Skip to main content
Log in

On the development of part-scale FEM modeling for laser powder bed fusion of AISI 316L stainless steel with experimental verification

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

This article has been updated

Abstract

In laser powder bed fusion (LPBF), the effects of operating conditions on thermal gradients and residual stresses are the utmost challenges that require significant attention. The magnitudes of residual stress in the printed layers, as well as the distribution along the printed components, have not been well explained for LPBF parts. In this study, a 3D finite element thermo-mechanical model has been established to investigate the effect of operating conditions on thermal distribution, melt pool evolution, residual stress distribution, and part distortion. The printed AISI 316L stainless steel cubes have been characterized experimentally. The results showed a proportional correlation among the number of layers, thermal distribution, and melt pool dimensions. A combination of compressive and tensile stresses was recorded in the LPBF-ed parts. The Cauchy stresses were maximum in magnitude at the bottom and top surfaces along the xx- and yy-orientations, while these stresses increased in magnitude along with the part-build orientation (zz) within the whole printed cube except the top surface. The Von Mises stresses were minimal than Cauchy stresses. A maximum displacement was identified at the printed components’ contours, gradually decreasing from top to side walls and top surface. An inverse correlation was identified among average Von Mises stresses (AVMS), laser power (LP), and hatch distance (HD); however, a proportional relationship is presented between laser scanning speed (LSS) and AVMS. The average displacement (AD) presented an inverse relationship with LSS and HD, while a proportional correlation has been presented between LP and AD. Average thermal distribution (ATD) revealed an inverse effect on AVMS and a proportional effect on AD. In the printed parts, only austenite-gamma phase was identified along (111), (200), and (220) orientations, with a lack-of-fusion defect in the morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Change history

  • 02 June 2023

    Springer Nature’s version of this paper was updated to present correct postal code in affiliation 3.

References

  1. ISO/ASTM 52900:2021(en), Additive manufacturing — general principles — fundamentals and vocabulary. https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed-2:v1:en. Accessed 1 May 2023

  2. Prajapati AR, Dave HK, Raval HK (2021) Effect of fiber reinforcement on the open hole tensile strength of 3D printed composites. Mater Today Proc 46:8629–8633. https://doi.org/10.1016/J.MATPR.2021.03.597

    Article  Google Scholar 

  3. Khosravani MR, Frohn-Sörensen P, Reuter J et al (2022) Fracture studies of 3D-printed continuous glass fiber reinforced composites. Theor Appl Fract Mech 119:103317. https://doi.org/10.1016/J.TAFMEC.2022.103317

    Article  Google Scholar 

  4. Druzgalski CL, Ashby A, Guss G et al (2020) Process optimization of complex geometries using feed forward control for laser powder bed fusion additive manufacturing. Addit Manuf 34:101169. https://doi.org/10.1016/J.ADDMA.2020.101169

    Article  Google Scholar 

  5. Mostafaei A, Elliott AM, Barnes JE et al (2021) Binder jet 3D printing—process parameters, materials, properties, modeling, and challenges. Prog Mater Sci 119:100707. https://doi.org/10.1016/J.PMATSCI.2020.100707

    Article  Google Scholar 

  6. Sohrabpoor H, Salarvand V, Lupoi R et al (2021) Microstructural and mechanical evaluation of post-processed SS 316L manufactured by laser-based powder bed fusion. J Mater Res Technol 12:210–220. https://doi.org/10.1016/J.JMRT.2021.02.090

    Article  Google Scholar 

  7. Ghosh A, Biswas S, Turner T et al (2021) Surface, microstructure, and tensile deformation characterization of LPBF SS316L microstruts micromachined with femtosecond laser. Mater Des 210:110045. https://doi.org/10.1016/J.MATDES.2021.110045

    Article  Google Scholar 

  8. Jandaghi MR, Pouraliakbar H, Shim SH et al (2022) In-situ alloying of stainless steel 316L by co-inoculation of Ti and Mn using LPBF additive manufacturing: microstructural evolution and mechanical properties. Mater Sci Eng A 857:144114. https://doi.org/10.1016/J.MSEA.2022.144114

    Article  Google Scholar 

  9. Gor M, Soni H, Wankhede V, et al (2021) A critical review on effect of process parameters on mechanical and microstructural properties of powder-bed fusion additive manufacturing of ss316l. Materials (Basel).

