Skip to main content
Log in

Study on temperature field, microstructure, and properties of T2 pure copper by bobbin tool friction stir welding

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper completes the welding of 4-mm-pure copper with bobbin tool-friction stir welding technology for the first time, and we discovered the evolution of microstructure by combining the temperature field evolution, microstructure, mechanical properties, electrical properties, and chemical corrosion resistance of welded joints. The findings demonstrate that the temperature field is dynamic, with the advancing side experiencing the highest peak temperature (422 °C). The size of recrystallized grain in the stir zone (SZ) is slightly larger than that of the base metal (BM), and the “banded structure” of alternating coarse-grain bands and fine grain bands is observed in this region. The microstructure of the heat-affected zone (HAZ) has larger grain size. Both the advancing and retreating sides of the thermomechanically affected zone (TMAZ) have a distinct microstructure, with the advancing side having a more pronounced elongated and curved microstructure. The welded joint has a specific microstructure gradient from the standpoint of the overall microstructure, which results in the fracture location at TMAZ with the biggest microstructure gradient in the tensile test, and the welded joint’s efficiency is only 57.56% of the base metal. At the same time, the resistivity and the chemical corrosion resistance of the welded joint will decrease. During the welding process, the grains in the stir zone mainly undergo geometric dynamic recrystallization and the heat-affected zone mainly undergoes dynamic recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data and materials used to produce the results in this article can be obtained upon request from the corresponding authors.

References

  1. Shen JJ, Liu HJ, Cui F (2010) Effect of welding speed on microstructure and mechanical properties of friction stir welded copper. Mater Design 31:3937–3942. https://doi.org/10.1016/j.matdes

    Article  Google Scholar 

  2. Galvão I, Leal RM, Rodrigues DM, Loureiro A (2012) Influence of tool shoulder geometry on properties of friction stir welds in thin copper sheets. J Mater Process Tech 213(2):129–135. https://doi.org/10.1016/j.jmatprotec.2012.09.016

    Article  Google Scholar 

  3. Farrokhi H, Heidarzadeh A, Saeid T (2013) Frictions stir welding of copper under different welding parameters and media. Sci Technol Weld Joi 18(8):697–702. https://doi.org/10.1179/1362171813Y.0000000148

    Article  Google Scholar 

  4. Savolainen K, Mononen J, Saukkonen T, Hänninen H, Koivula J (2004) Friction stir weldability of copper alloys. 5th International Friction Stir Welding Conference, France, Mo, Sep. 14. https://www.researchgate.net/publication/291765614

  5. Leal RM, Sakharova N, Vilaca P, Rodrigues DM, Loureiro A (2011) Effect of shoulder cavity and welding parameters on friction stir welding of thin copper sheets. Sci Technol Weld Joi 16(2):146–152. https://doi.org/10.1179/1362171810Y.0000000005

    Article  Google Scholar 

  6. Lina JW, Chang HC, Wu MH (2013) Comparison of mechanical properties of pure copper welded using friction stir welding and tungsten inert gas welding. J Manuf Precess 16(2):296–304. https://doi.org/10.1016/j.jmapro.2013.09.006

    Article  Google Scholar 

  7. Sun YF, Fujii H (2010) Investigation of the welding parameter dependent microstructure and mechanical properties of friction stir welded pure copper. Mater Sci Eng A 527(26):6879–6886. https://doi.org/10.1016/j.msea.2010.07.030

    Article  Google Scholar 

  8. Azizi A, Barenji RV, Barenji AV, Hashemipour M (2016) Microstructure and mechanical properties of friction stir welded thick pure copper plates. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-015-8330-5

    Article  Google Scholar 

  9. Verma S, Misra JP (2021) Experimental investigation on friction stir welding of dissimilar aluminium alloys. Proc I MechE Part E: J Process Mech Eng 235(5):1545–1554. https://doi.org/10.1177/09544089211008694

    Article  Google Scholar 

  10. Jabraeili R, Jafarian HR, Khajeh R, Park N, Kim YJ, Heidarzadeh A, Eivani AR (2021) Effect of FSW process parameters on microstructure and mechanical properties of the dissimilar AA2024 Al alloy and 304 stainless steel joints. Mat Sci Eng A-Struct 814:140981. https://doi.org/10.1016/j.msea.2021.140981

