Skip to main content
Log in

Kinematics and machinability using bidirectional composite vibratory finishing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Considering the poor accessibility of the current finishing process for parts with complicated geometries, a novel bidirectional composite vibratory finishing (BCVF) approach was proposed, which combined the power actions on abrasive particles and processed workpieces. To examine the feasibility and effectiveness of the BCVF approach, comparative simulations based on discrete element method (DEM) and experimental validation were performed on a cylindrical workpiece simplified by a gear. Moreover, the effects of container size (or wall effects), media amount, workpiece position, and vibration parameters (including vibration amplitude and frequency) on the media-component interaction were systematically studied by DEM. The results show that the BCVF had the highest polishing efficiency, resulting in a workpiece surface roughness reduction rate up to 57% within 15 min. The distance between the container wall and the workpiece surface along the container width direction can be reduced to 4d (d is the abrasive particle diameter) with little effect on the finishing effect. Meanwhile, with the enhancing one-dimensional horizontal vibration, particle impact and shear effects are subsequently strengthened. In contrast, the media amount above the workpiece and the vibration along the workpiece axial direction are mainly effective for the shear effect. This BCVF approach provides reference for the finishing of various complex-shaped components including gears.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

The datasets supporting the results of this article are included within the article.

Abbreviations

a :

Data bin position along the circumference of the workpiece

A x, A z :

Amplitude of horizontal and vertical vibration (mm)

b :

Data bin group along the axial of the workpiece

BCVF:

Bidirectional composite vibratory finishing

\(\delta\) :

Overlap distance of two particles (m)

δt :

Contact time (s)

d :

Diameter of the abrasive particle (mm)

DEM:

Discrete element method

e :

Recovery coefficient

E :

Young’s modulus

E n , E t :

Normal and tangential cumulative contact energy (J)

f x, f z :

Frequency of horizontal and vertical vibration (Hz)

\(F^{d}\) :

Damping force (N)

F n , F t :

Normal and tangential contact force (N)

G :

Shear modulus (Pa)

h :

Workpiece vertical position (mm)

H :

Loading height of abrasive particles (mm)

i, j :

Indicate the particles in contact

L x, L y, L z :

Length, width, and height of the container (mm)

Lc :

Sampling length (mm)

Lm :

Measuring length (mm)

Lt :

Traverse length (mm)

n :

Rotational speed of the workpiece (rpm)

\(\rho\) :

Density (kg/m3)

r :

Radius of the workpiece (mm)

R :

Radius of each particle in contact (mm)

S :

Stiffness (N/m)

t :

Process duration (s)

\(\mu_{s}\) :

Static friction coefficient

\(\mu_{r}\) :

Rolling friction coefficient

v :

Poisson’s ratio

\(v_{{}}^{{\overrightarrow {rel} }}\) :

Relative velocity of contact particles (m/s)

V x , V y , V z :

Components of the abrasive particle velocity along x, y, z directions (m/s)

V :

Total cutting speed of the abrasive particle (m/s)

V n , V t :

Normal and tangential relative velocity (m/s)

x, y, z :

Coordinate axis

z 0 :

Initial height of the abrasive particle (mm)

X, Y, Z :

Components of the abrasive particle displacement along x, y, z directions (mm)

References

  1. Krajnik P, Hashimoto F, Karpuschewski B et al (2021) Grinding and fine finishing of future automotive powertrain components. CIRP Ann 70:589–610. https://doi.org/10.1016/j.cirp.2021.05.002

    Article  Google Scholar 

  2. Karpuschewski B, Beutner M, Eckebrecht J et al (2020) Surface integrity aspects in gear manufacturing. Procedia CIRP 87:3–12. https://doi.org/10.1016/j.procir.2020.05.112

    Article  Google Scholar 

  3. Carranza Fernandez R, Tobie T, Collazo J (2022) Increase wind gearbox power density by means of IGS (Improved Gear Surface). Int J Fatigue 159:106789. https://doi.org/10.1016/j.ijfatigue.2022.106789

    Article  Google Scholar 

  4. Hashimoto F, Yamaguchi H, Krajnik P et al (2016) Abrasive fine-finishing technology. CIRP Ann 65:597–620. https://doi.org/10.1016/j.cirp.2016.06.003