  10. Nayak SK, Mishra SK, Paul CP, et al (2020) Effect of laser energy density on bulk properties of SS 316L structures built by laser additive manufacturing using powder bed fusion. ASME 2019 Gas Turbine India Conf GTINDIA 2019 2: https://doi.org/10.1115/GTINDIA2019-2452

  11. Wang W, Liang SY (2022) Prediction of molten pool height, contact angle, and balling occurrence in laser powder bed fusion. Int J Adv Manuf Technol 119:6193–6202. https://doi.org/10.1007/S00170-021-08633-8/FIGURES/14

    Article  Google Scholar 

  12. Khan K, Srinivasa Mohan L, De A, DebRoy T (2022) Rapid calculation of part scale residual stress – powder bed fusion of stainless steel, and aluminum, titanium, nickel alloys. Addit Manuf 60:103240. https://doi.org/10.1016/J.ADDMA.2022.103240

    Article  Google Scholar 

  13. Fu J, Qu S, Ding J et al (2021) Comparison of the microstructure, mechanical properties and distortion of stainless steel 316 L fabricated by micro and conventional laser powder bed fusion. Addit Manuf 44:102067. https://doi.org/10.1016/J.ADDMA.2021.102067

    Article  Google Scholar 

  14. Wang K, Chao Q, Annasamy M et al (2022) On the pitting behaviour of laser powder bed fusion prepared 316L stainless steel upon post-processing heat treatments. Corros Sci 197:110060. https://doi.org/10.1016/J.CORSCI.2021.110060

    Article  Google Scholar 

  15. Vukkum VB, Gupta RK (2022) Review on corrosion performance of laser powder-bed fusion printed 316L stainless steel: effect of processing parameters, manufacturing defects, post-processing, feedstock, and microstructure. Mater Des 221:110874. https://doi.org/10.1016/J.MATDES.2022.110874

    Article  Google Scholar 

  16. Narasimharaju SR, Zeng W, See TL et al (2022) A comprehensive review on laser powder bed fusion of steels: processing, microstructure, defects and control methods, mechanical properties, current challenges and future trends. J Manuf Process 75:375–414. https://doi.org/10.1016/J.JMAPRO.2021.12.033

    Article  Google Scholar 

  17. Pan SH, Yao GC, Cui YN et al (2022) (2022) Additive manufacturing of tungsten, tungsten-based alloys, and tungsten matrix composites. Tungsten 51(5):1–31. https://doi.org/10.1007/S42864-022-00153-6

    Article  Google Scholar 

  18. Olakanmi EO, Cochrane RF, Dalgarno KW (2015) A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog Mater Sci 74:401–477. https://doi.org/10.1016/J.PMATSCI.2015.03.002

    Article  Google Scholar 

  19. Pan S, Jin K, Wang T et al (2022) (2022) Metal matrix nanocomposites in tribology: manufacturing, performance, and mechanisms. Frict 1010(10):1596–1634. https://doi.org/10.1007/S40544-021-0572-7

    Article  Google Scholar 

  20. Liu H, Wang H, Ren L et al (2023) Antibacterial copper-bearing titanium alloy prepared by laser powder bed fusion for superior mechanical performance. J Mater Sci Technol 132:100–109. https://doi.org/10.1016/J.JMST.2022.04.056

    Article  Google Scholar 

  21. Ma C, Wu M, Dai D, Xia M (2022) Stress-induced heterogeneous transformation and recoverable behavior of laser powder bed fused Ni-rich Ni50.6Ti49.4 alloys without post treatment. J Alloys Compd 905:164212. https://doi.org/10.1016/J.JALLCOM.2022.164212

    Article  Google Scholar 

  22. Shiomi M, Osakada K, Nakamura K et al (2004) Residual stress within metallic model made by selective laser melting process. CIRP Ann 53:195–198. https://doi.org/10.1016/S0007-8506(07)60677-5