    Article  Google Scholar 

  11. Xu Y, Ke LM, Mao YQ, Niu PL (2021) Interfacial microstructure evolution of thick plate Al/Mg FSW: effect of pin size. Mater Charact 174:111022. https://doi.org/10.1016/j.matchar.2021.111022

    Article  Google Scholar 

  12. Hwa SP, Takahiro K, Taichi M, Yoshitaka N, Kazuhiro N, Masa U (2003) Microstructures and mechanical properties of friction stir welds of 60% Cu-40% Zn copper alloy. Mater Sci Eng A 371:160–169. https://doi.org/10.1016/j.msea.2003.11.030

    Article  Google Scholar 

  13. Cemal M (2006) The joint properties of brass plates by friction stir welding. Mater Design 27:719–726. https://doi.org/10.1016/j.matdes.2005.05.006

    Article  Google Scholar 

  14. Xie GM, Ma ZY, Geng L (2007) Development of a fine-grained microstructure and the Properties of a nugget zone in friction stir welded pure copper. Scripta Mater 57:73–76. https://doi.org/10.1016/j.scriptamat.2007.03.048

    Article  Google Scholar 

  15. Amini A, Asadi P (2014) Friction stir welding applications in industry. Adv Friction-Stir Weld Process 15(6):671–722. https://doi.org/10.1533/9780857094551.671

    Article  Google Scholar 

  16. Claes-Göran A, Svensk K AB (2001) Development of fabrication technology for copper canisters with cast inserts. Swedish Nuclear Fuel & Waste Management Co Stockholm, Status report in August 2001. https://skb.se/upload/publications/pdf/TR-02-07.pdf

  17. Lee WB, Jung SB (2003) The joint properties of copper by friction stir welding. Mater Lett 58:1041–1046. https://doi.org/10.1016/j.matlet.2003.08.014

    Article  Google Scholar 

  18. Su JQ, Nelson TW, McNelley TR, Mishar RS (2011) Development of nanocrystalline structure in Cu during friction stir processing (FSP). Mater Sci Eng A 528:5458–5464. https://doi.org/10.1016/j.msea.2011.03.043

    Article  Google Scholar 

  19. Xue P, Xiao BL, Zhang Q, Ma ZY (2011) Achieving friction stir welded pure copper joints with nearly equal strength to the parent metal via additional rapid cooling. Scripta Mater 64:1051–1054. https://doi.org/10.1016/j.scriptamat.2011.02.019

    Article  Google Scholar 

  20. Zhou L, Li GH, Zha GD, Shu FY, Liu HJ, Feng JC (2018) Effect of rotation speed on microstructure and mechanical properties of bobbin tool friction stir welded AZ61 magnesium alloy. Sci Technol Weld Joi. https://doi.org/10.1080/13621718.2018.1432098

    Article  Google Scholar 

  21. Wu D, Li WY, Gao YJ, Yang J, Wen Q, Vidakis N, Vairis A (2021) Impact of travel speed on the microstructure and mechanical properties of adjustable-gap bobbin- tool friction stir welded Al-Mg joints. Int J Min Met Mater 28(4):710–717. https://doi.org/10.1007/s12613-020-2134-9

    Article  Google Scholar 

  22. Feng JC, Li YP, Gong WB, Sun DQ (2022) The microstructures and mechanical properties of underwater bobbin tool friction stir-welded 6082–T6 aluminum alloy. Int J Adv Manuf Tech 121(1):1443–1453. https://doi.org/10.1007/s00170-022-09311-z

    Article  Google Scholar 

  23. Li YP, Sun DQ, Gong WB, Liu L (2019) Effects of postweld aging on the microstructure and properties of bobbin tool friction stir-welded 6082–T6 aluminum alloy. Int J Min Met Mater 26(7):849–857. https://doi.org/10.1007/s12613-019-1800-2

    Article  Google Scholar 

  24. Akbari M, Asadi P, Behnagh RA (2021) Modeling of material flow in dissimilar friction stir lap welding of aluminum and brass using coupled Eulerian and Lagrangian method. Int J Adv Manuf Tech 113:721–734. https://doi.org/10.1007/s00170-020-06541-x

    Article  Google Scholar 

  25. Asadi P, Mirzaei MH (2020) Material flow modeling for the DSFSW of magnesium alloy. J Strain Anal Eng 4:030932472097661. https://doi.org/10.1177/0309324720976613

    Article  Google Scholar 

  26. Mirzaei MH, Asadi P, Fazli A (2020) Effect of tool pin profile on material flow in double shoulder friction stir welding of AZ91 magnesium alloy. Int J Mech Sci 183(6):105775. https://doi.org/10.1016/j.ijmecsci.2020.105775