    Article  Google Scholar 

  5. Gülzow B, Uhlmann E (2022) Gear wheel finishing with abrasive brushing tools to improve the surface quality of tooth flanks for the industrial application. Machines 10:1220. https://doi.org/10.3390/machines10121220

    Article  Google Scholar 

  6. Yang Y, Li W, Li D et al (2021) Research status and development thinking of mass finishing for gear parts pdf. Surf Technol 12:1–16. https://doi.org/10.16490/j.cnki.issn.1001-3660.2021.12.001

    Article  CAS  Google Scholar 

  7. Nguyen D, Dao T, Prakash C et al (2020) Machining parameter optimization in shear thickening polishing of gear surfaces. J Market Res 9:5112–5126. https://doi.org/10.1016/j.jmrt.2020.03.028

    Article  CAS  Google Scholar 

  8. Zhang B, Wei P, Liu H et al (2022) Effect of fine particle peening on surface integrity of flexspline in harmonic drive. Surf Coat Technol 433:128133. https://doi.org/10.1016/j.surfcoat.2022.128133

    Article  CAS  Google Scholar 

  9. Yang S, Li W (2018) Surface finishing theory and new technology, 1st ed. 2018. Springer Berlin Heidelberg: Imprint: Springer, Berlin, Heidelberg

  10. Li W, Yang S, Li X, Li W (2014) Development status and trends of mass finishing processes. KEM 621:111–120. https://doi.org/10.4028/www.scientific.net/KEM.621.111

    Article  Google Scholar 

  11. Mallipeddi D, Norell M, Sosa M, Nyborg L (2019) The effect of manufacturing method and running-in load on the surface integrity of efficiency tested ground, honed and superfinished gears. Tribol Int 131:277–287. https://doi.org/10.1016/j.triboint.2018.10.051

    Article  CAS  Google Scholar 

  12. Koenig J, Koller P, Tobie T, Stahl K (2017) Influence of additional surface finishing to the material properties and the flank load carrying capacity of case-hardened gears with grinding burn. JAMDSM 11:JAMDSM0075–JAMDSM0075. https://doi.org/10.1299/jamdsm.2017jamdsm0075

    Article  Google Scholar 

  13. Bergstedt E, Lin J, Andersson M et al (2021) Gear micropitting initiation of ground and superfinished gears: wrought versus pressed and sintered steel. Tribol Int 160:107062. https://doi.org/10.1016/j.triboint.2021.107062

    Article  CAS  Google Scholar 

  14. Andersson M, Sosa M, Olofsson U (2016) The effect of running-in on the efficiency of superfinished gears. Tribol Int 93:71–77. https://doi.org/10.1016/j.triboint.2015.08.010

    Article  Google Scholar 

  15. Zhang X, Wei P, Parker RG et al (2022) Study on the relation between surface integrity and contact fatigue of carburized gears. Int J Fatigue 165:107203. https://doi.org/10.1016/j.ijfatigue.2022.107203

    Article  CAS  Google Scholar 

  16. Hashimoto Y, Ito T, Nakayama Y et al (2021) Fundamental investigation of gyro finishing experimental investigation of contact force between cylindrical workpiece and abrasive media under dry condition. Precis Eng 67:123–136. https://doi.org/10.1016/j.precisioneng.2020.09.009

    Article  Google Scholar 

  17. Budzisz W, Marciniec A (2022) The new gear finishing method research for highly loaded gears. Aerospace 9:131. https://doi.org/10.3390/aerospace9030131

    Article  Google Scholar 

  18. Afanas’ev A, Simisinov D, Zubov V (2019) Modeling of gear production in loose-abrasive machining technique. Mater Today Proc 19:2358–2360. https://doi.org/10.1016/j.matpr.2019.07.693

    Article  Google Scholar 

  19. Ahluwalia K, Mediratta R, Yeo SH (2017) A novel approach to vibratory finishing: double vibro-polishing. Mater Manuf Process 32:998–1003. https://doi.org/10.1080/10426914.2016.1232812

    Article  CAS  Google Scholar 

  20. Alcaraz JY, Zhang J, Nagalingam AP et al (2022) Numerical modeling of residual stresses during vibratory peening of a 3-stage Blisk – a multi-scale discrete element and finite element approach. J Mater Process Technol 299:117383. https://doi.org/10.1016/j.jmatprotec.2021.117383

