Skip to main content
Log in

Mechanical characterization and asymptotic homogenization of 3D-printed continuous carbon fiber-reinforced thermoplastic

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The present work investigates the mechanical properties of continuous carbon fiber-reinforced thermoplastic by testing composite specimens which were manufactured using an innovative process based on the fused filament fabrication (FFF, analogous to FDM®). The adopted testing procedures and their results are presented, as well as an introduction to the manufacturing process, which is patented by Markforged Inc. The experimental mechanical properties (stiffness and strength) of the composite specimens, measured in tensile (longitudinal and transverse), compression (longitudinal) and in-plane shear are reported. The asymptotic homogenization technique is applied in order to predict the elastic mechanical properties of the carbon fiber-reinforced lamina. In contrast to recent studies, this investigation has revealed that considering Nylon as the thermoplastic matrix embedding the continuous fiber consistently underpredicts the transverse and in-plane shear elastic properties of the reinforced laminae. These results suggest that the composition of the thermoplastic resin is not exactly the same for the unreinforced and reinforced filaments. Additionally, cross-sectional micrographs of specimens are analyzed in detail and considerable insight has been gained concerning the thermoplastic resin of reinforced filaments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Dutra TA, de Almeida SFM (2015) Composite plate stiffness multicriteria optimization using lamination parameters. Compos Struct 133:166. https://doi.org/10.1016/j.compstruct.2015.07.029

    Article  Google Scholar 

  2. Ferreira RT, Rodrigues HC, Guedes JM, Hernandes JA (2014) Hierarchical optimization of laminated fiber reinforced composites. Compos Struct 107:246. https://doi.org/10.1016/j.compstruct.2013.07.051

    Article  Google Scholar 

  3. Ferreira RTL, Hernandes JA (2015) Advanced approximations for sequential optimization with discrete material interpolations. Struct Multidiscip Optim 51(6):1305. https://doi.org/10.1007/s00158-014-1216-6

    Article  MathSciNet  Google Scholar 

  4. ISO/ASTM 52900:2015(en) Additive manufacturing—general principles-Terminology. International Organization for Standardization, Case postale 56, CH-1211 Geneva 20 (2015)

  5. Guo N, Leu MC (2013) Additive manufacturing: technology, applications and research needs. Front Mech Eng 8(3):215. https://doi.org/10.1007/s11465-013-0248-8

    Article  Google Scholar 

  6. Kulkarni P, Dutta D (1999) Deposition strategies and resulting part stiffnesses in fused deposition modeling. J Manuf Sci Eng 121(1):93. https://doi.org/10.1115/1.2830582

    Article  Google Scholar 

  7. Ahn SH, Montero M, Odell D, Roundy S, Wright PK (2002) Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J 8(4):248. https://doi.org/10.1108/13552540210441166

    Article  Google Scholar 

  8. Bellini A, Güçeri S (2003) Mechanical characterization of parts fabricated using fused deposition modeling. Rapid Prototyp J 9(4):252. https://doi.org/10.1108/13552540310489631

    Article  Google Scholar 

  9. Casavola C, Cazzato A, Moramarco V, Pappalettere C (2016) Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory. Mater Des 90:453. https://doi.org/10.1016/j.matdes.2015.11.009

    Article  Google Scholar 

  10. Carneiro O, Silva A, Gomes R (2015) Fused deposition modeling with polypropylene. Mater Des 83:768. https://doi.org/10.1016/j.matdes.2015.06.053

    Article  Google Scholar 

  11. Pearce JM (2015) Applications of open source 3-D printing on small farms. Organ Farm 1(1):19. https://doi.org/10.12924/of2015.01010019

    Article  Google Scholar 

  12. Ferro C, Grassi R, Secl C, Maggiore P (2016) Additive manufacturing offers new opportunities in UAV research. Procedia CIRP 41:1004. In: Research and innovation in manufacturing: key enabling technologies for the factories of the future-Proceedings of the 48th CIRP conference on manufacturing systems. https://doi.org/10.1016/j.procir.2015.12.104

  13. Chen RK, Jin Y, Wensman J, Shih A (2016) Additive manufacturing of custom orthoses and prostheses—a review. Addit Manuf 12, Part A:77. https://doi.org/10.1016/j.addma.2016.04.002

    Article  Google Scholar 

  14. Munhoz R, Moraes CAC, Tanaka H, Kunkel ME (2016) A digital approach for design and fabrication by rapid prototyping of orthosis for developmental dysplasia of the hip. Res Biomed Eng 32:63. https://doi.org/10.1590/2446-4740.00316

