Skip to main content

Advertisement

Log in

Investigation of laser surface texturing parameters of biomedical grade Co-Cr-Mo alloy

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The surface of the commercial CoCr28Mo alloy was textured using a 20W pulsed fiber laser according to different beam scan strategies. Surface roughness and drop contact angle measurements made on the textured surface were used to evaluate the effects of process parameters. The surface topography was highly affected by both scan direction and beam overlaps named pulse-to-pulse overlap and scan overlap. As the beam overlap ratio increased, the amount of heat transferred to the unit area also increased, which caused more metal to evaporate in the interaction zone and form a more considerable amount of molten and re-solidified metal layer, resulting in a chaotic texture formation on the surface. The mean surface roughness values of textured surfaces for eighteen test samples ranged from 1 to 7 μm. These surface roughness values were in the micro-scale roughness value range. According to the results of the drop contact angles, the surface topography significantly changed the wettability. The test results were also analyzed by the Taguchi method considering signal-to-noise ratios and evaluated by analysis of variance. Considering the highest S/N values for each parameter, the optimum parameters combination for the laser engraving process was 45°/-45° for scan direction, 70 % for power, 1000 mm/s for scan speed, 50 kHz for frequency, 0.01 mm for hatch distance, and 75 ns for pulse duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sanan A, Haines SJ (1997) Repairing holes in the head: a history of cranioplasty. Neurosurgery 40(3):588–603. https://doi.org/10.1097/00006123-199703000-00033

    Article  Google Scholar 

  2. Ben-Nissan B, Pezzotti G Bioceramics: an introduction. In: Eng Mater Biomed Appl pp 6-1–6-36. https://doi.org/10.1142/9789812562227_0006

  3. Li Y, Yang C, Zhao H, Qu S, Li X, Li Y (2014) New developments of Ti-based alloys for biomedical applications. Materials Basel 7(3):1709–1800. https://doi.org/10.3390/ma7031709

    Article  Google Scholar 

  4. Ahmad FN, Zuhailawati HJIJEM (2020) A brief review on the properties of titanium as a metallic biomaterials. Int J Electroactive Mater 8:63–67

    Google Scholar 

  5. Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomater 8(11):3888–3903. https://doi.org/10.1016/j.actbio.2012.06.037

    Article  Google Scholar 

  6. Gilbert JL (2017) 1.2 Electrochemical behavior of metals in the biological milieu. In: Ducheyne P (ed) Comprehensive Biomaterials II. Elsevier, Oxford, pp 19–49. https://doi.org/10.1016/B978-0-08-100691-7.00228-7

    Chapter  Google Scholar 

  7. Narushima T, Ueda K, Alfirano (2015) Co-Cr alloys as effective metallic biomaterials. In: Niinomi M, Narushima T, Nakai M (eds) Advances in metallic biomaterials: tissues, materials and biological reactions. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 157–178. https://doi.org/10.1007/978-3-662-46836-4_7

    Chapter  Google Scholar 

  8. Kaivosoja E, Tiainen VM, Takakubo Y, Rajchel B, Sobiecki J, Konttinen YT, Takagi M (2013) 7 - Materials used for hip and knee implants. In: Affatato S (ed) Wear of orthopaedic implants and artificial joints. Woodhead Publishing, pp 178–218. https://doi.org/10.1533/9780857096128.1.178

    Chapter  Google Scholar 

  9. Goharian A, Abdullah MR (2017) Bioinert metals (stainless steel, titanium, cobalt chromium). In: Goharian A (ed) Trauma Plating Systems. Elsevier, pp 115–142. https://doi.org/10.1016/B978-0-12-804634-0.00007-0

    Chapter  Google Scholar 

  10. Hailer NP, Garellick G, Kärrholm J (2010) Uncemented and cemented primary total hip arthroplasty in the Swedish Hip Arthroplasty Register. Acta Orthop 81(1):34–41. https://doi.org/10.3109/17453671003685400

    Article  Google Scholar 

  11. Naudie DDR, Ammeen DJ, Engh GA, Rorabeck CH (2007) Wear and osteolysis around total knee arthroplasty. J Am Acad Orthop Surg 15 (1). https://doi.org/10.5435/00124635-200701000-00006