    Article  Google Scholar 

  23. Wu AS, Brown DW, Kumar M et al (2014) An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel. Metall Mater Trans A Phys Metall Mater Sci 45:6260–6270. https://doi.org/10.1007/S11661-014-2549-X/FIGURES/11

    Article  Google Scholar 

  24. Levkulich NC, Semiatin SL, Gockel JE et al (2019) The effect of process parameters on residual stress evolution and distortion in the laser powder bed fusion of Ti-6Al-4V. Addit Manuf 28:475–484. https://doi.org/10.1016/J.ADDMA.2019.05.015

    Article  Google Scholar 

  25. Liu Y, Yang Y (2016) Wang D (2016) A study on the residual stress during selective laser melting (SLM) of metallic powder. Int J Adv Manuf Technol 871(87):647–656. https://doi.org/10.1007/S00170-016-8466-Y

    Article  Google Scholar 

  26. Bian P, Shi J, Liu Y, Xie Y (2020) Influence of laser power and scanning strategy on residual stress distribution in additively manufactured 316L steel. Opt Laser Technol 132:106477. https://doi.org/10.1016/J.OPTLASTEC.2020.106477

    Article  Google Scholar 

  27. Pérez-Ruiz JD, de Lacalle LNL, Urbikain G et al (2021) On the relationship between cutting forces and anisotropy features in the milling of LPBF Inconel 718 for near net shape parts. Int J Mach Tools Manuf 170:103801. https://doi.org/10.1016/J.IJMACHTOOLS.2021.103801

    Article  Google Scholar 

  28. Pérez-Ruiz JD, Marin F, Martínez S et al (2022) Stiffening near-net-shape functional parts of Inconel 718 LPBF considering material anisotropy and subsequent machining issues. Mech Syst Signal Process 168:108675. https://doi.org/10.1016/J.YMSSP.2021.108675

    Article  Google Scholar 

  29. Bian P, Shi J, Shao X, Du J (2019) Evolution of cyclic thermal stress in selective laser melting of 316L stainless steel: a realistic numerical study with experimental verification. Int J Adv Manuf Technol 104:3867–3882. https://doi.org/10.1007/S00170-019-04096-0/FIGURES/15

    Article  Google Scholar 

  30. Xiao Z, Chen C, Zhu H et al (2020) Study of residual stress in selective laser melting of Ti6Al4V. Mater Des 193:108846. https://doi.org/10.1016/J.MATDES.2020.108846

    Article  Google Scholar 

  31. Li Y, Zhou K, Tan P et al (2018) Modeling temperature and residual stress fields in selective laser melting. Int J Mech Sci 136:24–35. https://doi.org/10.1016/J.IJMECSCI.2017.12.001

    Article  Google Scholar 

  32. Chen C, Yin J, Zhu H et al (2019) The effect of process parameters on the residual stress of selective laser melted Inconel 718 thin-walled part. Rapid Prototyp J 25:1359–1369. https://doi.org/10.1108/RPJ-09-2018-0249/FULL/PDF

    Article  Google Scholar 

  33. Giganto S, Martínez-Pellitero S, Barreiro J et al (2022) Impact of the laser scanning strategy on the quality of 17–4PH stainless steel parts manufactured by selective laser melting. J Mater Res Technol 20:2734–2747. https://doi.org/10.1016/J.JMRT.2022.08.040

    Article  Google Scholar 

  34. Leo P, Nobile R, Barreiro J et al (2022) Precipitation hardening stainless steel samples processed by additive manufacturing: process parameters and thermo mechanical treatments effects on microstructure and corrosion resistance. Opt Laser Technol 156:108547. https://doi.org/10.1016/J.OPTLASTEC.2022.108547

    Article  Google Scholar 

  35. Gruber K, Stopyra W, Kobiela K et al (2022) Mechanical properties of Inconel 718 additively manufactured by laser powder bed fusion after industrial high-temperature heat treatment. J Manuf Process 73:642–659. https://doi.org/10.1016/J.JMAPRO.2021.11.053