    Article  Google Scholar 

  27. Liu HJ, Shen JJ, Huang YX, Kuang LY, Liu C, Li C (2009) Effect of tool rotation rate on microstructure and mechanical properties of friction stir welded copper. Sci Technol Weld Joi 14(6):577–583. https://doi.org/10.1179/136217109X456951

    Article  Google Scholar 

  28. Zhang CQ, Qin Z, Rong C, Shi WC, Wang SW (2020) The preliminary exploration of micro-friction stir welding process and material flow of copper and brass ultra-thin sheets. Materials 13:2401. https://doi.org/10.3390/ma13102401

    Article  Google Scholar 

  29. Zhang XK, Yang XY, Chen W, Qin J, Fouse JP (2016) Effect of stacking fault energy on mechanical properties and annealing behavior of brasses. J Alloy Compd 679:400–407. https://doi.org/10.1016/j.jallcom.2016.04.083

    Article  Google Scholar 

  30. Nagira T, Liu XC, Ushioda K, Fujii H (2020) Mechanism of grain structure development for pure Cu and Cu-30Zn with low stacking fault energy during FSW. Sci Technol Weld Joi 25(8):669–678. https://doi.org/10.1080/13621718.2020.1818032

    Article  Google Scholar 

  31. Zhang Y, Guo JM, Chen JH, Wu CL, Kormout KS, Ghosh P, Zhang ZL (2019) On the stacking fault energy related deformation mechanism of nanocrystalline Cu and Cu alloys: a first-principles and TEM study. J Alloy Compd 776:807–818. https://doi.org/10.1016/j.jallcom.2018.10.275

    Article  Google Scholar 

  32. Machniewicz T, Nosal P, Korbel A, Hebda M (2020) Effect of FSW traverse speed on mechanical properties of copper plate joints. Materials 13:1937. https://doi.org/10.3390/ma13081937

    Article  Google Scholar 

  33. Yang WJ, Ding H, Li JZ (2022) Parametric optimization for friction stir processing in Al-Zn-Mg-Cu alloy. Mater Manuf Process 37(1/4):1–10. https://doi.org/10.1080/10426914.2021.1942906

    Article  Google Scholar 

  34. Sakthivel T, Mukhopadhyay J (2007) Microstructure and mechanical properties of friction stir welded copper. J Mater Sci 42:8126–8129. https://doi.org/10.1007/s10853-007-1666-y

    Article  Google Scholar 

  35. Cam G, Serindag HT, Cakan A, Mistikoglu S, Yavuz H (2008) The effect of weld parameters on friction stir welding of brass plates. Mat wiss u Werkstofftech 39(6):394–399. https://doi.org/10.1002/mawe.200800314

    Article  Google Scholar 

  36. Tayebi P, Fazli A, Asadi P, Soltanpour M (2021) Formability study and metallurgical properties analysis of FSWed AA 6061 blank by the SPIF process. SN Appl Sci 3(3):367. https://doi.org/10.1007/s42452-021-04378-x

    Article  Google Scholar 

  37. Hwang YM, Fan PL, Lin CH (2010) Experimental study on friction stir welding of copper metals. J Mater Process Tech 210:1667–1672. https://doi.org/10.1016/j.jmatprotec.2010.05.019

    Article  Google Scholar 

  38. Yang WJ, Ding H, Li JZ (2021) Parametric optimization for friction stir processing in Al-Zn-Mg-Cu alloy. Mater Manuf Process 37(1/4):1–10

    Google Scholar 

Download references

Funding

This work was supported by Jilin Province Development and Reform Commission industrial technology research and development project (Grant numbers [X2019C046-7]).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Yumeng Sun and Wenbiao Gong; methodology, Wenbiao Gong; investigation, Wei Liu and Shicheng Sun; writing original draft preparation, Yumeng Sun; writing, review and editing, Yumeng Sun, Yupeng Li, and Wenbiao Gong; supervision, Wenbiao Gong.

Corresponding author

Correspondence to Wenbiao Gong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Liu, W., Li, Y. et al. Study on temperature field, microstructure, and properties of T2 pure copper by bobbin tool friction stir welding. Int J Adv Manuf Technol 127, 1341–1353 (2023). https://doi.org/10.1007/s00170-023-11650-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11650-4

Keywords

Navigation