  12. Boyle KK, Nodzo SR, Ferraro JT, Augenblick DJ, Pavlesen S, Phillips MJ (2018) Uncemented vs cemented cruciate retaining total knee arthroplasty in patients with body mass index greater than 30. J Arthroplasty 33(4):1082–1088. https://doi.org/10.1016/j.arth.2017.11.043

    Article  Google Scholar 

  13. Carlsson L, Röstlund T, Albrektsson B, Albrektsson T, Brånemark P-I (1986) Osseointegration of titanium implants. Acta Orthop Scand 57(4):285–289. https://doi.org/10.3109/17453678608994393

    Article  Google Scholar 

  14. Liu X, Chu PK, Ding C (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Rep 47(3):49–121. https://doi.org/10.1016/j.mser.2004.11.001

    Article  Google Scholar 

  15. Stenlund P, Kurosu S, Koizumi Y, Suska F, Matsumoto H, Chiba A, Palmquist A (2015) Osseointegration enhancement by Zr doping of Co-Cr-Mo implants fabricated by electron beam melting. Addit Manuf 6:6–15. https://doi.org/10.1016/j.addma.2015.02.002

    Article  Google Scholar 

  16. Menci G, Demir AG, Waugh DG, Lawrence J, Previtali B (2019) Laser surface texturing of β-Ti alloy for orthopaedics: effect of different wavelengths and pulse durations. Appl Surf Sci 489:175-186. https://doi.org/10.1016/j.apsusc.2019.05.111

  17. Hao L, Lawrence J, Li L (2005) Manipulation of the osteoblast response to a Ti–6Al–4V titanium alloy using a high power diode laser. Appl Surf Sci 247(1):602–606. https://doi.org/10.1016/j.apsusc.2005.01.165

    Article  Google Scholar 

  18. Tiainen L, Abreu P, Buciumeanu M, Silva F, Gasik M, Serna Guerrero R, Carvalho O (2019) Novel laser surface texturing for improved primary stability of titanium implants. J Mech Behav Biomed Mater 98:26–39. https://doi.org/10.1016/j.jmbbm.2019.04.052

    Article  Google Scholar 

  19. Kuroda K, Okido M (2017) Osteoconductivity of protein adsorbed titanium implants using hydrothermal treatment. Mater Sci Forum 879:1049–1052. https://doi.org/10.4028/www.scientific.net/MSF.879.1049

    Article  Google Scholar 

  20. Gittens RA, Scheideler L, Rupp F, Hyzy SL, Geis-Gerstorfer J, Schwartz Z, Boyan BD (2014) A review on the wettability of dental implant surfaces II: biological and clinical aspects. Acta Biomater 10(7):2907–2918. https://doi.org/10.1016/j.actbio.2014.03.032

    Article  Google Scholar 

  21. Brånemark R, Emanuelsson L, Palmquist A, Thomsen P (2011) Bone response to laser-induced micro- and nano-size titanium surface features. Nanomedicine 7(2):220–227. https://doi.org/10.1016/j.nano.2010.10.006

    Article  Google Scholar 

  22. Coathup MJ, Blunn GW, Mirhosseini N, Erskine K, Liu Z, Garrod DR, Li L (2017) Controlled laser texturing of titanium results in reliable osteointegration. J Orthop Res 35(4):820–828. https://doi.org/10.1002/jor.23340

    Article  Google Scholar 

  23. Wang Y, Zhang M, Li K, Hu J (2021) Study on the surface properties and biocompatibility of nanosecond laser patterned titanium alloy. Opt Laser Technol 139:106987. https://doi.org/10.1016/j.optlastec.2021.106987

    Article  Google Scholar 

  24. Eghbali N, Naffakh-Moosavy H, Sadeghi Mohammadi S, Naderi-Manesh H (2021) The influence of laser frequency and groove distance on cell adhesion, cell viability, and antibacterial characteristics of Ti-6Al-4V dental implants treated by modern fiber engraving laser. Dent Mater 37(3):547–558. https://doi.org/10.1016/j.dental.2020.12.007