    Article  Google Scholar 

  36. Bin AA, Pham QC (2017) Selective laser melting of AlSi10Mg: effects of scan direction, part placement and inert gas flow velocity on tensile strength. J Mater Process Technol 240:388–396. https://doi.org/10.1016/J.JMATPROTEC.2016.10.015

    Article  Google Scholar 

  37. Pitz-Paal R, Hoffschmidt B, Böhmer M, Becker M (1997) Experimental and numerical evaluation of the performance and flow stability of different types of open volumetric absorbers under non-homogeneous irradiation. Sol Energy 60:135–150. https://doi.org/10.1016/S0038-092X(97)00007-8

    Article  Google Scholar 

  38. Barros R de S (2019) Laser powder bed fusion of Inconel® 718: optimization of process parameters and residual stress analysis before and after heat treatment. Instituto Politecnico do Porto

  39. Zhang L, Reutzel EW, Michaleris P (2004) Finite element modeling discretization requirements for the laser forming process. Int J Mech Sci 46:623–637. https://doi.org/10.1016/J.IJMECSCI.2004.04.001

    Article  MATH  Google Scholar 

  40. He P, Sun C, Wang Y (2021) Material distortion in laser-based additive manufacturing of fuel cell component: three-dimensional numerical analysis. Addit Manuf 46:102188. https://doi.org/10.1016/J.ADDMA.2021.102188

    Article  Google Scholar 

  41. Franchin G, Pearce J, Molde J (2017) Additive Manufacturing techniques for fabricating complex ceramic components from preceramic polymers. Am Ceram Soc Bull 96:16–23

    Google Scholar 

  42. Rai R, Elmer JW, Palmer TA, Debroy T (2007) Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti-6Al-4V, 304L stainless steel and vanadium. J Phys D Appl Phys 40:5753–5766. https://doi.org/10.1088/0022-3727/40/18/037

    Article  Google Scholar 

  43. Liu W, Saleheen KM, Tang Z et al (2021) Review on scanning pattern evaluation in laser-based additive manufacturing. Opt Eng 60:070901

    Article  Google Scholar 

  44. Malekipour E, El-Mounayri H (2020) Scanning strategies in the PBF process: a critical review. In: International mechanical engineering congress and exposition. ASME International, Virtual, Online, p 9

  45. ISO - ISO 4287–1:1984 - Surface roughness — terminology — part 1: surface and its parameters. https://www.iso.org/standard/10131.html. Accessed 24 May 2022

  46. Mahmood MA, Ur Rehman A, Ishfaq K et al (2022) Grain-based morphological simulation via fractal theory with experimental verification and corresponding optical properties in laser melting deposition additive manufacturing: a demystified approach. Appl Math Model 109:304–317. https://doi.org/10.1016/J.APM.2022.04.034

    Article  Google Scholar 

  47. Rott S, Ladewig A, Friedberger K et al (2020) Surface roughness in laser powder bed fusion – interdependency of surface orientation and laser incidence. Addit Manuf 36:101437. https://doi.org/10.1016/J.ADDMA.2020.101437

    Article  Google Scholar 

  48. BMS BULUT MAKINA, Hardness testers & metallographic equipments-hardness testers-Rockwell hardness testers-BMS 201-R - BMS BULUT MAKINA hardness testers & metallographic equipments. https://www.bulutmak.net/bms-201-r.html. Accessed 20 Feb 2022

  49. Waqar S, Guo K, Sun J (2021) FEM analysis of thermal and residual stress profile in selective laser melting of 316L stainless steel. J Manuf Process 66:81–100. https://doi.org/10.1016/J.JMAPRO.2021.03.040

    Article  Google Scholar 

  50. Mahmood MA, Popescu AC, Hapenciuc CL et al (2020) Estimation of clad geometry and corresponding residual stress distribution in laser melting deposition: analytical modeling and experimental correlations. Int J Adv Manuf Technol 111:77–91. https://doi.org/10.1007/s00170-020-06047-6