    Article  Google Scholar 

  15. Love LJ, Kunc V, Rios O, Duty CE, Elliott AM, Post BK, Smith RJ, Blue CA (2014) The importance of carbon fiber to polymer additive manufacturing. J Mater Res 29(17):1893. https://doi.org/10.1557/jmr.2014.212

    Article  Google Scholar 

  16. Quan Z, Wu A, Keefe M, Qin X, Yu J, Suhr J, Byun JH, Kim BS, Chou TW (2015) Additive manufacturing of multi-directional preforms for composites: opportunities and challenges. Mater Today 18(9):503. https://doi.org/10.1016/j.mattod.2015.05.001

    Article  Google Scholar 

  17. Zhong W, Li F, Zhang Z, Song L, Li Z (2001) Short fiber reinforced composites for fused deposition modeling. Mater Sci Eng A 301(2):125. https://doi.org/10.1016/S0921-5093(00)01810-4

    Article  Google Scholar 

  18. Tekinalp HL, Kunc V, Velez-Garcia GM, Duty CE, Love LJ, Naskar AK, Blue CA, Ozcan S (2014) Highly oriented carbon fiber-polymer composites via additive manufacturing. Compos Sci Technol 105:144. https://doi.org/10.1016/j.compscitech.2014.10.009

    Article  Google Scholar 

  19. Ning F, Cong W, Qiu J, Wei J, Wang S (2015) Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos Part B Eng 80:369. https://doi.org/10.1016/j.compositesb.2015.06.013

    Article  Google Scholar 

  20. Ning F, Cong W, Hu Y, Wang H (2017) Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: effects of process parameters on tensile properties. J Compos Mater 51(4):451. https://doi.org/10.1177/0021998316646169

    Article  Google Scholar 

  21. Wang J, Xie H, Weng Z, Senthil T, Wu L (2016) A novel approach to improve mechanical properties of parts fabricated by fused deposition modeling. Mater Des 105:152. https://doi.org/10.1016/j.matdes.2016.05.078

    Article  Google Scholar 

  22. Ferreira RTL, Amatte IC, Dutra TA, Burger D (2017) Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers. Compos Part B Eng 124(Supplement C):88. https://doi.org/10.1016/j.compositesb.2017.05.013

    Article  Google Scholar 

  23. Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Compos Part B Eng 110:442. https://doi.org/10.1016/j.compositesb.2016.11.034

    Article  Google Scholar 

  24. Li N, Li Y, Liu S (2016) Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing. J Mater Process Technol 238:218. https://doi.org/10.1016/j.jmatprotec.2016.07.025

    Article  Google Scholar 

  25. Baumann F, Scholz J, Fleischer J (2017) Investigation of a new approach for additively manufactured continuous fiber-reinforced polymers. Procedia CIRP 66:323. 1st CIRP Conference on Composite Materials Parts Manufacturing (CIRP CCMPM 2017). https://doi.org/10.1016/j.procir.2017.03.276

  26. Van Der Klift F, Koga Y, Todoroki A, Ueda M, Hirano Y, Matsuzaki R et al (2016) 3D printing of continuous carbon fibre reinforced thermo-plastic (CFRTP) tensile test specimens. Open J Compos Mater 6(01):18. https://doi.org/10.4236/ojcm.2016.61003

    Article  Google Scholar 

  27. Melenka GW, Cheung BK, Schofield JS, Dawson MR, Carey JP (2016) Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures. Compos Struct 153:866. https://doi.org/10.1016/j.compstruct.2016.07.018

    Article  Google Scholar 

  28. Dickson AN, Barry JN, McDonnell KA, Dowling DP (2017) Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing. Addit Manuf 16:146. https://doi.org/10.1016/j.addma.2017.06.004

    Article  Google Scholar 

  29. Blok L, Longana M, Yu H, Woods B (2018) An investigation into 3D printing of fibre reinforced thermoplastic composites. Addit Manuf 22:176. https://doi.org/10.1016/j.addma.2018.04.039

    Article  Google Scholar 

  30. Justo J, Tvara L, Garca-Guzmn L, Pars F (2018) Characterization of 3D printed long fibre reinforced composites. Compos Struct 185:537. https://doi.org/10.1016/j.compstruct.2017.11.052

    Article  Google Scholar 

  31. Abadi HA, Thai HT, Paton-Cole V, Patel V (2018) Elastic properties of 3D printed fibre-reinforced structures. Compos Struct 193:8. https://doi.org/10.1016/j.compstruct.2018.03.051

