Article  Google Scholar 

  24. Li H, Yi R, Chen C (2022) Microstructure and mechanical performance of dissimilar material joints of 2024Al and SiO2 glass by ultrasonic assisted soldering with Cu interlayer. J Mater Res Technol 18:3227–3239. https://doi.org/10.1016/j.jmrt.2022.03.155

    Article  Google Scholar 

  25. Peng H, Chen C, Ren X, Ran X, Gao X (2021) Research on the material flow and joining performance of two-strokes flattening clinched joint. Thin-Walled Struct 169:108289. https://doi.org/10.1016/j.tws.2021.108289

    Article  Google Scholar 

  26. Qin D-L, Chen C (2022) Failure behavior and mechanical properties of novel dieless clinched joints with different sheet thickness ratios. J Cent South Univ 29(9):3077–3087. https://doi.org/10.1007/s11771-022-5120-8

    Article  Google Scholar 

  27. Ran X, Chen C, Zhang H, Ouyang Y (2021) Investigation of the clinching process with rectangle punch. Thin-Walled Struct 166:108034. https://doi.org/10.1016/j.tws.2021.108034

    Article  Google Scholar 

  28. Shi C, Li H, Chen C, Ouyang Y, Qin D (2022) Experimental investigation of the flat clinch-rivet process. Thin-Walled Struct 171:108612. https://doi.org/10.1016/j.tws.2021.108612

    Article  Google Scholar 

  29. Zhang X, Chen C (2022) Experimental investigation of joining aluminum alloy sheets by stepped mechanical clinching. J Mater Res Technol 19:566–577. https://doi.org/10.1016/j.jmrt.2022.05.046

    Article  Google Scholar 

  30. Feng M-N, Xie Y, Zhao C-F, Luo Z (2018) Microstructure and mechanical performance of ultrasonic spot welded open-cell Cu foam/Al joint. J Manuf Process 33:86–95. https://doi.org/10.1016/j.jmapro.2018.04.022

    Article  Google Scholar 

  31. Xie Y, Feng M, Cai Y, Luo Z (2017) Ultrasonic spot welding of nickel foam sheet and aluminum solid sheet. Adv Eng Mater 19(8). https://doi.org/10.1002/adem.201700094

  32. Crupi V, Montanini R (2007) Aluminium foam sandwiches collapse modes under static and dynamic three-point bending. Int J Impact Eng 34(3):509–521. https://doi.org/10.1016/j.ijimpeng.2005.10.001

    Article  Google Scholar 

  33. Biffi CA, Colombo D, Tuissi A (2014) Laser beam welding of CuZn open-cell foams. Opt Lasers Eng 62:112–118. https://doi.org/10.1016/j.optlaseng.2014.05.005

    Article  Google Scholar 

  34. Biffi CA, Casati R, Previtali B, Tuissi A (2016) Microstructure and mechanical properties of laser welded beads realized for joining CuZn open cellular foams. Mater Lett 181:132–135. https://doi.org/10.1016/j.matlet.2016.05.161

    Article  Google Scholar 

  35. Biffi CA, Previtali B, Tuissi A (2017) Microstructure and calorimetric behavior of laser welded open cell foams in CuZnAl shape memory alloy. Funct Mater Lett 09(06). https://doi.org/10.1142/s1793604716420078

  36. Oliveira JP, Panton B, Zeng Z, Omori T, Zhou Y, Miranda RM, Braz Fernandes FM (2016) Laser welded superelastic Cu-Al-Mn shape memory alloy wires. Mater Des 90:122–128. https://doi.org/10.1016/j.matdes.2015.10.125

    Article  Google Scholar 

  37. Haferkamp H, Bunte J, Herzog D, Ostendorf A (2013) Laser based welding of cellular aluminium. Sci Technol Weld Join 9(1):65–71. https://doi.org/10.1179/136217104225017170

    Article  Google Scholar 

  38. Tan JC, Westgate SA, Clyne TW (2013) Resistance welding of thin stainless steel sandwich sheets with fibrous metallic cores: experimental and numerical studies. Sci Technol Weld Join 12(6):490–504. https://doi.org/10.1179/174329307x213666

    Article  Google Scholar 

  39. Jarvis T, Voice W, Goodall R (2011) The bonding of nickel foam to Ti-6Al-4V using Ti-Cu-Ni braze alloy. Mater Sci Eng: A 528(6):2592–2601. https://doi.org/10.1016/j.msea.2010.11.077

