Skip to main content
Log in

Directed Gaussian process metamodeling with improved firefly algorithm (iFA) for composite manufacturing uncertainty propagation analysis

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A computationally effective and physically accurate metamodeling approach is demonstrated to analyze, under uncertainties, the spring-in angle deformation for composite manufacturing processes. Various uncertainties are inevitably present in this manufacturing process due to the heterogeneous thermo-mechanical properties of the composite materials. Analysis of uncertainty propagation using the direct Monte Carlo approach is computationally prohibitive, which calls for the employment of machine learning techniques and surrogate models or metamodels such as Gaussian processes (GP). While these approaches are promising, tuning model parameters and optimizing the hyperparameters are essential to predictive modeling performance. So far, most existing approaches rely on empirical experience through trial and error. Randomly selecting these hyperparameters results in excessive computational cost and poor convergence results. A nature-inspired methodology has been developed to guide the GP in selecting and optimizing the hyperparameters for the uncertainty propagation analysis of composite manufacturing processes. An improved firefly algorithm (iFA) takes account of the environmental factor. It disregards the contribution of a constant attractiveness factor, which in turn accelerates the convergence rate at the early stages of the generation and boosts the immunity of the proposed algorithm. The proposed methodology enabled selection of the proper combination of the factors for the GP and showed its merits over other state-of-the-art deterministic/metaheuristic algorithms, which is further confirmed by various nonparametric, multiple comparison tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

Materials availability

Not applicable.

Code availability

Not applicable.

References

  1. Ding A, Li S, Wang J, Zu L (2015) A three-dimensional thermo-viscoelastic analysis of process-induced residual stress in composite laminates. Compos Struct 129:60–69. https://doi.org/10.1016/j.compstruct.2015.03.034

    Article  Google Scholar 

  2. Zhang JT, Zhang M, Li SX et al (2016) Residual stresses created during curing of a polymer matrix composite using a viscoelastic model. Compos Sci Technol 130:20–27. https://doi.org/10.1016/j.compscitech.2016.05.002

    Article  Google Scholar 

  3. Sorrentino L, Bellini C, Capriglione D, Ferrigno L (2015) Local monitoring of polymerization trend by an interdigital dielectric sensor. Int J Adv Manuf Technol 79:1007–1016. https://doi.org/10.1007/s00170-015-6892-x

    Article  Google Scholar 

  4. Sorrentino L, Polini W, Bellini C (2014) To design the cure process of thick composite parts: experimental and numerical results. Adv Compos Mater 23:225–238. https://doi.org/10.1080/09243046.2013.847780

    Article  Google Scholar 

  5. Radford DW, Rennick TS (2000) Separating sources of manufacturing distortion in laminated composites. J Reinf Plast Compos 19:621–641. https://doi.org/10.1177/073168440001900802

    Article  Google Scholar 

  6. Albert C (2002) Spring-in and warpage of angled composite laminates. Compos Sci Technol 62:1895–1912. https://doi.org/10.1016/S0266-3538(02)00105-7

    Article  Google Scholar 

  7. Çınar K, Ersoy N (2015) Effect of fibre wrinkling to the spring-in behaviour of L-shaped composite materials. Compos Part A Appl Sci Manuf 69:105–114. https://doi.org/10.1016/j.compositesa.2014.10.025

    Article  Google Scholar 

  8. Fernlund G, Rahman N, Courdji R et al (2002) Experimental and numerical study of the effect of cure cycle, tool surface, geometry, and lay-up on the dimensional fidelity of autoclave-processed composite parts. Compos Part A Appl Sci Manuf 33:341–351. https://doi.org/10.1016/S1359-835X(01)00123-3

    Article  Google Scholar 

  9. Lu Y, Li Y, Li N, Wu X (2017) Reduction of composite deformation based on tool-part thermal expansion matching and stress-free temperature theory. Int J Adv Manuf Technol 88:1703–1710. https://doi.org/10.1007/s00170-016-8862-3

    Article  Google Scholar 

  10. Kiauka M, Kasatkin M, Tcygantceva I et al (2021) Method for residual strain modeling taking into account mold and distribution of heat transfer coefficients for thermoset composite material parts. Int J Adv Manuf Technol 117:2429–2443. https://doi.org/10.1007/s00170-021-07149-5

    Article  Google Scholar 

  11. Cao Z, Li S, Li C et al (2022) Formation mechanism and detection and evaluation methods as well as repair technology of crack damage in fiber-reinforced composite wind turbine blade: a review. Int J Adv Manuf Technol 120:5649–5672. https://doi.org/10.1007/s00170-022-09230-z

