Skip to main content

Advertisement

Log in

Influence of sawdust ash on the microstructural and physicomechanical properties of stir-cast Al6063/SDA matrix composite

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Mechanical, physical, and corrosion properties of pure aluminum cannot meet the requirements of the modern industries. This has led to increase in demand for aluminum alloys and aluminum matrix composites with enhanced properties. These properties make them suitable for most applications. This article analyzes the physicomechanical and microstructural properties of stir cast Al6063 alloy matrix reinforced with different weight fractions (2, 4, and 6 wt.%) of sawdust ash (SDA). The density, porosity, hardness, tensile strength, and impact strength of the unreinforced alloy and developed composite samples were evaluated while microstructural analysis was also carried out. The results showed reduced density values with increased SDA contents while percentage porosity ranged between 1.56 and 2.23%. The hardness (88.3–106.93 BHN) and tensile strength (112.13–132.71 MPa) of the composites were 21.09% and 18.35% better than those of Al6063 alloy. However, the impact strengths (45.48–35.51 J) of the composites were lower when compared to the unreinforced Al6063 alloy with a reduction of 21.92%. Microstructural images showed evenly distributed reinforcement particles within the matrix, while the XRD analysis also revealed the presence of different intermetallic phases in the composite samples. The micrographs of the composites showed plastic deformation during straining. The findings from the study indicate that SDA particulates incorporated into alloy matrix influenced the properties with increased hardness and tensile strength and reduced impact strength. Hence, the aluminum matrix composites will be suitable for use in lightweight engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available upon request.

References

  1. Abdudeen A, Mourad H, Qudeiri J, Ziout A (2020) Evaluation of characteristics of A390-SiC squeeze cast and gravity cast composites. In: 2020 advances in science and technology international conferences, Dubai, United Arab Emirates, February 2020. https://doi.org/10.1109/ASET48392.2020.9118349

  2. Arun KS, Rakesh B, Amit A, Ruta R, Camelia P (2020) A study of advancement in application opportunities of aluminium metal matrix composites. Mat Today: Proceed 26:2419–2424. https://doi.org/10.1016/j.matpr.2020.02.516

    Article  Google Scholar 

  3. Ikubanni PP, Oki M, Adeleke AA (2020) A review of ceramic/bio-based hybrid reinforced aluminium matrix composites. Cogent Eng 7:1–19. https://doi.org/10.1080/23311916.2020.1727167

    Article  Google Scholar 

  4. Orhadahwe TA, Ajide OO, Adeleke AA, Ikubanni PP (2020) A review on primary synthesis and secondary treatment of aluminium matrix composites. Arab J Basic Appl Sci 27:389–405. https://doi.org/10.1080/25765299.2020.1830529

    Article  Google Scholar 

  5. Ikubanni PP, Oki M, Adeleke AA, Omoniyi PO (2021) Synthesis, physico-mechanical and microstructural characterization of Al6063/SiC/PKSA hybrid reinforced composites. Sci Rep 11:1–13. https://doi.org/10.1038/s41598-021-94420-0

    Article  Google Scholar 

  6. Alaneme KK, Bodunrin MO, Awe AA (2018) Microstructure, mechanical and fracture properties of groundnut shell ash and silicon carbide dispersion strengthened aluminium matrix composites. J King Saud Univ-Eng Sci 30:96–103. https://doi.org/10.1016/j.jksues.2016.01.001

    Article  Google Scholar 

  7. Ikubanni PP, Oki M, Adeleke AA, Adediran AA, Agboola OO, Babayeju O, Egbo N, Omiogbemi IMB (2021) Tribological and physical properties of hybrid reinforced aluminium matrix composites. Mat Today: Proceed 46:5909–5913. https://doi.org/10.1016/j.matpr.2021.03.537

    Article  Google Scholar 

  8. Ikubanni P, Oki M, Adeleke A, Omoniyi P, Ajisegiri E, Akinlabi E (2022) Physico-mechanical properties and microstructure responses of hybrid reinforced Al6063 composites to PKSA/SiC inclusion. Acta Metallur Slovaca 28:25–32. https://doi.org/10.36547/ams.28.1.1340