    Article  Google Scholar 

  51. González-Barrio H, Calleja-Ochoa A, López de Lacalle NL, Lamikiz A (2022) Hybrid manufacturing of complex components: full methodology including laser metal deposition (LMD) module development, cladding geometry estimation and case study validation. Mech Syst Signal Process 179:109337. https://doi.org/10.1016/J.YMSSP.2022.109337

    Article  Google Scholar 

  52. Marin F, de Souza AF, Mikowski A et al (2022) Energy density effect on the interface zone in parts manufactured by laser powder bed fusion on machined bases. Int J Precis Eng Manuf - Green Technol. https://doi.org/10.1007/s40684-022-00470-8

    Article  Google Scholar 

  53. Mahmood MA, Popescu AC, Oane M et al (2021) Grain refinement and mechanical properties for AISI304 stainless steel single-tracks by laser melting deposition: Mathematical modelling versus experimental results. Results Phys 22:103880. https://doi.org/10.1016/j.rinp.2021.103880

    Article  Google Scholar 

  54. Johnson L, Mahmoudi M, Zhang B et al (2019) Assessing printability maps in additive manufacturing of metal alloys. Acta Mater 176:199–210. https://doi.org/10.1016/j.actamat.2019.07.005

    Article  Google Scholar 

  55. Coro A, Macareno LM, Aguirrebeitia J, de Lacalle LNL (2019) A methodology to evaluate the reliability impact of the replacement of welded components by additive manufacturing spare parts. Metals (Basel) 9:932. https://doi.org/10.3390/met9090932

    Article  Google Scholar 

  56. MALLON PJ, ÓBRÁDAIGH CM (2000) Compliant mold techniques for thermoplastic composites. Compr Compos Mater 873–913. https://doi.org/10.1016/B0-08-042993-9/00183-2

  57. Asgari M, Kouchakzadeh MA (2019) An equivalent von Mises stress and corresponding equivalent plastic strain for elastic–plastic ordinary peridynamics. Meccanica 54:1001–1014. https://doi.org/10.1007/S11012-019-00975-8/FIGURES/13

    Article  MathSciNet  Google Scholar 

  58. Kurzynowski T, Stopyra W, Gruber K, et al (2019) Effect of scanning and support strategies on relative density of SLM-ed H13 steel in relation to specimen size. Materials (Basel) 12:. https://doi.org/10.3390/ma12020239

  59. Wang SX, Xue XD, Zhang XL et al (2015) The application of cryogens in liquid fluid energy storage systems. Phys Procedia 67:728–732. https://doi.org/10.1016/J.PHPRO.2015.06.123

    Article  Google Scholar 

  60. Zheng Z, Peng L, Wang D (2021) Defect analysis of 316 L stainless steel prepared by LPBF additive manufacturing processes. Coatings 2011 11:1562. https://doi.org/10.3390/COATINGS11121562

    Article  Google Scholar 

  61. Aboulkhair NT, Everitt NM, Ashcroft I, Tuck C (2014) Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit Manuf 1–4:77–86. https://doi.org/10.1016/J.ADDMA.2014.08.001

    Article  Google Scholar 

  62. Sabzi HE, Maeng S, Liang X et al (2020) Controlling crack formation and porosity in laser powder bed fusion: alloy design and process optimisation. Addit Manuf 34:101360. https://doi.org/10.1016/J.ADDMA.2020.101360

    Article  Google Scholar 

  63. Raza A, Fiegl T, Hanif I et al (2021) Degradation of AlSi10Mg powder during laser based powder bed fusion processing. Mater Des 198:109358. https://doi.org/10.1016/J.MATDES.2020.109358

    Article  Google Scholar 

  64. Cao L, Li J, Hu J et al (2021) Optimization of surface roughness and dimensional accuracy in LPBF additive manufacturing. Opt Laser Technol 142:107246. https://doi.org/10.1016/J.OPTLASTEC.2021.107246

    Article  Google Scholar 

  65. Whip B, Sheridan L, Gockel J (2019) The effect of primary processing parameters on surface roughness in laser powder bed additive manufacturing. Int J Adv Manuf Technol 103:4411–4422. https://doi.org/10.1007/S00170-019-03716-Z/TABLES/2

