Skip to main content
Log in

Quantifying the influence of reinforcement architecture on the planar mechanical properties of 3D-printed continuous fiber-reinforced thermoplastic composites

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

3D-printed thermoplastic parts with continuous fiber reinforcement are known to offer mechanical performance that is highly dependent on design variables and printing parameters. In this work, the role of the reinforcement distribution on the mechanical response of glass fiber-reinforced thermoplastics printed using the fused filament fabrication (FFF) technique is evaluated. Laminates with alternating and continuous reinforcement architecture as well as different fiber orientations such as isotropic (0°, 90°, and 45°) and concentric configurations are characterized from monotonic tensile and flexural loads. The resulting superior macromechanical performance in terms of higher stiffness and strength achieved in samples reinforced with alternating fiber plies is correlated with the micromechanical fractography characteristics and interlaminar shear capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vyavahare S, Kumar S, Panghal D (2020) Experimental study of surface roughness, dimensional accuracy and time of fabrication of parts produced by fused deposition modelling. Rapid Prototyp J 26:1535–1554. https://doi.org/10.1108/RPJ-12-2019-0315

    Article  Google Scholar 

  2. Ning F, Cong W, Hu Y, Wang H (2017) Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: effects of process parameters on tensile properties. J Compos Mater 51:451–462. https://doi.org/10.1177/0021998316646169

    Article  Google Scholar 

  3. Jardin RT, Tuninetti V, Tchuindjang JT, Hashemi N, Carrus R, Mertens A, Duchêne L, Tran HS, Habraken AM (2020) Sensitivity analysis in the modelling of a high speed steel thin-wall produced by directed energy deposition. Metals (Basel) 10:1554. https://doi.org/10.3390/met10111554

    Article  Google Scholar 

  4. Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Compos B Eng 110:442–458. https://doi.org/10.1016/J.COMPOSITESB.2016.11.034

    Article  Google Scholar 

  5. Tekinalp HL, Kunc V, Velez-Garcia GM, Duty CE, Love LJ, Naskar AK, Blue CA, Ozcan S (2014) Highly oriented carbon fiber-polymer composites via additive manufacturing. Compos Sci Technol 105:144–150. https://doi.org/10.1016/j.compscitech.2014.10.009

    Article  Google Scholar 

  6. Goodridge RD, Shofner ML, Hague RJM, McClelland M, Schlea MR, Johnson RB, Tuck CJ (2011) Processing of a polyamide-12/carbon nanofibre composite by laser sintering. Polym Testing 30:94–100. https://doi.org/10.1016/j.polymertesting.2010.10.011

    Article  Google Scholar 

  7. Bai J, Goodridge RD, Hague RJ, Song M (2012) Carbon nanotube reinforced polyamide 12 nanocomposites for laser sintering. In: Proceedings for the 2012 International Solid Freeform Fabrication Symposium, pp. 98–107. https://doi.org/10.26153/tsw/15336

  8. Yang C, Tian X, Liu T, Cao Y, Li D (2017) 3D printing for continuous fiber reinforced thermoplastic composites: mechanism and performance. Rapid Prototyping Journal 23:209–215. https://doi.org/10.1108/RPJ-08-2015-0098

    Article  Google Scholar 

  9. Zhuo P, Li S, Ashcroft IA, Jones AI (2021) Material extrusion additive manufacturing of continuous fibre reinforced polymer matrix composites: a review and outlook. Compos B Eng 224:109143. https://doi.org/10.1016/j.compositesb.2021.109143

    Article  Google Scholar 

  10. Matsuzaki R, Ueda M, Namiki M, Jeong TK, Asahara H, Horiguchi K, Nakamura T, Todoroki A, Hirano Y (2016) Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci Rep 6:1–7. https://doi.org/10.1038/srep23058

    Article  Google Scholar 

  11. Zhuo P, Li S, Ashcroft I, Jones A, Pu J (2017) 3D printing of continuous fibre reinforced thermoplastic composites. In: 21st International conference on composite materials, ICCM 2017, Xi’an, China

  12. Kalsoom U, Peristyy A, Nesterenko PN, Paull B (2016) A 3D printable diamond polymer composite: a novel material for fabrication of low cost thermally conducting devices. RSC Adv 6:38140–38147. https://doi.org/10.1039/c6ra05261d

    Article  Google Scholar 

  13. Shabaniverki S, Juárez JJ (2021) Directed assembly of particles for additive manufacturing of particle-polymer composites. Micromachines 12:1–24. https://doi.org/10.3390/mi12080935

    Article  Google Scholar 

  14. Ning F, Cong W, Qiu J, Wei J, Wang S (2015) Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos B Eng 80:369–378. https://doi.org/10.1016/j.compositesb.2015.06.013