    Article  Google Scholar 

  21. Wang X, Yang S, Li W, Wang Y (2018) Vibratory finishing co-simulation based on ADAMS-EDEM with experimental validation. Int J Adv Manuf Technol 96:1175–1185. https://doi.org/10.1007/s00170-018-1639-0

    Article  Google Scholar 

  22. Gopinath A, Chan WL, Kumar AS (2020) Data driven optimization of vibropeening. Procedia CIRP 87:285–290. https://doi.org/10.1016/j.procir.2020.02.036

    Article  Google Scholar 

  23. Feldmann G, Wong CC, Wei W, Haubold T (2014) Application of vibropeening on aero – engine component. Procedia CIRP 13:423–428. https://doi.org/10.1016/j.procir.2014.04.072

    Article  Google Scholar 

  24. Kundrak J, Mitsyk AV, Fedorovich VA et al (2021) Modeling the energy action of vibration and centrifugal forces on the working medium and parts in a vibration machine oscillating reservoir with an impeller. Manuf Technol 21:364–372. https://doi.org/10.21062/mft.2021.042

    Article  Google Scholar 

  25. da Silva ML, Spelt JK (2018) Bulk mass flow in a vibratory finisher: mechanisms and effect of process parameters. Granul Matter 20:57. https://doi.org/10.1007/s10035-018-0830-1

    Article  Google Scholar 

  26. da Silva ML, Spelt JK (2018) Influence of process parameters on average particle speeds in a vibratory finisher. Granul Matter 20:65. https://doi.org/10.1007/s10035-018-0831-0

    Article  Google Scholar 

  27. da Silva ML, Spelt JK (2020) Comparison of DEM predictions and measured wall-media contact forces and work in a vibratory finisher. Powder Technol 366:434–447. https://doi.org/10.1016/j.powtec.2020.02.014

    Article  CAS  Google Scholar 

  28. Hao Y, Yang S, Li X et al (2021) Analysis of contact force characteristics of vibratory finishing within pipe-cavity. Granul Matter 23:32. https://doi.org/10.1007/s10035-021-01089-3

    Article  CAS  Google Scholar 

  29. Makiuchi Y, Hashimoto F, Beaucamp A (2019) Model of material removal in vibratory finishing, based on Preston’s law and discrete element method. CIRP Ann 68:365–368. https://doi.org/10.1016/j.cirp.2019.04.082

    Article  Google Scholar 

  30. Izard E, Ben Hamouda H, Vande Voorde J (2021) High-stress impact–abrasion test by discrete element modeling. Comp Part Mech 8:1061–1073. https://doi.org/10.1007/s40571-020-00377-8

    Article  Google Scholar 

  31. Beigmoradi S, Vahdati M (2021) Off-centered distance effect study on drag polishing process. Comput Assisted Methods Eng Sci 3:225–242. https://doi.org/10.24423/cames.364

    Article  Google Scholar 

  32. Qi H, Qin S, Cheng Z et al (2021) DEM and experimental study on the ultrasonic vibration-assisted abrasive finishing of WC-8Co cemented carbide cutting edge. Powder Technol 378:716–723. https://doi.org/10.1016/j.powtec.2020.10.043

    Article  CAS  Google Scholar 

  33. Wang Q, Vohra MS, Bai S, Yeo SH (2021) Rotary ultrasonic-assisted abrasive flow finishing and its fundamental performance in Al6061 machining. Int J Adv Manuf Technol 113:473–481. https://doi.org/10.1007/s00170-021-06666-7

    Article  Google Scholar 

  34. Mediratta R, Ahluwalia K, Yeo SH (2016) State-of-the-art on vibratory finishing in the aviation industry: an industrial and academic perspective. Int J Adv Manuf Technol 85:415–429. https://doi.org/10.1007/s00170-015-7942-0

    Article  Google Scholar 

  35. Wang X, Wang Y, Yang S, Hao Y (2021) Analysis of velocity of granular media in cascade finishing by discrete element method with experimental validation. Granul Matter 23:83. https://doi.org/10.1007/s10035-021-01154-x