    Article  Google Scholar 

  66. Boswell JH, Clark D, Li W, Attallah MM (2019) Cracking during thermal post-processing of laser powder bed fabricated CM247LC Ni-superalloy. Mater Des 174:107793. https://doi.org/10.1016/J.MATDES.2019.107793

    Article  Google Scholar 

  67. Zhuravlev E, Milkereit B, Yang B et al (2021) Assessment of AlZnMgCu alloy powder modification for crack-free laser powder bed fusion by differential fast scanning calorimetry. Mater Des 204:109677. https://doi.org/10.1016/J.MATDES.2021.109677

    Article  Google Scholar 

  68. Tan C, Li S, Essa K et al (2019) Laser powder bed fusion of Ti-rich TiNi lattice structures: process optimisation, geometrical integrity, and phase transformations. Int J Mach Tools Manuf 141:19–29. https://doi.org/10.1016/J.IJMACHTOOLS.2019.04.002

    Article  Google Scholar 

  69. Hojjatzadeh SMH, Parab ND, Guo Q et al (2020) Direct observation of pore formation mechanisms during LPBF additive manufacturing process and high energy density laser welding. Int J Mach Tools Manuf 153:103555. https://doi.org/10.1016/J.IJMACHTOOLS.2020.103555

    Article  Google Scholar 

  70. Guo C, Li S, Shi S et al (2020) Effect of processing parameters on surface roughness, porosity and cracking of as-built IN738LC parts fabricated by laser powder bed fusion. J Mater Process Technol 285:116788. https://doi.org/10.1016/J.JMATPROTEC.2020.116788

    Article  Google Scholar 

  71. Ali U, Esmaeilizadeh R, Ahmed F et al (2019) Identification and characterization of spatter particles and their effect on surface roughness, density and mechanical response of 17–4 PH stainless steel laser powder-bed fusion parts. Mater Sci Eng A 756:98–107. https://doi.org/10.1016/J.MSEA.2019.04.026

    Article  Google Scholar 

  72. ScipioniBertoli U, Wolfer AJ, Matthews MJ et al (2017) On the limitations of volumetric energy density as a design parameter for selective laser melting. Mater Des 113:331–340. https://doi.org/10.1016/J.MATDES.2016.10.037

    Article  Google Scholar 

  73. Yadroitsev I, Gusarov A, Yadroitsava I, Smurov I (2010) Single track formation in selective laser melting of metal powders. J Mater Process Technol 210:1624–1631. https://doi.org/10.1016/J.JMATPROTEC.2010.05.010

    Article  Google Scholar 

  74. Lord R, Sec RS (2010) XVI. On the instability of a cylinder of viscous liquid under capillary force. 101080/14786449208620301 34, 1892:145–154. https://doi.org/10.1080/14786449208620301

  75. Rombouts M, Kruth JP, Froyen L, Mercelis P (2006) Fundamentals of selective laser melting of alloyed steel powders. CIRP Ann 55:187–192. https://doi.org/10.1016/S0007-8506(07)60395-3

    Article  Google Scholar 

  76. Zhou X, Liu X, Zhang D et al (2015) Balling phenomena in selective laser melted tungsten. J Mater Process Technol 222:33–42. https://doi.org/10.1016/J.JMATPROTEC.2015.02.032

    Article  Google Scholar 

  77. Tan C, Zhou K, Ma W, Min L (2018) Interfacial characteristic and mechanical performance of maraging steel-copper functional bimetal produced by selective laser melting based hybrid manufacture. Mater Des 155:77–85. https://doi.org/10.1016/J.MATDES.2018.05.064

    Article  Google Scholar 

  78. Xia M, Gu D, Yu G et al (2016) Influence of hatch spacing on heat and mass transfer, thermodynamics and laser processability during additive manufacturing of Inconel 718 alloy. Int J Mach Tools Manuf 109:147–157. https://doi.org/10.1016/J.IJMACHTOOLS.2016.07.010