    Article  Google Scholar 

  12. Kim D, Centea T, Nutt SR (2014) In-situ cure monitoring of an out-of-autoclave prepreg: effects of out-time on viscosity, gelation and vitrification. Compos Sci Technol 102:132–138. https://doi.org/10.1016/j.compscitech.2014.07.027

    Article  Google Scholar 

  13. White SR, Hahn HT (1992) Process modeling of composite materials: residual stress development during cure. Part II. Exp Validation J Compos Mater 26:2423–2453. https://doi.org/10.1177/002199839202601605

    Article  Google Scholar 

  14. Patham B (2013) Multiphysics simulations of cure residual stresses and springback in a thermoset resin using a viscoelastic model with cure-temperature-time superposition. J Appl Polym Sci 129:983–998. https://doi.org/10.1002/app.38744

    Article  Google Scholar 

  15. Nawab Y, Shahid S, Boyard N, Jacquemin F (2013) Chemical shrinkage characterization techniques for thermoset resins and associated composites. J Mater Sci 48:5387–5409. https://doi.org/10.1007/s10853-013-7333-6

    Article  Google Scholar 

  16. Baran I, Akkerman R, Hattel JH (2014) Material characterization of a polyester resin system for the pultrusion process. Compos Part B Eng 64:194–201. https://doi.org/10.1016/j.compositesb.2014.04.030

    Article  Google Scholar 

  17. Adolf D, Martin JE (1996) Calculation of stresses in crosslinking polymers. J Compos Mater 30:13–34. https://doi.org/10.1177/002199839603000102

    Article  Google Scholar 

  18. Pérez JM, Rodríguez F, Alonso MV, Oliet M (2011) Time-temperature-transformation cure diagrams of phenol-formaldehyde and lignin-phenol-formaldehyde novolac resins. J Appl Polym Sci 119:2275–2282. https://doi.org/10.1002/app.32866

    Article  Google Scholar 

  19. Hu C, Qin Q-H (2020) Advances in fused deposition modeling of discontinuous fiber/polymer composites. Curr Opin Solid State Mater Sci 24:100867. https://doi.org/10.1016/j.cossms.2020.100867

    Article  Google Scholar 

  20. Wisnom MR, Potter KD, Ersoy N (2007) Shear-lag analysis of the effect of thickness on spring-in of curved composites. J Compos Mater 41:1311–1324. https://doi.org/10.1177/0021998306068072

    Article  Google Scholar 

  21. Mesogitis TS, Skordos AA, Long AC (2014) Uncertainty in the manufacturing of fibrous thermosetting composites: a review. Compos Part A Appl Sci Manuf 57:67–75. https://doi.org/10.1016/j.compositesa.2013.11.004

    Article  Google Scholar 

  22. Struzziero G, Teuwen JJE (2020) A fully coupled thermo-mechanical analysis for the minimisation of spring-in and process time in ultra-thick components for wind turbine blades. Compos Part A Appl Sci Manuf 139:106105. https://doi.org/10.1016/j.compositesa.2020.106105

    Article  Google Scholar 

  23. Chen W, Zhang D (2018) A multi-physics processing model for predicting spring-in angle of a resin transfer molded composite flange. In: 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics, Reston, Virginia, pp 1–18

  24. Zamani SMM, Behdinan K, Mohammadpour A et al (2021) Friction stir welding of Al-SiC composite sheets: a numerical simulation of residual stresses. Int J Adv Manuf Technol 116:3717–3729. https://doi.org/10.1007/s00170-021-07751-7

    Article  Google Scholar 

  25. Zhou K, Enos R, Zhang D, Tang J (2022) Uncertainty analysis of curing-induced dimensional variability of composite structures utilizing physics-guided Gaussian process meta-modeling. Compos Struct 280:114816. https://doi.org/10.1016/j.compstruct.2021.114816

    Article  Google Scholar 

  26. Wahba G Spline models for observational data. SIAM

  27. Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12:55–67

    Article  MATH  Google Scholar 

  28. Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. The MIT Press

    MATH  Google Scholar 

  29. Bartels S, Hennig P (2020) Conjugate gradients for kernel machines. J Mach Learn Res 21:55

    MathSciNet  MATH  Google Scholar 

  30. Butler A, Haynes RD, Humphries TD, Ranjan P (2014) Efficient optimization of the likelihood function in Gaussian process modelling. Comput Stat Data Anal 73:40–52. https://doi.org/10.1016/j.csda.2013.11.017