    Article  Google Scholar 

  36. Johnson KL (1987) Contact mechanics. Cambridge University Press

    Google Scholar 

  37. Mindlin RD, Deresiewicz H (1953) Elastic spheres in contact under varying oblique forces. J Appl Mech 75:327–344. https://doi.org/10.1115/1.4010702

    Article  MathSciNet  Google Scholar 

  38. Tsuji Y, Tanaka T, Ishida T (1992) Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol 71:239–250. https://doi.org/10.1016/0032-5910(92)88030-L

    Article  CAS  Google Scholar 

  39. Na W, Tingting Z, Sheng-qiang Y et al (2020) Experiment and simulation analysis on the mechanism of the spindle barrel finishing. Int J Adv Manuf Technol 109:57–74. https://doi.org/10.1007/s00170-020-05609-y

    Article  Google Scholar 

  40. Kolganova YN, Tamarkin MA, Soldatov BG (2021) Working environment choice technological aspects during clean-up vibration-abrasive processing of device parts with small grooves and holes. Mater Today Proc 38:1385–1387. https://doi.org/10.1016/j.matpr.2020.08.109

    Article  Google Scholar 

  41. Wang Y, Li C, Zhang Y et al (2016) Experimental evaluation of the lubrication properties of the wheel/workpiece interface in minimum quantity lubrication (MQL) grinding using different types of vegetable oils. J Clean Prod 127:487–499. https://doi.org/10.1016/j.jclepro.2016.03.121

    Article  CAS  Google Scholar 

  42. Zhang Y, Li C, Jia D et al (2015) Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding. Int J Mach Tools Manuf 99:19–33. https://doi.org/10.1016/j.ijmachtools.2015.09.003

    Article  Google Scholar 

  43. Qu S, Yao P, Gong Y et al (2022) Environmentally friendly grinding of C/SiCs using carbon nanofluid minimum quantity lubrication technology. J Clean Prod 366:132898. https://doi.org/10.1016/j.jclepro.2022.132898

    Article  CAS  Google Scholar 

  44. Alcaraz J, Ahluwalia K, Yeo S-H (2019) Predictive models of double-vibropolishing in bowl system using artificial intelligence methods. JMMP 3:27. https://doi.org/10.3390/jmmp3010027

    Article  CAS  Google Scholar 

  45. Nadler S, Bonnefoy O, Chaix J-M et al (2011) Parametric study of horizontally vibrated grain packings: comparison between discrete element method and experimental results. Eur Phys J E 34:66. https://doi.org/10.1140/epje/i2011-11066-y

    Article  CAS  PubMed  Google Scholar 

  46. Raihane A, Bonnefoy O, Chaix J-M et al (2011) Analysis of the densification of a vibrated sand packing. Powder Technol 208:289–295. https://doi.org/10.1016/j.powtec.2010.08.018

    Article  CAS  Google Scholar 

  47. Pandiyan V, Castagne S, Subbiah S (2016) High frequency and amplitude effects in vibratory media finishing. Procedia Manuf 5:546–557. https://doi.org/10.1016/j.promfg.2016.08.045

    Article  Google Scholar 

  48. Wong BJ, Majumdar K, Ahluwalia K, Yeo SH (2019) Effects of high frequency vibratory finishing of aerospace components. J Mech Sci Technol 33:1809–1815. https://doi.org/10.1007/s12206-019-0333-y

    Article  Google Scholar 

Download references

Funding

The work was co-supported by the National Natural Science Foundation of China (Grant Nos. 51875389 and 52075362) and Fundamental Research Program of Shanxi Province (20210302124209).

Author information

Authors and Affiliations

Authors

Contributions

Yingbo Yang designed and performed the manuscript, analyzed the data, and drafted the manuscript. Wenhui Li conceived and supervised the study and edited the manuscript. Yupeng Hao and Shengqiang Yang performed the experiments. Xiuzhi Wang and Xiuhong Li analyzed the data. All authors read and approved the manuscript.

Corresponding author

Correspondence to Wenhui Li.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent to publication

All authors have consent for publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Li, W., Wang, X. et al. Kinematics and machinability using bidirectional composite vibratory finishing. Int J Adv Manuf Technol 131, 2191–2206 (2024). https://doi.org/10.1007/s00170-023-10853-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-10853-z

Keywords

Navigation