Skip to main content
Log in

Investigation on surface morphology and phase transition characteristics in EDM for 8YSZ TBC on Inconel 718 superalloy

  • Original Article
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The hole machining of 8 wt% Y2O3-stabilized ZrO2 (8YSZ) thermal barrier coating (TBC) on Inconel 718 superalloy was carried out by electrical discharge machining (EDM) technology. The experimental phenomena, the element composition, and the phase transitions were analyzed by scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). The observation of microscopic morphology and EDS analysis for the machined 8YSZ surface showed that there were four kinds of debris particles deposited: molten brass particle, the vaporized brass particle, molten 8YSZ particle, and the vaporized 8YSZ particle. The debris particles are produced by physical deposition and chemical adsorption of molten and vaporized electrode and workpiece materials. In addition, the chemical reactions in the discharge gap were analyzed. The analysis results indicated that not only the adsorption of pyrolytic carbon but also the deposition of brass and the chemistry of 8YSZ promote the formation of the conductive layer on the 8YSZ TBC. Furthermore, the effects of the phase transitions on machining quality were studied. The XRD analysis illustrated that 8YSZ existed on the machined surface in cubic and tetragonal phases. The brittle fracture and delamination occur on the surface of thermal-barrier-coated superalloys (TBCs) by thermoelastic stress and transformation stress of phase. Finally, based on the characteristics of each processing stage and the phase transitions occur at 8YSZ coating, the 8 forming stages of conductive layer during EDM drilling process for TBCs were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Lacaze J, Hazotte A (1990) Directionally solidified materials: nickel-base superalloys for gas turbines. Textures Microstruct 13:601079. https://doi.org/10.1155/TSM.13.1

    Article  Google Scholar 

  2. Huda Z, Edi P (2013) Materials selection in design of structures and engines of supersonic aircrafts: a review. Mater Des 46:552–560. https://doi.org/10.1016/j.matdes.2012.10.001

    Article  Google Scholar 

  3. Kliuev M, Boccadoro M, Perez R, Dal Bó W, Stirnimann J, Kuster F, Wegener K (2016) EDM drilling and shaping of cooling holes in inconel 718 turbine blades. Procedia CIRP 42:322–327. https://doi.org/10.1016/j.procir.2016.02.293

    Article  Google Scholar 

  4. Pineau A, Antolovich SD (2009) High temperature fatigue of nickel-base superalloys—a review with special emphasis on deformation modes and oxidation. Eng Fail Anal 16:2668–2697. https://doi.org/10.1016/j.engfailanal.2009.01.010

    Article  Google Scholar 

  5. Miller RA (1997) Thermal barrier coatings for aircraft engines: history and directions. J Therm Spray Technol 6(1):35–42. https://doi.org/10.1007/BF02646310

    Article  Google Scholar 

  6. Sahith MS, Ga G, Kumar RS (2018) Development and analysis of thermal barrier coatings on gas turbine blades—a review. Mater Today Proc 5:2746–2751. https://doi.org/10.1016/j.matpr.2018.01.060

    Article  Google Scholar 

  7. Wee S, Do J, Kim K, Lee C, Seok C, Choi BG, Choi Y, Kim W (2020) Review on mechanical thermal properties of superalloys and thermal barrier coating used in gas turbines. Appl Sci 10(16):5476. https://doi.org/10.3390/app10165476

    Article  Google Scholar 

  8. Kumar V, Kandasubramanian B (2016) Processing and design methodologies for advanced and novel thermal barrier coatings for engineering applications. Particuol 27:1–28. https://doi.org/10.1016/j.partic.2016.01.007

    Article  Google Scholar 

  9. Padture NP, Gell M, Jordan EH (2002) Thermal barrier coatings for gas-turbine engine applications. Sci 296(5566):280–284. https://doi.org/10.1126/science.1068609

    Article  Google Scholar 

  10. Bogard DG, Thole KA (2006) Gas turbine film cooling. J Propuls Power 22(2):249–270. https://doi.org/10.2514/1.18034

    Article  Google Scholar 

  11. Cheng Y, Wang L, Yuan F (2017) Key technologies and problems of thermal barrier coating applicationon aeroengine turbine vane and blade. Aeronaut Manuf Technol 15:28–34. https://doi.org/10.16080/j.issn1671-833x.2017.15.028

    Article  Google Scholar 

  12. Klocke F, Klink A, Veselovac D, Aspinwall DK, Soo LS, Schmidt M, Levy G, Kruth JP (2014) Turbomachinery component manufacture by application of electrochemical, electro-physical and photonic processes. CIRP Ann Manuf Technol 63:703–726. https://doi.org/10.1016/j.cirp.2014.05.004

    Article  Google Scholar 

  13. Hou S, Bai J (2021) A geometric prediction model of surface morphology in micro-EDM considering stochastic characteristics of discharge crater size. Int J Adv Manuf Technol 117(3–4):1147–1162. https://doi.org/10.1007/s00170-021-07795-9

