Skip to main content
Log in

A study on variable friction model in cold forging process with zinc phosphate coating

  • Original Article
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Friction has always been an urgent problem in metal forming process. Considering the coefficient of friction as a constant in the cold forging process tends to predict a larger stress–strain, this will lead to an inaccurate prediction result. This study takes AISI-1025 carbon steel with zinc phosphate coating as the research object, and a combination of finite element simulations and experiments is used to develope a pressure-dependent variable friction model. On the one hand, as the interface pressure is less than the critical pressure, it is still at a low friction level, and the friction factor can be measured by the sliding friction test; on the other hand, the friction factor is logarithmically increased with the interfacial pressure because of the rupture of the zinc phosphate coating. The variable friction model is then programmed into the finite element software as a subroutine and used to simulate the solid boss extrusion experiment. The predicted results are compared with the pressure-dependent variable friction model, the constant friction model, and the experimental validation results, which demonstrate that the variable friction model has a good prediction of deformation characteristic in cold forging process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Chamani HR, Ayatollahi MR (2018) Prediction of friction coefficients in nanoscratch testing of metals based on material flow lines. Theor Appl Fract Mech 94:186–196. https://doi.org/10.1016/j.tafmec.2018.02.004

    Article  Google Scholar 

  2. Mugada KK, Adepu K (2018) Influence of ridges shoulder with polygonal pins on material flow and friction stir weld characteristics of 6082 aluminum alloy. J Manuf Processes 32:625–634. https://doi.org/10.1016/j.jmapro.2018.03.034

    Article  Google Scholar 

  3. Ogbeyemi A, Okoh I, Imuero O, Ibhadode O, Akpobi J (2021) Load prediction on metal forming process (tube sinking) using finite element method. Int J Adv Manuf Technol 114(9–10):2961–2973. https://doi.org/10.1007/s00170-021-06907-9

    Article  Google Scholar 

  4. Venema J, Hazrati J, Atzema E, Matthews D, van den Boogaard T (2021) Multiscale friction model for hot sheet metal forming. Friction 10(2):316–334. https://doi.org/10.1007/s40544-021-0504-6

    Article  Google Scholar 

  5. Dohda K, Boher C, Rezai-Aria F, Mahayotsanun N (2015) Tribology in metal forming at elevated temperatures. Friction 3(1):1–27. https://doi.org/10.1007/s40544-015-0077-3

    Article  Google Scholar 

  6. Katoch S, Sehgal R, Singh V (2017) Optimization of friction and wear characteristics of varied cryogenically treated hot die steel grade AISI-H13 under dry condition. Friction 5(1):66–86. https://doi.org/10.1007/s40544-017-0139-9

    Article  Google Scholar 

  7. Wang D, Yang H, Li H (2014) Advance and trend of friction study in plastic forming. Trans Nonferrous Met Soc China 24(5):1263–1272. https://doi.org/10.1016/S1003-6326(14)63188-5

    Article  Google Scholar 

  8. Zhang DW, Yang H (2013) Numerical study of the friction effects on the metal flow under local loading way. Int J Adv Manuf Technol 68(5–8):1339–1350. https://doi.org/10.1007/s00170-013-4925-x

    Article  Google Scholar 

  9. Geiger M, Vollertsen F, Kals R (1996) Fundamentals on the manufacturing of sheet metal microparts. CIRP Ann 45(1):277–282. https://doi.org/10.1016/S0007-8506(07)63063-7

    Article  Google Scholar 

  10. Male AT, Cockcroft MG (1964) A method for determination of the coefficient of friction of metals under conditions of bulk plastic deformation. J Inst Met 93(2):38–46. https://doi.org/10.1016/0043-1648(66)9016-x

    Article  Google Scholar 

  11. Hartley RS, Cloete TJ, Nurick GN (2007) An experimental assessment of friction effects in the split Hopkinson pressure bar using the ring compression test. Int J Impact Eng 34(10):1705–1728. https://doi.org/10.1016/j.ijimpeng.2006.09.003

    Article  Google Scholar 

  12. Li LX, Rao KP, Lou Y, Peng DS (2002) A study on hot extrusion of Ti-6Al-4V using simulations and experiments. Int J Mech Sci 44(12):2415–2425. https://doi.org/10.1016/s0020-7403(02)00173-x

    Article  Google Scholar 

  13. Rasty SJ (1999) On the measurement of friction coefficient utilizing the ring compression test. Tribol Int 32(6):327–335. https://doi.org/10.1016/S0301-679X(99)00055-9