    Article  Google Scholar 

  9. Ikubanni P, Oki M, Adeleke A, Adesina O, Omoniyi P, Akinlabi E (2022) Electrochemical studies of the corrosion behavior of Al/SiC/PKSA hybrid composites in 3.5% NaCl solution. J Comp Sci 6:1–13. https://doi.org/10.3390/jcs6100286

    Article  Google Scholar 

  10. Aigbodion VS, Ezema IC (2020) Multifunctional A356 alloy/PKSAnp composites: microstructure and mechanical properties. Def Technol 16:731–736. https://doi.org/10.1016/j.dt.2019.05.01

    Article  Google Scholar 

  11. Nturanabo F, Masu L, Baptist Kirabira J (2019) Novel applications of aluminium metal matrix composites. Aluminum alloys and composites. Intech Open. https://doi.org/10.5772/intechopen.86225

  12. Surappa M (2003) Aluminium matrix composite: challenges and opportunities. Sadhana 28:319–334. https://doi.org/10.1007/BF02717141

    Article  Google Scholar 

  13. Bodunrin MO, Alaneme KK, Chown LH (2015) Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. J Mat Res Technol 4:434–445. https://doi.org/10.1016/j.jmrt.2015.05.003

    Article  Google Scholar 

  14. Singla M, Dwivedi DD, Singh L, Chawla V (2009) Development of aluminium based silicon carbide particulate metal matrix composite. J Min Mat Characteriz Eng 8:455–467. https://doi.org/10.4236/jmmce.2009.86040

    Article  Google Scholar 

  15. Wang J, Li Z, Genlian F, Pan H, Zhixin C, Zhang D (2012) Reinforcement with graphene nanosheets in aluminium matrix composites. Scripta Mater 66:594–597. https://doi.org/10.1016/j.scriptamat.2012.01.012

    Article  Google Scholar 

  16. Lata S, Pandey A, Labhansh AS, Kuldeep M, Ramakant R, Roop L (2018) An experimental study and analysis of the mechanical properties of titanium dioxide reinforced aluminium (AA 5051) composite. Mat Today: Proceed 5:6090–6097. https://doi.org/10.1016/j.matpr.2017.12.214

    Article  Google Scholar 

  17. Suresh S, Gowd H, Devakumar M (2020) Mechanical and wear characteristics of aluminium alloy 7075 reinforced with nano-aluminium oxide/magnesium particles by stir casting method. Mat Today: Proceed 24:273–283. https://doi.org/10.1016/j.matpr.2020.04.276

    Article  Google Scholar 

  18. Abhijit P, Madhu N, Aum SP, Manas KS, Kalyani M (2018) A comparative study on mechanical properties of Al-SiO2 composites fabricated using rice husk silica in crystalline and amorphous form as reinforcement. Mat Today: Proceed 5:8184–8192. https://doi.org/10.1016/j.matpr.2017.11.507

    Article  Google Scholar 

  19. Shirvanimoghaddam K, Khayyam H, Abdizadeh H, Akbari KM, Pakseresht M, Ghasali E, Naebe M (2016) Boron carbide reinforced aluminium matrix composite: physical, mechanical characterization and mathematical modelling. Mat Sci Eng A 658:135–149. https://doi.org/10.1016/j.msea.2016.01.114

    Article  Google Scholar 

  20. Madhavarao S, Raju CH, Madhukiran J, Varama NS, Varma PR (2018) A study of tribological behaviour of aluminium-7075/SiC metal matrix composite. Mat Today- Proceed 5:20013–20020. https://doi.org/10.1016/j.matpr.2018.06.368

    Article  Google Scholar 

  21. Kanth U, Rao P, Krishna M (2019) Mechanical behaviour of fly ash/SiC particles reinforced Al-Zn alloy-based metal matrix composites abricated by stir casting method. J Mat Res Technol 8:737–744. https://doi.org/10.1016/j.jmrt.2018.06.003