    Article  Google Scholar 

  79. Li Y, Gu D (2014) Thermal behavior during selective laser melting of commercially pure titanium powder: numerical simulation and experimental study. Addit Manuf 1–4:99–109. https://doi.org/10.1016/J.ADDMA.2014.09.001

    Article  Google Scholar 

  80. Cao Y, Wei HL, Yang T et al (2021) Printability assessment with porosity and solidification cracking susceptibilities for a high strength aluminum alloy during laser powder bed fusion. Addit Manuf 46:102103. https://doi.org/10.1016/J.ADDMA.2021.102103

    Article  Google Scholar 

  81. Gu DD, Meiners W, Wissenbach K, Poprawe R (2013) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57:133–164. https://doi.org/10.1179/1743280411Y.0000000014

    Article  Google Scholar 

  82. Oliveira JP, LaLonde AD, Ma J (2020) Processing parameters in laser powder bed fusion metal additive manufacturing. Mater Des 193:108762. https://doi.org/10.1016/J.MATDES.2020.108762

    Article  Google Scholar 

  83. Salonitis K, D’Alvise L, Schoinochoritis B, Chantzis D (2016) Additive manufacturing and post-processing simulation: laser cladding followed by high speed machining. Int J Adv Manuf Technol 85:2401–2411. https://doi.org/10.1007/S00170-015-7989-Y/METRICS

    Article  Google Scholar 

  84. Lesyk DA, Martinez S, Mordyuk BN et al (2020) Post-processing of the Inconel 718 alloy parts fabricated by selective laser melting: effects of mechanical surface treatments on surface topography, porosity, hardness and residual stress. Surf Coatings Technol 381:125136. https://doi.org/10.1016/J.SURFCOAT.2019.125136

    Article  Google Scholar 

  85. Mirzendehdel AM, Suresh K (2016) Support structure constrained topology optimization for additive manufacturing. Comput Des 81:1–13. https://doi.org/10.1016/J.CAD.2016.08.006

    Article  Google Scholar 

  86. Gao W, Zhang Y, Ramanujan D et al (2015) The status, challenges, and future of additive manufacturing in engineering. Comput Des 69:65–89. https://doi.org/10.1016/J.CAD.2015.04.001

    Article  Google Scholar 

  87. Klahn C, Leutenecker B, Meboldt M (2014) Design for additive manufacturing – supporting the substitution of components in series products. Procedia CIRP 21:138–143. https://doi.org/10.1016/J.PROCIR.2014.03.145

    Article  Google Scholar 

  88. Ponche R, Kerbrat O, Mognol P, Hascoet JY (2014) A novel methodology of design for additive manufacturing applied to additive laser manufacturing process. Robot Comput Integr Manuf 30:389–398. https://doi.org/10.1016/J.RCIM.2013.12.001

    Article  Google Scholar 

  89. Zhang Y, Fuh JYH, Ye D, Hong GS (2019) In-situ monitoring of laser-based PBF via off-axis vision and image processing approaches. Addit Manuf 25:263–274. https://doi.org/10.1016/J.ADDMA.2018.10.020

    Article  Google Scholar 

  90. Repossini G, Laguzza V, Grasso M, Colosimo BM (2017) On the use of spatter signature for in-situ monitoring of laser powder bed fusion. Addit Manuf 16:35–48. https://doi.org/10.1016/J.ADDMA.2017.05.004

    Article  Google Scholar 

  91. Farshidianfar MH, Khodabakhshi F, Khajepour A, Gerlich AP (2021) Closed-loop control of microstructure and mechanical properties in additive manufacturing by directed energy deposition. Mater Sci Eng A 803:140483. https://doi.org/10.1016/J.MSEA.2020.140483

    Article  Google Scholar 

  92. Thapliyal S, Komarasamy M, Shukla S et al (2020) An integrated computational materials engineering-anchored closed-loop method for design of aluminum alloys for additive manufacturing. Materialia 9:100574. https://doi.org/10.1016/J.MTLA.2019.100574

    Article  Google Scholar 

  93. Razavykia A, Brusa E, Delprete C, Yavari R (2020) An overview of additive manufacturing technologies—a review to technical synthesis in numerical study of selective laser melting. Mater 13:3895. https://doi.org/10.3390/MA13173895