    Article  Google Scholar 

  15. Díaz-Rodríguez JG, Pertúz-Comas AD, González-Estrada OA (2021) Mechanical properties for long fibre reinforced fused deposition manufactured composites. Compos B Eng 211:108657. https://doi.org/10.1016/j.compositesb.2021.108657

  16. Somireddy M, Singh CV, Czekanski A (2020) Mechanical behaviour of 3D printed composite parts with short carbon fiber reinforcements. Eng Fail Anal 107:104232. https://doi.org/10.1016/j.engfailanal.2019.104232

    Article  Google Scholar 

  17. Garzon-Hernandez S, Arias A, Garcia-Gonzalez D (2020) A continuum constitutive model for FDM 3D printed thermoplastics. Compos B Eng 201:108373. https://doi.org/10.1016/j.compositesb.2020.108373

    Article  Google Scholar 

  18. Shanmugam V, Das O, Babu K, Marimuthu U, Veerasimman A, Johnson DJ, Neisiany RE, Hedenqvist MS, Ramakrishna S, Berto F (2021) Fatigue behaviour of FDM-3D printed polymers, polymeric composites and architected cellular materials. Int J Fatigue 143:106007. https://doi.org/10.1016/J.IJFATIGUE.2020.106007

    Article  Google Scholar 

  19. Krzikalla D, Měsíček J, Halama R, Hajnyš J, Pagáč M, Čegan T, Petrů J (2022) On flexural properties of additive manufactured composites: experimental, and numerical study. Compos Sci Technol 218:109182. https://doi.org/10.1016/J.COMPSCITECH.2021.109182

    Article  Google Scholar 

  20. Ravoori D, Prajapati H, Talluru V, Adnan A, Jain A (2019) Nozzle-integrated pre-deposition and post-deposition heating of previously deposited layers in polymer extrusion based additive manufacturing. Addit Manuf 28:719–726. https://doi.org/10.1016/j.addma.2019.06.006

    Article  Google Scholar 

  21. Hermosilla R, Oñate A, Castillo R, De la Fuente A, Sepúlveda J, Escudero B, Vargas-Silva G, Tuninetti V, Melendrez M, Medina C (2023) Influence stacking sequence and heat treatments on the out-of-plane mechanical properties of 3D-printed fiberglass-reinforced thermoplastics. Int J Adv Manuf Technol 125:4753–4764. https://doi.org/10.1007/S00170-023-11050-8/FIGURES/12

    Article  Google Scholar 

  22. Ravi AK, Deshpande A, Hsu KH (2016) An in-process laser localized pre-deposition heating approach to inter-layer bond strengthening in extrusion based polymer additive manufacturing. J Manuf Process 24:179–185. https://doi.org/10.1016/j.jmapro.2016.08.007

    Article  Google Scholar 

  23. Pascual-González C, Iragi M, Fernández A, Fernández-Blázquez JP, Aretxabaleta L, Lopes CS (2020) An approach to analyse the factors behind the micromechanical response of 3D-printed composites. Compos B Eng 186:107820. https://doi.org/10.1016/j.compositesb.2020.107820

    Article  Google Scholar 

  24. Ravoori D, Salvi S, Prajapati H, Qasaimeh M, Adnan A, Jain A (2021) Void reduction in fused filament fabrication (FFF) through in situ nozzle-integrated compression rolling of deposited filaments. Virtual Phys Prototyp 16:146–159. https://doi.org/10.1080/17452759.2021.1890986

    Article  Google Scholar 

  25. Yamawaki M, Kouno Y (2018) Fabrication and mechanical characterization of continuous carbon fiber-reinforced thermoplastic using a preform by three-dimensional printing and via hot-press molding. Adv Compos Mater 27:209–219. https://doi.org/10.1080/09243046.2017.1368840

    Article  Google Scholar 

  26. Omuro R, Ueda M, Matsuzaki R, Todoroki A, Hirano Y (2017) Three-dimensional printing of continuous carbon fiber reinforced thermoplastics by in-nozzle impregnation with compaction roller. In: 21st International conference on composite materials, ICCM 2017, Xi’an, China

  27. Sun Q, Rizvi GM, Bellehumeur CT, Gu P (2008) Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp J 14:72–80. https://doi.org/10.1108/13552540810862028

    Article  Google Scholar 

  28. Turner BN, Strong R, Gold SA (2014) A review of melt extrusion additive manufacturing processes: I Process design and modeling. Rapid Prototyp J 20:192–204. https://doi.org/10.1108/RPJ-01-2013-0012

    Article  Google Scholar 

  29. Salas A, Medina C, Vial JT, Flores P, Canales C, Tuninetti V, Jaramillo AF, Meléndrez MF (2021) Ultrafast carbon nanotubes growth on recycled carbon fibers and their evaluation on interfacial shear strength in reinforced composites. Sci Rep 11:5000. https://doi.org/10.1038/s41598-021-84419-y