    Article  Google Scholar 

  22. Parswajinan C, Ramnath BV, Abishek S, Niharishsagar B, Sridhar G (2018) Hardness and impact behaviour of aluminium metal matrix composite hardness and impact behaviour of aluminium metal matrix composite. IOP Conf Series: Mat Sci Eng 390:1–6. https://doi.org/10.1088/1757-899X/390/1/012032

    Article  Google Scholar 

  23. Murugan S, Jegan V, Velmurugan M (2018) Mechanical properties of SiC, Al2O3 reinforced aluminium 6061–T6 hybrid matrix. J Inst Eng 99:71–77. https://doi.org/10.1007/s40033-017-0142-3

    Article  Google Scholar 

  24. Avinash B, Ganesh K (2019) Manufacture of silicon carbide reinforced aluminium 6061 metal matrix composites for enhanced sliding wear properties. Manuf Rev 6:1–9. https://doi.org/10.1051/mfreview/2019021

    Article  Google Scholar 

  25. Rahman MH, Rashed M (2014) Characterization of silicon carbide reinforced aluminium matrix composites. Procedia Eng 90:103–109. https://doi.org/10.1016/j.proeng.2014.11.821

    Article  Google Scholar 

  26. Petrović J, Mladenović S, Marković I, Dimitrijević S (2022) Characterization of hybrid aluminum composites reinforced with Al2O3 particles and walnut-shell ash. Mat Tehnol 56:115–122. https://doi.org/10.17222/mit.2022.365

    Article  Google Scholar 

  27. Singh G, Goyal S (2018) Microstructure and mechanical behavior of AA6082-T6/SiC/B4C-based aluminum hybrid composites. Particulate Sci Technol 36:154–161. https://doi.org/10.1080/02726351.2016.1227410

    Article  Google Scholar 

  28. Surya MS, Gugulothu SK (2022) Fabrication, mechanical and wear characterization of silicon carbide reinforced aluminium 7075 metal matrix composite. SILICON 14:2023–2032. https://doi.org/10.1007/s12633-021-00992-x

    Article  Google Scholar 

  29. Saravanan S, Senthil K (2013) Effect of mechanical properties on rice husk ash reinforced aluminium alloy (AlSi10Mg) matrix composites. Procedia Eng 64:1505–1513. https://doi.org/10.1016/j.proeng.2013.09.232

    Article  Google Scholar 

  30. Kulkarni S, Meghnani J, Achchhe L (2014) Effect of fly ash hybrid reinforcement on mechanical property and density of aluminium 356 alloy. Procedia Mat Sci 5:746–754. https://doi.org/10.1016/j.mspro.2014.07.324

    Article  Google Scholar 

  31. Aigbodion VS (2019) Bean pod ash nanoparticles a promising reinforcement for aluminium matrix biocomposites. J Mat Res Technol 8:6011–6020. https://doi.org/10.1016/j.jmrt.2019.09.075

    Article  Google Scholar 

  32. Kumar BP, Birru AK (2017) Microstructure and mechanical properties of aluminium metal matrix composites with addition of bamboo leaf ash by stir casting method. Trans Nonferr Metals Soc China (English Edition) 27:2555–2572. https://doi.org/10.1016/S1003-6326(17)60284-X

    Article  Google Scholar 

  33. Saba N, Jawaid M, Sultan M (2019) An overview of mechanical and physical testing of composite materials. In: Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites. Woodhead publishing series in composites science and engineering, 1–12. https://doi.org/10.1016/B978-0-08-102292-4.00001-1

  34. Prasad D, Shoba C, Ramanaiah N (2014) Investigations of mechanical properties aluminium hybrid composites. J Mat Res Technol 3:79–85. https://doi.org/10.1016/j.jmrt.2013.11.002

    Article  Google Scholar 

  35. Kamboj A, Kumar S, Singh H (2013) Fabrication and characterization of Al6063/SiC composites. Proceed Instit Mech Eng Part B J Mech Eng Sci 227:1777–1787. https://doi.org/10.1177/0954405413493618