    Article  Google Scholar 

  40. Kitazono K, Kitajima A, Sato E, Matsushita J, Kuribayashi K (2002) Solid-state diffusion bonding of closed-cell aluminum foams. Mater Sci Eng: A 327(2):128–132. https://doi.org/10.1016/S0921-5093(01)01766-X

    Article  Google Scholar 

  41. Liu C, Zhu Z, Han F, Banhart J (1998) Internal friction of foamed aluminium in the range of acoustic frequencies. J Mater Sci 33(7):1769–1775

    Article  Google Scholar 

  42. Born C, Kuckert H, Wagner G, Eifler D (2003) Ultrasonic torsion welding of sheet metals to cellular metallic materials. Adv Eng Mater 5(11):779–786. https://doi.org/10.1002/adem.200310102

    Article  Google Scholar 

  43. Born C, Wagner G, Eifler D (2006) Ultrasonically welded aluminium foams/sheet metal - joints. Adv Eng Mater 8(9):816–820. https://doi.org/10.1002/adem.200600083

    Article  Google Scholar 

  44. Ni ZL, Yang JJ, Hao YX, Chen LF, Li S, Wang XX, Ye FX (2020) Ultrasonic spot welding of aluminum to copper: a review. Int J Adv Manuf Technol 107(1-2):585–606. https://doi.org/10.1007/s00170-020-04997-5

    Article  Google Scholar 

  45. Nowacki J, Moraniec K (2015) Welding of metallic AlSi foams and AlSi-SiC composite foams. Arch Civ Mech Eng 15(4):940–950. https://doi.org/10.1016/j.acme.2015.02.007

    Article  Google Scholar 

  46. Böllinghaus T, Von Hagen H, Bleck W, Werden Aluminium H (2000) Laserstrahlschweißen von schäumbarem Aluminiumhalbzeug. UTF. Science 11:23–26

    Google Scholar 

  47. Peng P, Wang K, Wang W, Huang L, Qiao K, Che Q, Xi X, Zhang B, Cai J (2019) High-performance aluminium foam sandwich prepared through friction stir welding. Mater Lett 236:295–298. https://doi.org/10.1016/j.matlet.2018.10.125

    Article  Google Scholar 

  48. Hangai Y, Kamada H, Utsunomiya T, Kitahara S, Kuwazuru O, Yoshikawa N (2014) Aluminum alloy foam core sandwich panels fabricated from die casting aluminum alloy by friction stir welding route. J Mater Process Technol 214(9):1928–1934. https://doi.org/10.1016/j.jmatprotec.2014.04.010

    Article  Google Scholar 

  49. Shih J-S, Tzeng Y-F, Yang J-B (2011) Principal component analysis for multiple quality characteristics optimization of metal inert gas welding aluminum foam plate. Mater Des 32(3):1253–1261. https://doi.org/10.1016/j.matdes.2010.10.001

    Article  Google Scholar 

  50. Zuo X, Zhang W, Chen Y, Oliveira JP, Zeng Z, Li Y, Luo Z, Ao S (2022) Wire-based directed energy deposition of NiTiTa shape memory alloys: microstructure, phase transformation, electrochemistry, X-ray visibility and mechanical properties. Addit Manuf 59. https://doi.org/10.1016/j.addma.2022.103115

  51. Hangai Y, Utsunomiya T (2008) Fabrication of porous aluminum by friction stir processing. Metall Mater Trans A 40(2):275–277. https://doi.org/10.1007/s11661-008-9733-9

    Article  Google Scholar 

  52. Ashby MF, Evans T, Fleck NA, Hutchinson J, Wadley H, Gibson L (2000) Metal foams: a design guide. Elsevier 16(5):13-16.