    Article  Google Scholar 

  14. Renjie J, Yonghong L, Yanzhen Z, Fei W (2011) Machining performance of silicon carbide ceramic in end electric discharge milling. Int J Refract Hard Met 29(1):117–122. https://doi.org/10.1016/j.ijrmhm.2010.09.001

    Article  Google Scholar 

  15. Fukuzawa Y, Tani T, Iwane E, Mohri N (1995) A new machining method for insulating ceramics with an electrical discharge phenomenon. J Ceram Soc Jpn 103(1202):1000–1005. https://doi.org/10.2109/jcersj.103.1000

    Article  Google Scholar 

  16. Mohri N, Fukuzawa Y, Tani T, Saito N, Katsushi F (1996) Assisting electrode method for machining insulating ceramics. CIRP Ann 45(1):201–204. https://doi.org/10.1016/S0007-8506(07)63047-9

    Article  Google Scholar 

  17. Muttamara A, Fukuzawa Y, Mohri N, Tani T (2003) Probability of precision micro-machining of insulating Si3N4 ceramics by EDM. J Mater Process Technol 140:243–247. https://doi.org/10.1016/S0924-0136(03)00745-3

    Article  Google Scholar 

  18. Hanaoka D, Fukuzawa Y, Ramirez C, Miranzo P, Osendi MI, Belmonte M (2013) Electrical discharge machining of ceramic/carbon nanostructure composites. Procedia CIRP 6:95–100. https://doi.org/10.1016/j.procir.2013.03.033

    Article  Google Scholar 

  19. Zhang G, Guo Y, Wang L (2016) Experimental study on the machining of inclined holes for thermal barrier-coated nickel superalloys by EDM. J Mater Eng Perform 25:4574–4580. https://doi.org/10.1007/s11665-016-2287-x

    Article  Google Scholar 

  20. Liu H, Wang Z, Wang Y, Li H (2016) Self-induced electrical discharge machining of Ni-Al2O3 functionally graded materials. Int J Adv Manuf Technol 83:587–594. https://doi.org/10.1007/s00170-015-7568-2

    Article  Google Scholar 

  21. Kumar NM, Kumaran SS, Kumaraswamidhas LA (2016) High temperature investigation on EDM process of Al 2618 alloy reinforced with Si3N4, ALN and ZrB2 in-situ composites. J Alloy Compd 633:755–768. https://doi.org/10.1016/j.jallcom.2015.12.175

    Article  Google Scholar 

  22. Guo Y, Zhang G, Wang L, Hu Y (2016) Optimization of parameters for EDM drilling of thermal-barrier-coated nickel superalloys using gray relational analysis method. Int J Adv Manuf Technol 83:1595–1605. https://doi.org/10.1007/s00170-015-7685-y

    Article  Google Scholar 

  23. Wang L, Chi G, Chen L, Guo Y (2018) Interfacial characteristics investigation for one-step EDM drilling of cooling holes in TBCs. J Mater Eng Perform 27:6719–6728. https://doi.org/10.1007/s11665-018-3728-5

    Article  Google Scholar 

  24. Beck T, Trunova O, Herzog R, Singheiser L (2012) TBCs for gas turbines under thermomechanical loadings: failure behaviour and life prediction. EPJ Web Conf 33:02001. https://doi.org/10.1051/epjconf/20123302001

    Article  Google Scholar 

  25. Kitazawa R, Tanaka M, Kagawa Y, Liu YF (2010) Damage evolution of TBC system under in-phase thermo-mechanical tests. Mater Sci Eng B-Adv 173(1–3):130–134. https://doi.org/10.1016/j.mseb.2009.12.022

    Article  Google Scholar 

  26. Lauwers B, Kruth JP, Liu W, Eeraerts W, Schacht B, Bleys P (2004) Investigation of material removal mechanisms in EDM of composite ceramic materials. J Mater Process Technol 149(1–3):347–352. https://doi.org/10.1016/j.jmatprotec.2004.02.013

    Article  Google Scholar 

  27. Wang L, Guo Y, Zhang G (2017) Investigation on conductive layer, delamination, and recast layer characteristics of electro-discharge machined holes in TBCs. J Mater Eng Perform 26:2394–2403. https://doi.org/10.1007/s11665-017-2654-2

    Article  Google Scholar 

  28. Liu Y, Guo Y, Wang L, Zhang Y, Feng Y (2020) Effects of discharge status in AE-EDM of 8YSZ ceramic. Procedia CIRP 95:488–493. https://doi.org/10.1016/j.procir.2020.02.269

    Article  Google Scholar 

  29. Keyvani A, Saremi M, Sohi MH (2011) Oxidation resistance of YSZ-alumina composites compared to normal YSZ TBC coatings at 1100 C. J Alloy Compd 509:8370–8377. https://doi.org/10.1016/j.jallcom.2011.05.029