    Article  Google Scholar 

  36. Devadiga U, Sunil K, Fernandes P (2020) Assessment of carbon nanaotubes and fly ashes reinforced Al nanocomposites properties synthesized by powder metallurgy. Mat Today: Proceed 22:2247–2254. https://doi.org/10.1016/j.matpr.2020.03.345

    Article  Google Scholar 

  37. Lloyd J (1994) Particle reinforced aluminium and magnesium atrix composites. Int Mat Rev 39:1–23. https://doi.org/10.1179/imr.1994.39.1.1

    Article  Google Scholar 

  38. Rajan T, Pillai R, Pai B, Satyanarayana K, Rohatgi P (2007) Fabrication and characterization of Al-7Si-0.35Mg/Fly ash metal matrix composite processed by different stir casting routes. Comp Sci Technol 67:3369–3377. https://doi.org/10.1016/j.compscitech.2007.03.028

    Article  Google Scholar 

  39. Daramola O, Adediran A, Fadumiye A (2015) Evaluation of the mechanical properties and corrosion behaviour of coconut shell ash reinforced aluminium 6063 alloy composites. Leonardo Electron J Prac Technol 27:107–109

    Google Scholar 

  40. Alaneme K, Bodunrin M (2013) Mechanical behaviour of alumina reinforced Al6063 metal matrix composites developed by two-step stir casting process. Acta Technica Corvinienis - Bullet Eng 6:105–110

    Google Scholar 

  41. Subrahmanyam B, Krishna G, Lakshmi P, Srinivasa R (2018) Evaluation of the mechanical properties on aluminium alloy 2024 fly ash metal matrix composite. Int J Adv Mech Eng 8:1–11

    Google Scholar 

  42. Sharma V, Akhai S (2019) Mechanical behaviour of fly ash reinforced aluminium composite prepared by casting. J Adv Res Mech Eng Technol 6:23–26. https://doi.org/10.24321/2454.8650.201904

    Article  Google Scholar 

  43. Swain PTR, Biswas (2013) Physical and mechanical behaviour of Al2O3 filled jute fiber reinforced epoxy composites. Int J Current Eng Technol 2:67–71. https://doi.org/10.14741/ijcet/spl.2.2014.13

    Article  Google Scholar 

  44. Alaneme K, Sanusi O (2015) Microstructural characteristics, mechanical and wear behaviour aluminium hybrid matrix composite reinforced with alumina, rice husk ash and graphite. Eng Sci Technol-Int J 18:416–422. https://doi.org/10.1016/j.jestch.2015.02.003

    Article  Google Scholar 

  45. Edoziuno F, Adediran A, Odoni B, Utu O, Olayanju A (2021) Physico-chemical and morphological evaluation of palm kernel shell particulate reinforced aluminium matrix composites. Mat Today: Proceed 38:652–657. https://doi.org/10.1016/j.matpr.2020.03.641

    Article  Google Scholar 

  46. Jagdeep S, Suri NM, Ajay V (2015) Affect of mechanical properties on groundnut shell ash reinforced Al6063. Int J Technol Res Eng 2:2619–2623

    Google Scholar 

  47. Srivyasa P, Charoo M (2018) Role of reinforcements on the mechanical and tribological behaviour of aluminium metal matrix composites. Mat Today: Proceed 5:20041–20053. https://doi.org/10.1016/j.matpr.2018.06.371

    Article  Google Scholar 

  48. Raju K, Jothiprakash P (2018) Investigation on mechanical properties of hybrid aluminium metal matrix composite reinforced sawdust ash and SiC. Int J Mech Prod Eng Res Develop 8:995–1000

    Google Scholar 

  49. Ashish C, Himanshu C, Ravindra M, Karpil S (2017) Variation of mechanical properties (tensile strength and impact strength) of Al6061/(Al2O3 and fly ash), hybrid metal matrix composite produced by stir casting. Int J Sci Eng Res 8:128–139