    Google Scholar 

  53. Banhart J (2013) Light-metal foams-history of innovation and technological challenges. Adv Eng Mater 15(3):82–111. https://doi.org/10.1002/adem.201200217

    Article  Google Scholar 

  54. Sathiskumar R, Murugan N, Dinaharan I, Vijay S (2013) Role of friction stir processing parameters on microstructure and microhardness of boron carbide particulate reinforced copper surface composites. Sadhana 38(6):1433–1450. https://doi.org/10.1007/s12046-013-0184-7

    Article  Google Scholar 

  55. Nisa SU, Pandey S, Pandey PM (2020) Formation and characterization of 6063 aluminum metal foam using friction stir processing route. Mater Today: Proc 26:3223–3227. https://doi.org/10.1016/j.matpr.2020.02.903

    Article  Google Scholar 

  56. Hangai Y, Takada K, Fujii H, Aoki Y, Utsunomiya T (2019) Foaming behavior of blowing- and stabilization-agent-free aluminum foam precursor during spot friction stir welding. J Mater Process Technol 265:185–190. https://doi.org/10.1016/j.jmatprotec.2018.10.013

    Article  Google Scholar 

  57. Sharma VM, Pal SK, Racherla V (2021) Fabrication of copper foam using friction processing. Manuf Lett 29:61–64. https://doi.org/10.1016/j.mfglet.2021.06.004

    Article  Google Scholar 

  58. Sanga B, Wattal R, Nagesh D (2018) Mechanism of joint formation and characteristics of interface in ultrasonic welding: literature review. Period Eng Nat Sci 6(1):107–119. https://doi.org/10.21533/pen.v6i1.158

    Article  Google Scholar 

  59. Tao W, Su X, Wang H, Zhang Z, Li H, Chen J (2019) Influence mechanism of welding time and energy director to the thermoplastic composite joints by ultrasonic welding. J Manuf Process 37:196–202. https://doi.org/10.1016/j.jmapro.2018.11.002

    Article  Google Scholar 

  60. Daniels H (1965) Ultrasonic welding. Ultrasonics 3(4):190–196. https://doi.org/10.1016/0041-624X(65)90169-1

    Article  Google Scholar 

  61. Zhang G-P, Li J-C, Liu Z-X, Wang P-C (2020) Application of ultrasonic welding to repair adhesively bonded short carbon fiber reinforced Nylon 6 composites. Int J Adhes Adhes 100:102603. https://doi.org/10.1016/j.ijadhadh.2020.102603

    Article  Google Scholar 

  62. Kumar S, Wu C, Padhy G, Ding W (2017) Application of ultrasonic vibrations in welding and metal processing: a status review. J Manuf Process 26:295–322. https://doi.org/10.1016/j.jmapro.2017.02.027

    Article  Google Scholar 

  63. Matheny M, Graff K (2015) Ultrasonic welding of metals in power ultrasonics, vol 259-293. Elsevier. https://doi.org/10.1016/B978-1-78242-028-6.00011-9

    Book  Google Scholar 

  64. Yang Y, Ram GJ, Stucker B (2009) Bond formation and fiber embedment during ultrasonic consolidation. J Mater Process Technol 209(10):4915–4924. https://doi.org/10.1016/j.jmatprotec.2009.01.014

    Article  Google Scholar 

  65. Zhao Y, Li D, Zhang Y (2013) Effect of welding energy on interface zone of Al-Cu ultrasonic welded joint. Sci Technol Weld Join 18(4):354–360. https://doi.org/10.1179/1362171813Y.0000000114

    Article  Google Scholar 

  66. Yang J, Cao B, He X, Luo H (2014) Microstructure evolution and mechanical properties of Cu-Al joints by ultrasonic welding. Sci Technol Weld Join 19(6):500–504. https://doi.org/10.1179/1362171814Y.0000000218

    Article  Google Scholar 

  67. Klocke F, Castell-Codesal A, Donst D (2005) Process characteristics of laser brazing aluminium alloys. Adv Mat Res 36:135–142. https://doi.org/10.4028/www.scientific.net/AMR.6-8.135

    Article  Google Scholar 

  68. Zhou L, Zhu S, Zheng W, Li T, Wu L, Zhang Z, Lei Z (2020) Constant current induction brazing process optimization of AgCdO15-Cu electrical contact. J Manuf Process 51:122–129. https://doi.org/10.1016/j.jmapro.2020.01.022

    Article  Google Scholar 

  69. Takemoto T, Okamoto I (1988) Intermetallic compounds formed during brazing of titanium with aluminium filler metals. J Mater Sci 23(4):1301–1308. https://doi.org/10.2464/jilm.36.627

    Article  Google Scholar 

  70. Li Y, Chen C, Yi R, Ouyang Y (2020) Review: Special brazing and soldering. J Manuf Process 60:608–635. https://doi.org/10.1016/j.jmapro.2020.10.049