    Article  MathSciNet  MATH  Google Scholar 

  31. Czelusniak T, Amorim FL (2020) Selective laser sintering of carbon fiber–reinforced PA12: Gaussian process modeling and stochastic optimization of process variables. Int J Adv Manuf Technol 110:2049–2066. https://doi.org/10.1007/s00170-020-05993-5

    Article  Google Scholar 

  32. Blum M, Riedmiller M (2013) Optimization of gaussian process hyperparameters using Rprop. ESANN 2013 proceedings, 21st European symposium on artificial neural networks, computational intelligence and machine learning. pp 339–344

  33. Snoek J, Larochelle H, Adams Ryan P (2012) Practical bayesian optimization of machine learning algorithms. Adv Neur Inform Proc Syst NeurIPS Proc 25:2960–2968

  34. Bardenet R, Brendel M, Kégl B, Sebag M (2013) Collaborative hyperparameter tuning. In: Proceedings of the 30th International Conference on Machine Learning, PMLR, pp199–207

  35. Yogatama D, Mann G (2014) Efficient transfer learning method for automatic hyperparameter tuning. In: Proceedings of the 17th international con-ference on artificial intelligence and statistics (AISTATS), Reykjavik, Iceland. JMLR: W&CP, vol 33, 1077–1085

  36. Du X, Xu H, Zhu F (2021) Understanding the effect of hyperparameter optimization on machine learning models for structure design problems. Comput Des 135:103013. https://doi.org/10.1016/j.cad.2021.103013

    Article  MathSciNet  Google Scholar 

  37. Klein A, Falkner S, Bartels S et al (2017) Fast Bayesian optimization of machine learning hyperparameters on large datasets. Artif Intell Stat PMLR 54:528–536

    Google Scholar 

  38. Deb K (2014) Optimization for engineering design: algorithms and examples, 2nd ed. Prentice Hall India Learning Private Limited, Delhi, India

  39. Quinonero-Candela J, Rasmussen CE (2005) A unifying view of sparse approximate Gaussian process regression. J Mach Learn Res 6:1939–1959

    MathSciNet  MATH  Google Scholar 

  40. Chalupka K, Williams CK, Murray I (2013) A framework for evaluating approximation methods for Gaussian process regression. J Mach Learn Res 14:333–350. https://doi.org/10.48550/arXiv.1205.6326

    Article  MathSciNet  MATH  Google Scholar 

  41. Schraudolph NN, Graepel T (2003) Combining conjugate direction methods with stochastic approximation of gradients. In: International workshop on artificial intelligence and statistics. Proceedings of machine learning research, pp 248–253

  42. MacKay DJC (1997) Gaussian processes - a replacement for supervised neural networks? Lecture notes for a tutorial at conference on neural information processing systems

  43. Lee S, Ha J, Zokhirova M et al (2018) Background information of deep learning for structural engineering. Arch Comput Methods Eng 25:121–129. https://doi.org/10.1007/s11831-017-9237-0

    Article  MathSciNet  MATH  Google Scholar 

  44. Li Y, Zhang Q, Yoon SW (2021) Gaussian process regression-based learning rate optimization in convolutional neural networks for medical images classification. Expert Syst Appl 184:115357. https://doi.org/10.1016/j.eswa.2021.115357

    Article  Google Scholar 

  45. Carlone P, Aleksendrić D, Ćirović V, Palazzo GS (2014) Meta-modeling of the curing process of thermoset matrix composites by means of a FEM–ANN approach. Compos Part B Eng 67:441–448. https://doi.org/10.1016/j.compositesb.2014.08.022

    Article  Google Scholar 

  46. Lee C-L, Wei K-H (2000) Curing kinetics and viscosity change of a two-part epoxy resin during mold filling in resin-transfer molding process. J Appl Polym Sci 77:2139–2148. https://doi.org/10.1002/1097-4628(20000906)77:10%3c2139::AID-APP6%3e3.0.CO;2-N

    Article  Google Scholar 

  47. Lee C, Ho J, Wei K (2000) Resin transfer molding (RTM) process of a high performance epoxy resin. I: Kinetic studies of cure reaction. Polym Eng Sci 40:929–934. https://doi.org/10.1002/pen.11220

    Article  Google Scholar 

  48. Yousefi A, Lafleur PG, Gauvin R (1997) Kinetic studies of thermoset cure reactions: a review. Polym Compos 18:157–168. https://doi.org/10.1002/pc.10270