    Google Scholar 

  50. Meena L, Vijaykumar J, Satyendra Y (2015) Comparative study between SiC reinforced Al64430 metal matrix composites and RHA reinforced Al64430 metal matrix composites. Adv Mat Res 1119:234–238. https://doi.org/10.4028/www.scientific.net/AMR.1119.234

    Article  Google Scholar 

  51. Surinder P, Gora S (2017) Evaluation of mechanical properties of Al6063 alloy MMC reinforced with SiC and coconut shell ash. Int Adv Res J Sci Eng Technol 4:1–7

    Google Scholar 

  52. Ikele U, Alaneme K, Oyetunji A (2022) Mechanical behaviuor of Stir cast aluminium matrix composites reinforced with silicon carbide and palm kernel shell ash. Manuf Rev 9:1–13. https://doi.org/10.1051/mfreview/2022011

    Article  Google Scholar 

  53. Atuanya CU, Ibhadode AOA, Dagwa IM (2012) Effects of breadfruit seed hull ash on the microstructures and properties of Al-Si-Fe alloy/breadfruit seed hull ash particulate composites. Results Phys 2:142–149. https://doi.org/10.1016/j.rinp.2012.09.003

    Article  Google Scholar 

  54. Nagaraja S, Nagegowda K, Kumar V, Alamri S, Afzal A, Thakur D, Kaladgi AR, Panchal S, Saleel C (2021) Influence of fly ash material inoculants on the tensile and impact characteristics of the aluminium AA5083/7.5SiC composites. Materials 14:2452. https://doi.org/10.3390/ma14092452

    Article  Google Scholar 

  55. Hayrettin A, Tolga K, Ercan C, Huseyin C (2006) Wear behaviour of Al/(Al2O3p+SiCp) hybrid composites. Trib Int 39:213–220. https://doi.org/10.1016/j.triboint.2005.01.029

    Article  Google Scholar 

  56. Kumar M (2021) Characterization of Al-6063/TiB2/Gr hybrid composite fabricated by stir casting process. Metal Powd Rep 76:S30–S38. https://doi.org/10.1016/j.mprp.2020.06.063

    Article  Google Scholar 

  57. Yadav C, Bauri R (2011) Processing, microstructure and mechanical properties of nickel particles embedded aluminium matrix composite. Mat Sci Eng A 528:1326–1333

    Article  Google Scholar 

  58. Fenghong C, Chang C, Zhenyu W, Muthuramalingam T, Anbuchezhiyan G (2019) Effects of silicon carbide and tungsten carbide in aluminium metal matrix composites. Silicon 11:2625–2632. https://doi.org/10.1007/s12633-018-0051-6

Download references

Acknowledgements

The authors appreciate the technologist who assisted in the production of the composite materials.

Author information

Authors and Affiliations

Authors

Contributions

Adekunle A. Adeleke, Peter P. Ikubanni, and Jamiu K. Odusote conceived the research idea. Adekunle A. Adeleke, Peter P. Ikubanni, and Boluwatife B. Olujimi did the production of the composite materials and preparation of the samples for further experiments. Adekunle A. Adeleke, Peter P. Ikubanni, Jude A. Okolie, and Boluwatife B. Olujimi did further experiments on the samples to obtain the required data. Adekunle A. Adeleke and Peter P. Ikubanni did the data analyses and prepare tables and figures. Jamiu K. Odusote and Boluwatife B. Olujimi wrote the first draft of the manuscript. All authors contributed to the scientific discussion and reviewed the manuscript.

Corresponding author

Correspondence to Peter P. Ikubanni.

Ethics declarations

Ethical approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeleke, A.A., Ikubanni, P.P., Odusote, J.K. et al. Influence of sawdust ash on the microstructural and physicomechanical properties of stir-cast Al6063/SDA matrix composite. Int J Adv Manuf Technol 127, 2523–2536 (2023). https://doi.org/10.1007/s00170-023-11700-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11700-x

Keywords

Navigation