    Article  Google Scholar 

  30. Trice RW, Jennifer SuY, Mawdsley JR, Faber KT, De Arellano-López AR, Wang H, Poter WD (2002) Effect of heat treatment on phase stability, microstructure, and thermal conductivity of plasma-sprayed YSZ. J Mater Sci 37:2359–2365. https://doi.org/10.1023/A:1015310509520

    Article  Google Scholar 

  31. Abbas NM, Solomon DG, Bahari MF (2007) A review on current research trends in electrical discharge machining (EDM). Int J Mach Tools Manuf 47(7–8):1214–1228. https://doi.org/10.1016/j.ijmachtools.2006.08.026

    Article  Google Scholar 

  32. Yan MT, Liao YS (1998) Adaptive control of the WEDM process using the fuzzy control strategy. J Manuf Syst 17(4):263–274. https://doi.org/10.1016/S0278-6125(98)80074-5

    Article  Google Scholar 

  33. Xiang H, Lu X, Li J (2014) Influence of carbon on phase stability of tetragonal ZrO2. Ceram Int 40:5645–5651. https://doi.org/10.1016/j.ceramint.2013.10.159

    Article  Google Scholar 

  34. Berger LM, Gruner W, Langholf E, Stolle S (1999) On the mechanism of carbothermal reduction processes of TiO2 and ZrO2. Int J Refract Met Hard Mater 17(1–3):235–243. https://doi.org/10.1016/S0263-4368(98)00077-8

    Article  Google Scholar 

  35. Long Y, Javed A, Chen J, Chen Z, Xiong X (2014) Phase composition, microstructure and mechanical propertiesof ZrC coatings produced by chemical vapor deposition. Ceram Int 40:707–713. https://doi.org/10.1016/j.ceramint.2013.06.059

    Article  Google Scholar 

  36. Kim J, Suh YJ (2017) Temperature- and pressure-dependent elastic properties, thermal expansion ratios, and minimum thermal conductivities of ZrC, ZrN, and Zr(C0.5N0.5). Ceram Int 43:12968–12974. https://doi.org/10.1016/j.ceramint.2017.06.195

    Article  Google Scholar 

  37. Song R, Liu N, Zhang H, Liu Z, Cai W (2009) Properties, preparation and applications of zirconium carbide ceramics. Cemented Carbide 26(2):134–140. https://doi.org/10.3969/j.issn.1003-7292.2009.02.015. (Chinese)

    Article  Google Scholar 

  38. Islam MN, Ghosh TB, Chopra KL, Acharya HN (1996) XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films. Thin Solid Films 280(1–2):20–25. https://doi.org/10.1016/0040-6090(95)08239-5

    Article  Google Scholar 

  39. Hayez V, Franquet A, Hubin A, Terryn H (2004) XPS study of the atmospheric corrosion of copper alloys of archaeological Interest. Surf Interface Anal 36:876–879. https://doi.org/10.1002/sia.1790

    Article  Google Scholar 

  40. Scott HG (1975) Phase relationships in the zirconnia-yttria system. J Mater Sci 10:1527–1535. https://doi.org/10.1007/BF01031853

    Article  Google Scholar 

  41. Schulz U, Fritscher K, Peters M (1997) Thermocyclic behavior of variously stabilized EB-PVD thermal barrier coatings. J Eng Gas Turbines Power 119(4):917–921. https://doi.org/10.1115/1.2817074

    Article  Google Scholar 

  42. Jiang K, Liu S, Wang X (2017) Phase stabilityand thermal conductivity of nanostructured tetragonal yttria-stabilized zirconia thermal barrier coatings deposited by air-plasma spraying. Ceram Int 43(15):12633–12640. https://doi.org/10.1016/j.ceramint.2017.06.142

    Article  Google Scholar 

  43. Duwez P, Frank H, Brown J, Francis O (1951) The zirconia-yttria system. J Electrochem Soc 98:356–362. https://doi.org/10.1149/1.2778219

    Article  Google Scholar 

  44. Vendrell X, West AR (2018) Electrical properties of yttria-stabilized zirconia, YSZ single crystal: local AC and long range DC conduction. J Electrochem Soc 165(11):F966–F975. https://doi.org/10.1149/2.0881811jes

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (No. 51875132).

Author information

Authors and Affiliations

Authors

Contributions

Yang Liu: conceptualization, investigation, methodology, data curation, writing-original draft. Li Wang: conceptualization, experimentation, methodology, validation, writing—review and editing. Yongfeng Guo: resources, project administration, supervision, funding acquisition. Yerui Feng: writing—review and editing. Yunlong Du: investigation.

Corresponding author

Correspondence to Yongfeng Guo.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors have read and agreed to the published version of the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, L., Guo, Y. et al. Investigation on surface morphology and phase transition characteristics in EDM for 8YSZ TBC on Inconel 718 superalloy. Int J Adv Manuf Technol 124, 3615–3630 (2023). https://doi.org/10.1007/s00170-022-10738-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10738-7

Keywords

Navigation