    Article  Google Scholar 

  49. Kamal MR, Sourour S (1973) Kinetics and thermal characterization of thermoset cure. Polym Eng Sci 13:59–64. https://doi.org/10.1002/pen.760130110

    Article  Google Scholar 

  50. Shanku R, Vaughan JG, Roux JA (1997) Rheological characteristics and cure kinetics of EPON 862/W epoxy used in pultrusion. Adv Polym Technol 16:297–311. https://doi.org/10.1002/(SICI)1098-2329(199711)16:4%3c297::AID-ADV4%3e3.0.CO;2-Q

    Article  Google Scholar 

  51. Hubert P, Johnston A, Poursartip A, Nelson K (2001) Cure kinetics and viscosity models for Hexcel 8552 epoxy resin. Int SAMPE Symp Exhib 46 II:2341–2354

  52. O’Brien DJ, White SR (2003) Cure kinetics, gelation, and glass transition of a bisphenol F epoxide. Polym Eng Sci 43:863–874. https://doi.org/10.1002/pen.10071

    Article  Google Scholar 

  53. Chen W (2019) An integrated flow-curing model for predicting residual stresses in textile composites. Doctoral dissertations, University of Connecticut

  54. Tifkitsis KI, Skordos AA (2020) Real time uncertainty estimation in filling stage of resin transfer molding process. Polym Compos 41:5387–5402. https://doi.org/10.1002/pc.25803

    Article  Google Scholar 

  55. Mesogitis TS, Skordos AA, Long AC (2015) Stochastic simulation of the influence of cure kinetics uncertainty on composites cure. Compos Sci Technol 110:145–151. https://doi.org/10.1016/j.compscitech.2015.02.009

    Article  Google Scholar 

  56. Buche D, Schraudolph NN, Koumoutsakos P (2005) Accelerating evolutionary algorithms with Gaussian process fitness function models. IEEE Trans Syst Man Cybern Part C (Applications Rev 35:183–194. https://doi.org/10.1109/TSMCC.2004.841917

  57. Shetty R, Pai RB, Rao SS, Nayak R (2009) Taguchi’s technique in machining of metal matrix composites. J Brazilian Soc Mech Sci Eng 31:12–20. https://doi.org/10.1590/S1678-58782009000100003

    Article  Google Scholar 

  58. Powell MJD (1984) Nonconvex minimization calculations and the conjugate gradient method. 122–141

  59. Bishnoi S, Ravinder R, Grover HS et al (2021) Scalable Gaussian processes for predicting the optical, physical, thermal, and mechanical properties of inorganic glasses with large datasets. Mater Adv 2:477–487. https://doi.org/10.1039/D0MA00764A

    Article  Google Scholar 

  60. Abramowitz M, Stegun IA (1965) Handbook of mathematical functions, with formulas, graphs, and mathematical tables. Dover Publications, Inc. New York, USA

  61. Ross PJ (1996) Taguchi techniques for quality engineering: loss function, orthogonal experiments, parameter and tolerance design, 2nd edn. McGraw Hill Professional, New York

    Google Scholar 

  62. Sanyılmaz M (2006) Design of experiment and an application for Taguchi method in quality improvement activity. Dumlupınar University, Turkey

    Google Scholar 

  63. Taguchi G, Chowdhury S, Wu Y (2004) Taguchi’s quality engineering handbook. John Wiley & Sons Inc, Hoboken, NJ, USA

    Book  MATH  Google Scholar 

  64. Phadke MS (1989) Quality engineering using robust design. Prentice Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  65. Roy RK (2010) A primer on the Taguchi method, 2nd edn. Society of Manufacturing Engineers, Dearborn, Michigan

    Google Scholar 

  66. Saha S, Ball AK, Mukherjee A et al (2021) Optimization of electrochemical etching process for manufacturing of micro electrodes for micro-EDM application. Proc Inst Mech Eng Part B J Eng Manuf 235:925–940. https://doi.org/10.1177/0954405420958961

    Article  Google Scholar 

  67. Axelsson O (1987) A generalized conjugate gradient, least square method. Numer Math 51:209–227. https://doi.org/10.1007/BF01396750

    Article  MathSciNet  MATH  Google Scholar 

  68. Axelsson O (1980) Conjugate gradient type methods for unsymmetric and inconsistent systems of linear equations. Linear Algebra Appl 29:1–16. https://doi.org/10.1016/0024-3795(80)90226-8