    Article  Google Scholar 

  30. Brenken B, Barocio E, Favaloro A, Kunc V, Pipes RB (2018) Fused filament fabrication of fiber-reinforced polymers: a review. Addit Manuf 21:1–16. https://doi.org/10.1016/j.addma.2018.01.002

    Article  Google Scholar 

  31. Khudiakova A, Arbeiter F, Spoerk M, Wolfahrt M, Godec D, Pinter G (2019) Inter-layer bonding characterisation between materials with different degrees of stiffness processed by fused filament fabrication. Addit Manuf 28:184–193. https://doi.org/10.1016/j.addma.2019.05.006

    Article  Google Scholar 

  32. Türk DA, Brenni F, Zogg M, Meboldt M (2017) Mechanical characterization of 3D printed polymers for fiber reinforced polymers processing. Mater Des 118:256–265. https://doi.org/10.1016/j.matdes.2017.01.050

    Article  Google Scholar 

  33. Chacón JM, Caminero MA, García-Plaza E, Núñez PJ (2017) Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection. Mater Des 124:143–157. https://doi.org/10.1016/j.matdes.2017.03.065

    Article  Google Scholar 

  34. Kulkarni P, Dutta D (1997) Deposition strategies and resulting part stiffnesses in layered manufacturing. Proc ASME Des Eng Tech Conf 2: 23rd Des Autom Conf, California, USA. https://doi.org/10.1115/DETC97/DAC-3987

  35. Casavola C, Cazzato A, Moramarco V, Pappalettere C (2016) Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory. Mater Des 90:453–458. https://doi.org/10.1016/j.matdes.2015.11.009

    Article  Google Scholar 

  36. Somireddy M, Czekanski A (2017) Mechanical characterization of additively manufactured parts by FE modeling of mesostructure. J Manuf Mater Process 1:1–21. https://doi.org/10.3390/jmmp1020018

    Article  Google Scholar 

  37. Salas A, Oñate Á, Escudero B, Medina C, Tuninetti V, Meléndrez M (2022) Effect of 05% CNT reinforcement of a glass fiber composite on strength and cyclic damage induced by transverse and out-of-plane compressive loads. J Compos Mater 56:2895–2906. https://doi.org/10.1177/00219983221106522

    Article  Google Scholar 

  38. Caminero MA, Chacón JM, García-Moreno I, Reverte JM (2018) Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling. Polym Testing 68:415–423. https://doi.org/10.1016/j.polymertesting.2018.04.038

    Article  Google Scholar 

  39. Shi K, Yan Y, Mei H, Chen C, Cheng L (2021) 3D printing Kevlar fiber layer distributions and fiber orientations into nylon composites to achieve designable mechanical strength. Addit Manuf 39:101882. https://doi.org/10.1016/j.addma.2021.101882

    Article  Google Scholar 

  40. Pyl L, Kalteremidou KA, Van Hemelrijck D (2018) Exploration of specimen geometry and tab configuration for tensile testing exploiting the potential of 3D printing freeform shape continuous carbon fibre-reinforced nylon matrix composites. Polym Testing 71:318–328. https://doi.org/10.1016/j.polymertesting.2018.09.022

    Article  Google Scholar 

  41. Markforged, Material Datasheet: Composites, (n.d.). http://static.markforged.com/downloads/composites-data-sheet.pdf (accessed March 5, 2022).

  42. ASTM, D3039/D3039M-17 (2017) Standard test method for tensile properties of polymer matrix composite materials. https://doi.org/10.1520/D3039_D3039M-17

  43. ASTM, D3518 (2018) Standard test method for in-plane shear response of polymer matrix composite materials by tensile test of a ±45° Laminate. ASTM International, Philadelphia. https://doi.org/10.1520/D3518_D3518M-18

  44. Van Paepegem W, De Baere I, Lamkanfi E, Degrieck J (2007) Poisson’s ratio as a sensitive indicator of (fatigue) damage in fibre-reinforced plastics, Fatigue and Fracture of Engineering. Mater Struct 30:269–276. https://doi.org/10.1111/j.1460-2695.2007.01095.x

    Article  Google Scholar 

  45. Van Paepegem W, De Baere I, Lamkanfi E, Degrieck J (2010) Monitoring quasi-static and cyclic fatigue damage in fibre-reinforced plastics by Poisson’s ratio evolution. Int J Fatigue 32:184–196. https://doi.org/10.1016/j.ijfatigue.2009.02.026

    Article  Google Scholar 

  46. Van Paepegem W, Degrieck J (2002) A new coupled approach of residual stiffness and strength for fatigue of fibre-reinforced composites. Int J Fatigue 24:747–762. https://doi.org/10.1016/S0142-1123(01)00194-3