    Article  Google Scholar 

  25. Wang Y, Yu Z, Li K, Hu J (2020) Effects of surface properties of titanium alloys modified by grinding, sandblasting and acidizing and nanosecond laser on cell proliferation and cytoskeleton. Appl Surf Sci 501:144279. https://doi.org/10.1016/j.apsusc.2019.144279

    Article  Google Scholar 

  26. Jiao Y, Brousseau E, Nishio Ayre W, Gait-Carr E, Shen X, Wang X, Bigot S, Zhu H, He W (2021) In vitro cytocompatibility of a Zr-based metallic glass modified by laser surface texturing for potential implant applications. Appl Surf Sci 547:149194. https://doi.org/10.1016/j.apsusc.2021.149194

    Article  Google Scholar 

  27. Cho S-A, Jung S-K (2003) A removal torque of the laser-treated titanium implants in rabbit tibia. Biomaterials 24(26):4859–4863. https://doi.org/10.1016/S0142-9612(03)00377-6

    Article  Google Scholar 

  28. Shah FA, Johansson ML, Omar O, Simonsson H, Palmquist A, Thomsen P (2016) Laser-modified surface enhances osseointegration and biomechanical anchorage of commercially pure titanium implants for bone-anchored hearing systems. PloS One 11(6):e0157504. https://doi.org/10.1371/journal.pone.0157504

    Article  Google Scholar 

  29. ISO 4287 (1998) Geometrical product specifications (GPS) – surface texture: profile method – terms, definitions and surface texture parameters. International Organisation for Standardization, Geneva

    Google Scholar 

  30. Zhao Z, Wan Y, Yu M, Wang H, Cai Y, Liu C, Zhang D (2021) Biocompability evaluation of micro textures coated with zinc oxide on Ti-6Al-4V treated by nanosecond laser. Surf Coat Technol 422:127453. https://doi.org/10.1016/j.surfcoat.2021.127453

    Article  Google Scholar 

  31. Bizi-bandoki P, Valette S, Audouard E, Benayoun S (2013) Time dependency of the hydrophilicity and hydrophobicity of metallic alloys subjected to femtosecond laser irradiations. Appl Surf Sci 273:399–407. https://doi.org/10.1016/j.apsusc.2013.02.054

    Article  Google Scholar 

  32. Boinovich LB, Emelyanenko AM, Emelyanenko KA, Domantovsky AG, Shiryaev AA (2016) Comment on “Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications” by Duong V. Ta, Andrew Dunn, Thomas J. Wasley, Robert W. Kay, Jonathan Stringer, Patrick J. Smith, Colm Connaughton, Jonathan D. Shephard (Appl Surf Sci 357 (2015) 248–254). Appl Surf Sci 379:111–113. https://doi.org/10.1016/j.apsusc.2016.04.056

    Article  Google Scholar 

  33. Drelich J, Chibowski E, Meng DD, Terpilowski K (2011) Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 7(21):9804–9828. https://doi.org/10.1039/C1SM05849E

    Article  Google Scholar 

  34. Ijaola AO, Bamidele EA, Akisin CJ, Bello IT, Oyatobo AT, Abdulkareem A, Farayibi PK, Asmatulu E (2020) Wettability transition for laser textured surfaces: a comprehensive review. Surf Interfaces 21:100802. https://doi.org/10.1016/j.surfin.2020.100802

    Article  Google Scholar 

  35. Samanta A, Wang Q, Shaw SK, Ding H (2020) Roles of chemistry modification for laser textured metal alloys to achieve extreme surface wetting behaviors. Mater Des 192:108744. https://doi.org/10.1016/j.matdes.2020.108744

    Article  Google Scholar 

  36. Trdan U, Hočevar M, Gregorčič P (2017) Transition from superhydrophilic to superhydrophobic state of laser textured stainless steel surface and its effect on corrosion resistance. Corros Sci 123:21–26. https://doi.org/10.1016/j.corsci.2017.04.005

    Article  Google Scholar 

  37. Teixidor D, Grzenda M, Bustillo A, Ciurana J (2015) Modeling pulsed laser micromachining of micro geometries using machine-learning techniques. J Intell Manuf 26(4):801–814. https://doi.org/10.1007/s10845-013-0835-x