    Article  Google Scholar 

  71. He R, Hu P, Zhang X, Han W, Wei C, Hou Y (2013) Preparation of high solid loading, low viscosity ZrB2-SiC aqueous suspensions using PEI as dispersant. Ceram Int 39(3):2267–2274. https://doi.org/10.1016/j.ceramint.2012.08.073

    Article  Google Scholar 

  72. Hu P, Wang Z (2010) Flexural strength and fracture behavior of ZrB2-SiC ultra-high temperature ceramic composites at 1800° C. J Eur Ceram Soc 30(4):1021–1026. https://doi.org/10.1016/j.jeurceramsoc.2009.09.029

    Article  Google Scholar 

  73. Cui B, Huang JH, Xiong JH, Zhang H (2013) Reaction-composite brazing of carbon fiber reinforced SiC composite and TC4 alloy using Ag-Cu-Ti-(Ti+ C) mixed powder. Mater Sci Eng: A 562:203–210. https://doi.org/10.1016/j.msea.2012.11.031

    Article  Google Scholar 

  74. Feng J, Liu D, Zhang L, Lin X, He P (2010) Effects of processing parameters on microstructure and mechanical behavior of SiO2/Ti-6Al-4V joint brazed with AgCu/Ni interlayer. Mater Sci Eng: A 527(6):1522–1528. https://doi.org/10.1016/j.msea.2009.10.050

    Article  Google Scholar 

  75. Kim T, Park SW (2000) Effects of interface and residual stress on mechanical properties of ceramic/metal system. Key Eng Mater 183:1279–1284. https://doi.org/10.4028/www.scientific.net/KEM.183-187.1279

    Article  Google Scholar 

  76. Wang X, Cheng L, Fan S, Zhang L (2012) Microstructure and mechanical properties of the GH783/2.5 DC/SiC joints brazed with Cu-Ti+ Mo composite filler. Mater Des 1980-2015 36:499–504. https://doi.org/10.1016/j.matdes.2011.11.058

    Article  Google Scholar 

  77. Zaharinie T, Moshwan R, Yusof F, Hamdi M, Ariga T (2014) Vacuum brazing of sapphire with Inconel 600 using Cu/Ni porous composite interlayer for gas pressure sensor application. Mater Des 1980-2015(54):375–381. https://doi.org/10.1016/j.matdes.2013.08.046

    Article  Google Scholar 

  78. Wang G, Cai Y, Wang W, Gui K, Zhu D, Tan C, Cao W (2019) Brazing ZrB2-SiC ceramics to Inconel 600 alloy without and with Cu foam. J Manuf Process 41:29–35. https://doi.org/10.1016/j.jmapro.2019.03.023

    Article  Google Scholar 

  79. Sun R, Zhu Y, Guo W, Peng P, Li L, Zhang Y, Fu J, Li F, Zhang L (2018) Microstructural evolution and thermal stress relaxation of Al2O3/Cr18Ni9Ti brazed joints with nickel foam. Vacuum 148:18–26. https://doi.org/10.1016/j.vacuum.2017.10.030

    Article  Google Scholar 

  80. Li M, Shi K, Zhu D, Dong D, Liu L, Wang X (2021) Microstructure and mechanical properties of Si3N4 ceramic and (TiB + Y2O3)/Ti matrix composite joints brazed with AgCu/Cu foam/AgCu multilayered filler. J Manuf Process 66:220–227. https://doi.org/10.1016/j.jmapro.2021.04.025

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51905358) and Natural Science Foundation of Hebei Province (Grant Nos. E2020210077 and E2020210095).

Author information

Authors and Affiliations

Authors

Contributions

The inception and design of this study were a collective effort among all authors. The initial conception of the thesis was carried out by Mengnan Feng and Peng Wang, who further reviewed and revised the first draft. The primary draft of the manuscript was meticulously crafted by Liang Ren. The literature collection was carried out by Ziyao Wang, Dequan Meng, and Shuo Wang, who further provided insightful comments on earlier versions of the manuscript. Finally, all authors meticulously reviewed and approved the final manuscript prior to its submission.

Corresponding authors

Correspondence to Mengnan Feng or Peng Wang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, M., Ren, L., Wang, Z. et al. Recent research progress of foam metals welding: a review. Int J Adv Manuf Technol 127, 3135–3156 (2023). https://doi.org/10.1007/s00170-023-11709-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11709-2

Keywords

Navigation