    Article  MATH  Google Scholar 

  47. Lupone F, Padovano E, Venezia C, Badini C (2022) Experimental characterization and modeling of 3D printed continuous carbon fibers composites with different fiber orientation produced by FFF process. Polymers 14:426. https://doi.org/10.3390/polym14030426

  48. Parmiggiani A, Prato M, Pizzorni M (2021) Effect of the fiber orientation on the tensile and flexural behavior of continuous carbon fiber composites made via fused filament fabrication. Int J Adv Manuf Technol 114:2085–2101. https://doi.org/10.1007/s00170-021-06997-5

    Article  Google Scholar 

  49. Dickson AN, Barry JN, McDonnell KA, Dowling DP (2017) Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing. Addit Manuf 16:146–152. https://doi.org/10.1016/j.addma.2017.06.004

    Article  Google Scholar 

  50. Naranjo-Lozada J, Ahuett-Garza H, Orta-Castañón P, Verbeeten WMH, Sáiz-González D (2019) Tensile properties and failure behavior of chopped and continuous carbon fiber composites produced by additive manufacturing. Addit Manuf 26:227–241. https://doi.org/10.1016/j.addma.2018.12.020

    Article  Google Scholar 

  51. van de Werken N, Hurley J, Khanbolouki P, Sarvestani AN, Tamijani AY, Tehrani M (2019) Design considerations and modeling of fiber reinforced 3D printed parts. Compos B Eng 160:684–692. https://doi.org/10.1016/j.compositesb.2018.12.094

    Article  Google Scholar 

  52. Chacón JM, Caminero MA, Núñez PJ, García-Plaza E, García-Moreno I, Reverte JM (2019) Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: effect of process parameters on mechanical properties. Compos Sci Technol 181:107688. https://doi.org/10.1016/j.compscitech.2019.107688

    Article  Google Scholar 

  53. Ferreira RTL, Amatte IC, Dutra TA, Bürger D (2017) Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers. Compos B Eng 124:88–100. https://doi.org/10.1016/j.compositesb.2017.05.013

    Article  Google Scholar 

  54. Martín MJ, Auñón JA, Martín F (2021) Influence of infill pattern on mechanical behavior of polymeric and composites specimens manufactured using fused filament fabrication technology. Polymers 13:2934. https://doi.org/10.3390/polym13172934

  55. Bárnik F, Vaško M, Sága M, Handrik M, Sapietová A (2019) Mechanical properties of structures produced by 3D printing from composite materials. MATEC Web Conf 254:01018. https://doi.org/10.1051/matecconf/201925401018

    Article  Google Scholar 

  56. Varna J, Joffe R, Akshantala NV, Talreja R (1999) Damage in composite laminates with off-axis plies. Compos Sci Technol 59:2139–2147. https://doi.org/10.1016/S0266-3538(99)00070-6

    Article  Google Scholar 

  57. Mujika F (2007) On the effect of shear and local deformation in three-point bending tests. Polym Testing 26:869–877. https://doi.org/10.1016/j.polymertesting.2007.06.002

    Article  Google Scholar 

  58. Caminero MA, Rodríguez GP, Muñoz V (2016) Effect of stacking sequence on Charpy impact and flexural damage behavior of composite laminates. Compos Struct 136:345–357. https://doi.org/10.1016/j.compstruct.2015.10.019

    Article  Google Scholar 

  59. Iragi M, Pascual-González C, Esnaola A, Lopes CS, Aretxabaleta L (2019) Ply and interlaminar behaviours of 3D printed continuous carbon fibre-reinforced thermoplastic laminates; effects of processing conditions and microstructure. Addit Manuf 30:100884. https://doi.org/10.1016/j.addma.2019.100884

    Article  Google Scholar 

  60. Tian X, Liu T, Yang C, Wang Q, Li D (2016) Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos A Appl Sci Manuf 88:198–205. https://doi.org/10.1016/j.compositesa.2016.05.032

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Andrés De la Fuente: investigation, methodology, and data curation. Rodrigo Castillo: writing—original draft and review and editing; Angelo Oñate: conceptualization, data curation, and writing—review and editing. Rodolfo Hermosilla: methodology. Benjamín Escudero: resources. Joaquín Sepulveda: resources. Gustavo Vargas-Silva: writing—review and editing. Víctor Tuninetti: formal analysis, visualization, and writing—review and editing. Manuel F. Meléndrez: conceptualization and resources. Carlos Medina: conceptualization, resources, methodology, writing—review and editing, and supervision.

Corresponding authors

Correspondence to Víctor Tuninetti or Carlos Medina.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De la Fuente, A., Castillo, R., Oñate, A. et al. Quantifying the influence of reinforcement architecture on the planar mechanical properties of 3D-printed continuous fiber-reinforced thermoplastic composites. Int J Adv Manuf Technol 127, 1575–1583 (2023). https://doi.org/10.1007/s00170-023-11569-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11569-w

Keywords

Navigation