    Article  Google Scholar 

  38. Hribar L, Gregorčič P, Senegačnik M, Jezeršek M (2022) The influence of the processing parameters on the laser-ablation of stainless steel and brass during the engraving by nanosecond fiber laser. Nanomaterials 12(2):232. https://doi.org/10.3390/nano12020232

    Article  Google Scholar 

  39. Banat D, Ganguly S, Meco S, Harrison P (2020) Application of high power pulsed nanosecond fibre lasers in processing ultra-thin aluminium foils. Opt Lasers Eng 129:106075. https://doi.org/10.1016/j.optlaseng.2020.106075

    Article  Google Scholar 

  40. Assuncao E, Williams S (2013) Comparison of continuous wave and pulsed wave laser welding effects. Opt Lasers Eng 51(6):674–680. https://doi.org/10.1016/j.optlaseng.2013.01.007

    Article  Google Scholar 

  41. Pardal G, Meco S, Dunn A, Williams S, Ganguly S, Hand DP, Wlodarczyk KL (2017) Laser spot welding of laser textured steel to aluminium. J Mater Process Technol 241:24–35. https://doi.org/10.1016/j.jmatprotec.2016.10.025

    Article  Google Scholar 

  42. Zhou L, Pan M, Zhang Z, Diao Z, Peng X (2021) Enhancing osseointegration of TC4 alloy by surficial activation through biomineralization method. Front Bioeng Biotechnol 9:639835. https://doi.org/10.3389/fbioe.2021.639835

    Article  Google Scholar 

  43. Wang Q, Zhou P, Liu S, Attarilar S, Ma RL-W, Zhong Y, Wang L (2020) Multi-scale surface treatments of titanium implants for rapid osseointegration: a review. Nanomaterials 10 (6):1244. https://doi.org/10.3390/nano10061244

  44. Sarraf M, Rezvani Ghomi E, Alipour S, Ramakrishna S, Liana Sukiman N (2022) A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications. Bio-des Manuf 5(2):371–395. https://doi.org/10.1007/s42242-021-00170-3

    Article  Google Scholar 

  45. Hotchkiss KM, Reddy GB, Hyzy SL, Schwartz Z, Boyan BD, Olivares-Navarrete R (2016) Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomater 31:425–434. https://doi.org/10.1016/j.actbio.2015.12.003

    Article  Google Scholar 

  46. Gittens RA, Olivares-Navarrete R, Schwartz Z, Boyan BD (2014) Implant osseointegration and the role of microroughness and nanostructures: lessons for spine implants. Acta Biomater 10(8):3363–3371. https://doi.org/10.1016/j.actbio.2014.03.037

    Article  Google Scholar 

  47. Bizi-Bandoki P, Benayoun S, Valette S, Beaugiraud B, Audouard E (2011) Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment. Appl Surf Sci 257(12):5213–5218. https://doi.org/10.1016/j.apsusc.2010.12.089

    Article  Google Scholar 

  48. Riveiro A, Maçon ALB, del Val J, Comesaña R, Pou J (2018) Laser surface texturing of polymers for biomedical applications. Front Phys 6:16. https://doi.org/10.3389/fphy.2018.00016

  49. Kaiser JP, Bruinink A (2004) Investigating cell–material interactions by monitoring and analysing cell migration. J Mater Sci Mater Med 15(4):429–435. https://doi.org/10.1023/B:JMSM.0000021115.55254.a8

    Article  Google Scholar 

  50. Pramanik D, Das S, Sarkar S, Debnath SK, Kuar AS, Mitra S (2019) Experimental investigation of fiber laser micro-marking on aluminum 6061 alloy. In: Sahoo P, Davim JP (eds) Advances in Mater Mech Ind Eng Sel Contrib First Int Conf Mech Eng Jadavpur University, Kolkata, India. Springer International Publishing, Cham, pp 273–294

    Chapter  Google Scholar 

  51. Manninen M, Hirvimäki M, Poutiainen I, Salminen A (2015) Effect of pulse length on engraving efficiency in nanosecond pulsed laser engraving of stainless steel. Metall Mater Trans A Phys Metall Mater Sci 46(5):2129–2136. https://doi.org/10.1007/s11663-015-0415-x