    Article  Google Scholar 

  94. Russell MA, Souto-Iglesias A, Zohdi TI (2018) Numerical simulation of laser fusion additive manufacturing processes using the SPH method. Comput Methods Appl Mech Eng 341:163–187. https://doi.org/10.1016/J.CMA.2018.06.033

    Article  MathSciNet  MATH  Google Scholar 

  95. Xu T, Liu J, Lu T et al (2023) Fabrication strategy and macroscopic defect control of large-size component based on double-wire arc additive manufacturing. Int J Adv Manuf Technol 125:2609–2625. https://doi.org/10.1007/S00170-023-10882-8/FIGURES/15

    Article  Google Scholar 

  96. Mahmood MA, Visan AI, Ristoscu C, Mihailescu IN (2020) artificial neural network algorithms for 3D printing. Materials (Basel) 14:163. https://doi.org/10.3390/ma14010163

    Article  Google Scholar 

  97. Goh GD, Sing SL, Yeong WY (2021) A review on machine learning in 3D printing: applications, potential, and challenges. Artif Intell Rev 54:63–94. https://doi.org/10.1007/S10462-020-09876-9/FIGURES/13

    Article  Google Scholar 

  98. Chi Y, Pan S, Liese M, et al (2023) Wire-arc directed energy deposition of aluminum alloy 7075 with dispersed nanoparticles. J Manuf Sci Eng 145:. https://doi.org/10.1115/1.4056257

  99. Chi Y, Pan S, Liese M, et al (2022) Wire-arc directed energy deposition of aluminum alloy 7075 with dispersed nanoparticles. https://doi.org/10.1115/1.4056257

  100. Zheng T, Pan S, Murali N et al (2022) Selective laser melting of novel 7075 aluminum powders with internally dispersed TiC nanoparticles. Mater Lett 319:132268. https://doi.org/10.1016/J.MATLET.2022.132268

    Article  Google Scholar 

  101. Zhang M, Liu C, Shi X et al (2016) Residual stress, defects and grain morphology of Ti-6Al-4V alloy produced by ultrasonic impact treatment assisted selective laser melting. Appl Sci 304(6):304. https://doi.org/10.3390/APP6110304

    Article  Google Scholar 

  102. Honarvar F, Varvani-Farahani A (2020) A review of ultrasonic testing applications in additive manufacturing: defect evaluation, material characterization, and process control. Ultrasonics 108:106227

    Article  Google Scholar 

  103. Liu B, Li BQ, Li Z et al (2019) Numerical investigation on heat transfer of multi-laser processing during selective laser melting of AlSi10Mg. Results Phys 12:454–459. https://doi.org/10.1016/J.RINP.2018.11.075

    Article  Google Scholar 

  104. Wong H, Dawson K, Ravi GA et al (2019) Multi-laser powder bed fusion benchmarking—initial trials with Inconel 625. Int J Adv Manuf Technol 105:2891–2906. https://doi.org/10.1007/S00170-019-04417-3/TABLES/8

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the kind support of Ahmet Sever at ERMAKSAN, Bursa, Turkey, for printing the additively manufactured components.

Funding

Asif Ur Rehman has received the financial support from the European Union’s Horizon 2020 (H2020) research and innovation program under the Marie Skłodowska-Curie, grant agreement No. 764935.

Author information

Authors and Affiliations

Authors

Contributions

All authors made a notable contribution in this study.

Corresponding authors

Correspondence to Muhammad Arif Mahmood or Marwan Khraisheh.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Competing interests

The authors declare no conflict of interest.

Copyright permissions

All necessary copyright permissions have been taken in this study.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmood, M.A., Ur Rehman, A., Azeem, M.M. et al. On the development of part-scale FEM modeling for laser powder bed fusion of AISI 316L stainless steel with experimental verification. Int J Adv Manuf Technol 127, 2229–2255 (2023). https://doi.org/10.1007/s00170-023-11572-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11572-1

Keywords

Navigation