    Article  MathSciNet  MATH  Google Scholar 

  69. Pratihar DK (2013) Soft computing: fundamentals and applications, 1st ed. Alpha Science International Ltd

  70. Golub GH, Ye Q (1999) Inexact preconditioned conjugate gradient method with inner-outer iteration. SIAM J Sci Comput 21:1305–1320. https://doi.org/10.1137/S1064827597323415

  71. Polak E, Ribiere G (1969) Note sur la convergence de méthodes de directions conjuguées. Rev française d’informatique Rech opérationnelle Série rouge 3:35–43. https://doi.org/10.1051/m2an/196903R100351

    Article  MATH  Google Scholar 

  72. Kinsella J (1992) Comparison and evaluation of variants of the conjugate gradient method for efficient learning in feed-forward neural networks with backward error propagation. Netw Comput Neural Syst 3:27–35. https://doi.org/10.1088/0954-898X/3/1/005

    Article  Google Scholar 

  73. Rao SS (2009) Engineering optimization. John Wiley & Sons Inc, Hoboken, NJ, USA

    Book  Google Scholar 

  74. Kennedy J, Eberhart R Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks. IEEE, pp1942–1948

  75. Goldberg DE (2006) Genetic algorithms in search, optimization and machine learning, 1st ed. Pearson Education India

  76. Sivanandam SN, Deepa SN (2011) Principles of soft computing, 2nd ed. Wiley

    Google Scholar 

  77. Yang X-S (2009) Firefly algorithms for multimodal optimization. In: Stochastic algorithms: foundations and applications. Springer, Berlin, Heidelberg, pp 169–178

  78. Yang X-S (2010) Nature-inspired metaheuristic algorithms, 2nd edn. Luniver Press, United Kingdom

    Google Scholar 

  79. Liu C, Gao F, Jin N (2014) Design and simulation of a modified firefly algorithm. In: 2014 seventh international joint conference on computational sciences and optimization. IEEE, pp 21–25

  80. Ball AK, Roy SS, Kisku DR et al (2020) Optimization of drop ejection frequency in EHD inkjet printing system using an improved firefly algorithm. Appl Soft Comput 94:106438. https://doi.org/10.1016/j.asoc.2020.106438

    Article  Google Scholar 

  81. Refaeilzadeh P, Tang L, Liu H et al (2020) Encyclopedia of database systems. Springer, New York, New York, NY

    Google Scholar 

  82. Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32:675–701. https://doi.org/10.1080/01621459.1937.10503522

    Article  MATH  Google Scholar 

  83. Sheskin DJ (2011) Handbook of parametric and nonparametric statistical procedures, 5th ed. Chapman and Hall/CRC

  84. Iman RL, Davenport JM (1980) Approximations of the critical region of the fbietkan statistic. Commun Stat - Theory Methods 9:571–595. https://doi.org/10.1080/03610928008827904

    Article  MATH  Google Scholar 

  85. Yang X, He X (2018) Why the firefly algorithm works? In: Nature-Inspired Algorithms and Applied Optimization, pp245–259

  86. Singh M, Patel RN, Neema DD (2019) Robust tuning of excitation controller for stability enhancement using multi-objective metaheuristic firefly algorithm. Swarm Evol Comput 44:136–147. https://doi.org/10.1016/j.swevo.2018.01.010

    Article  Google Scholar 

  87. Yang X-S (2010) Engineering optimization. John Wiley & Sons Inc, Hoboken, NJ, USA

    Book  Google Scholar 

Download references

Funding

This research is supported by the AFRL Materials and Manufacturing Directorate (AFRL/RXMS) under contract FA8650-18-C-5700.

Author information

Authors and Affiliations

Authors

Contributions

A. Ball, K. Zhou, D. Xu, D. Zhang, and J. Tang worked together to generate the conception of the work. A. Ball carried out algorithm development, data analysis and interpretation, and drafted the paper. K. Zhou and D. Xu supported the algorithm development and data analysis. D. Zhang provided guidance on process modeling and results interpretation. J. Tang provided advisement to A. Ball and also provided critical revision of the paper.

Corresponding author

Correspondence to Jiong Tang.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ball, A.K., Zhou, K., Xu, D. et al. Directed Gaussian process metamodeling with improved firefly algorithm (iFA) for composite manufacturing uncertainty propagation analysis. Int J Adv Manuf Technol 126, 49–66 (2023). https://doi.org/10.1007/s00170-023-10994-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-10994-1

Keywords

Navigation