    Article  Google Scholar 

  52. Jiao Y, Brousseau E, Han Q, Zhu H, Bigot S (2019) Investigations in nanosecond laser micromachining on the Zr52.8Cu17.6Ni14.8Al9.9Ti4.9 bulk metallic glass: experimental and theoretical study. J Mater Process Technol 273:116232. https://doi.org/10.1016/j.jmatprotec.2019.05.013

    Article  Google Scholar 

  53. Sandoval-Robles JA, Rodríguez CA, García-López E (2020) Laser surface texturing and electropolishing of CoCr and Ti6Al4V-ELI alloys for biomedical applications. Materials 13(22). https://doi.org/10.3390/ma13225203

  54. Mineta S, Namba S, Yoneda T, Ueda K, Narushima T (2010) Carbide formation and dissolution in biomedical Co-Cr-Mo alloys with different carbon contents during solution treatment. Metall Mater Trans A Phys Metall Mater Sci 41(8):2129–2138. https://doi.org/10.1007/s11661-010-0227-1

    Article  Google Scholar 

  55. Qiao J, Zhu L-n, Yue W, Fu Z-q, Kang J-j, Wang C-b (2018) The effect of attributes of micro-shapes of laser surface texture on the wettability of WC-CrCo metal ceramic coatings. Surf Coat Technol 334:429–437. https://doi.org/10.1016/j.surfcoat.2017.12.001

    Article  Google Scholar 

  56. Fadeeva E, Schlie-Wolter S, Chichkov BN, Paasche G, Lenarz T (2016) 5 - Structuring of biomaterial surfaces with ultrashort pulsed laser radiation. In: Vilar R (ed) Laser Surface Modification of Biomaterials. Woodhead Publishing, pp 145–172. https://doi.org/10.1016/B978-0-08-100883-6.00005-8

    Chapter  Google Scholar 

  57. Gunenthiram V, Peyre P, Schneider M, Dal M, Coste F, Koutiri I, Fabbro R (2018) Experimental analysis of spatter generation and melt-pool behavior during the powder bed laser beam melting process. J Mater Process Technol 251:376–386. https://doi.org/10.1016/j.jmatprotec.2017.08.012

    Article  Google Scholar 

  58. Strickstrock M, Rothe H, Grohmann S, Hildebrand G, Zylla IM, Liefeith K (2017) Influence of surface roughness of dental zirconia implants on their mechanical stability, cell behavior and osseointegration. BioNanoMat 18:1–2. https://doi.org/10.1515/bnm-2016-0013

    Article  Google Scholar 

  59. Wennerberg A, Albrektsson T (2009) Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res 20:172–184. https://doi.org/10.1111/j.1600-0501.2009.01775.x

    Article  Google Scholar 

  60. Cruz MB, Silva N, Marques JF, Mata A, Silva FS, Carames J (2022) Biomimetic implant surfaces and their role in biological integration-a concise review. Biomimetics (Basel) 7(2):74. https://doi.org/10.3390/biomimetics7020074

    Article  Google Scholar 

  61. Elias CN, Oshida Y, Lima JHC, Muller CA (2008) Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque. J Mech Behav Biomed Mater 1(3):234–242. https://doi.org/10.1016/j.jmbbm.2007.12.002

    Article  Google Scholar 

Download references

Acknowledgements

The present study was supported by the Dokuz Eylul University under project no. 2021.KB.FEN.043. The authors would like to acknowledge this financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şefika Kasman.

Ethics declarations

Ethics approval

No other journals are presently reviewing the manuscript, nor has it been submitted to any other journals. The provided content is unique and has not been published anywhere, regardless of the format or language used.

Consent to participate

Every author has made a conscious decision to freely take part in this research project.

Consent for publication

All authors consent willingly to the paper’s publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasman, Ş., Uçar, İ.C. & Ozan, S. Investigation of laser surface texturing parameters of biomedical grade Co-Cr-Mo alloy. Int J Adv Manuf Technol 125, 4271–4291 (2023). https://doi.org/10.1007/s00170-023-10959-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-10959-4

Keywords

Navigation