    Article  Google Scholar 

  32. Goh G, Dikshit V, Nagalingam A, Goh G, Agarwala S, Sing S, Wei J, Yeong W (2018) Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics. Mater Des 137:79. https://doi.org/10.1016/j.matdes.2017.10.021

    Article  Google Scholar 

  33. Araya-Calvo M, Lpez-Gmez I, Chamberlain-Simon N, Len-Salazar JL, Guilln-Girn T, Corrales-Cordero JS, Snchez-Brenes O (2018) Evaluation of compressive and flexural properties of continuous fiber fabrication additive manufacturing technology. Addit Manuf 22:157. https://doi.org/10.1016/j.addma.2018.05.007

    Article  Google Scholar 

  34. Caminero M, Chacn J, Garca-Moreno I, Reverte J (2018) Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling. Polym Test 68:415. https://doi.org/10.1016/j.polymertesting.2018.04.038

    Article  Google Scholar 

  35. Mark GT, Gozdz AS (2015) Three dimensional printer for fiber reinforced composite filament fabrication. US Patent 9,126,367

  36. ASTM D3039/D3039M-14, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International, West Conshohocken (2014)

  37. ASTM D6641/D6641 M-16e1, Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression (CLC) Test Fixture. ASTM International, West Conshohocken (2016)

  38. ASTM D3518/D3518M-13, Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a \(\pm 45^o\) Laminate. ASTM International, West Conshohocken (2013)

  39. ASTM D638, Standard Test Method for Tensile Properties of Plastics. ASTM International, West Conshohocken (2014)

  40. de Macedo RQ, Ferreira RTL, Donadon MV, Guedes JM (2018) Elastic properties of unidirectional fiber-reinforced composites using asymptotic homogenization techniques. Jo Braz Soc Mech Sci Eng 40(5):255. https://doi.org/10.1007/s40430-018-1174-9

    Article  Google Scholar 

  41. Guedes JM, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Methods Appl Mech Eng 83(2):143. https://doi.org/10.1016/0045-7825(90)90148-F

    Article  MathSciNet  MATH  Google Scholar 

  42. Hassani B, Hinton E (1998) A review of homogenization and topology optimization I-homogenization theory for media with periodic structure. Comput Struct 69(6):707. https://doi.org/10.1016/S0045-7949(98)00131-X

    Article  MATH  Google Scholar 

  43. Cheng GD, Cai YW, Xu L (2013) Novel implementation of homogenization method to predict effective properties of periodic materials. Acta Mech Sin 29(4):550. https://doi.org/10.1007/s10409-013-0043-0

    Article  MathSciNet  MATH  Google Scholar 

  44. Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31(17):2313. https://doi.org/10.1016/0020-7683(94)90154-6

    Article  MathSciNet  MATH  Google Scholar 

  45. D.S.S. Corp. Abaqus 6.14-1 documentaton (2014). V6.14-1

  46. Daniel IM, Ishai O (2006) Engineering mechanics of composite materials, 2nd edn. Oxford University Press, New York

    Google Scholar 

  47. ASTM D3171-15, Standard Test Methods for Constituent Content of Composite Materials. ASTM International, West Conshohocken (2015)

  48. Soden P, Hinton M, Kaddour A (1998) Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates. Compos Sci Technol 58(7):1011. https://doi.org/10.1016/S0266-3538(98)00078-5

    Article  Google Scholar 

  49. Jones RM (1998) Mechanics of composite materials. CRC Press, London

    Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES) - Finance Code 001 (Grant from Process CAPES-PROEX 88882.180843/2018-01), Grant 2015/00159-5 São Paulo Research Foundation (FAPESP), Instituto de Pesquisas Tecnológicas do Estado de São Paulo SA - IPT and by the Fundação de Apoio ao Instituto de Pesquisas Tecnológicas do Estado de São Paulo - FIPT (Grant from Programa Novos Talentos).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Assis Dutra.

Additional information

Technical Editor: Paulo de Tarso Rocha de Mendonça, Ph.D.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutra, T.A., Ferreira, R.T.L., Resende, H.B. et al. Mechanical characterization and asymptotic homogenization of 3D-printed continuous carbon fiber-reinforced thermoplastic. J Braz. Soc. Mech. Sci. Eng. 41, 133 (2019). https://doi.org/10.1007/s40430-019-1630-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-019-1630-1

Keywords

Navigation