    Article  Google Scholar 

  14. Zhu Y, Zeng W, Ma X, Tai Q, Li Z, Li X (2011) Determination of the friction factor of Ti-6Al-4V titanium alloy in hot forging by means of ring-compression test using FEM. Tribol Int 44(12):2074–2080. https://doi.org/10.1016/j.triboint.2011.07.001

    Article  Google Scholar 

  15. Buschhausen A, Weinmann K, Lee JY, Altan T (1992) Evaluation of lubrication and friction in cold forging using a double backward-extrusion process. J Mater Process Technol 33(1):95–108. https://doi.org/10.1016/0924-0136(92)90313-H

    Article  Google Scholar 

  16. Kačmarčik I, Movrin D, Ivanišević A (2011) One contribution to the friction investigation in bulk metal forming. J Technol Plast 36(1):35–48. https://doi.org/10.2478/v10211-011-0001-4

    Article  Google Scholar 

  17. Schrader T, Shirgaokar M, Altan T (2007) A critical evaluation of the double cup extrusion test for selection of cold forging lubricants. J Mater Process Technol 189(1–3):36–44. https://doi.org/10.1016/j.jmatprotec.2006.11.229

    Article  Google Scholar 

  18. Ebrahimi R, Najafizadeh A (2004) A new method for evaluation of friction in bulk metal forming. J Mater Process Technol 152(2):136–143. https://doi.org/10.1016/j.jmatprotec.2004.03.029

    Article  Google Scholar 

  19. Khoddam S, Fardi M, Solhjoo S (2021) A verified solution of friction factor in compression test based on its sample’s shape changes. Int J Mech Sci 193:11. https://doi.org/10.1016/j.ijmecsci.2020.106175

    Article  Google Scholar 

  20. Yao Z, Mei D, Shen H, Chen Z (2013) A friction evaluation method based on barrel compression test. Tribol Lett 51(3):525–535. https://doi.org/10.1007/s11249-013-0164-4

    Article  Google Scholar 

  21. Fan XG, Dong YD, Yang H, Gao PF, Zhan M (2017) Friction assessment in uniaxial compression test: a new evaluation method based on local bulge profile. J Mater Process Technol 243:282–290. https://doi.org/10.1016/j.jmatprotec.2016.12.023

    Article  Google Scholar 

  22. Hawkyard JB, Johnson W (1967) An analysis of the changes in geometry of a short hollow cylinder during axial compression. Int J Mech Sci 9(4):163–182. https://doi.org/10.1016/0020-7403(67)90027-6

    Article  Google Scholar 

  23. Lee CH, Altan T (1972) Influence of flow stress and friction upon metal flow in upset forging of rings and cylinders. ASME Trans J Eng Ind 94(3):775–785. https://doi.org/10.1115/1.3428250

    Article  Google Scholar 

  24. Wang W, Zhao Y, Wang Z, Hua M, Wei X (2016) A study on variable friction model in sheet metal forming with advanced high strength steels. Tribol Int 93:17–28. https://doi.org/10.1016/j.triboint.2015.09.011

    Article  Google Scholar 

  25. Lee BH, Keum YT, Wagoner RH (2002) Modeling of the friction caused by lubrication and surface roughness in sheet metal forming. J Mater Process Technol 130(02):60–63. https://doi.org/10.1016/S0924-0136(02)00784-7

    Article  Google Scholar 

  26. Zabala A, Argandoa E, Caizares D, Llavori I, Mendiguren J (2021) Numerical study of advanced friction modelling for sheet metal forming: influence of the die local roughness. Tribol Int 165:107259. https://doi.org/10.1016/j.triboint.2021.107259

    Article  Google Scholar 

  27. Li YP, Onodera E, Chiba A (2009) Evaluation of friction coefficient by simulation in bulk metal forming process. Metall Mater Trans A 41(1):224–232. https://doi.org/10.1007/s11661-009-0066-0

    Article  Google Scholar 

  28. Kobayashi S, Oh SI, Altan T, Chaudhary A (1990) Metal forming and the finite-element method. J Mater Shaping Technol 8:65. https://doi.org/10.1007/BF02834794

    Article  Google Scholar 

  29. Schey JA (1984) Tribology in metalworking: friction, lubrication, and wear. J Appl Metalwork 3(2):173–173. https://doi.org/10.1007/BF02833697

    Article  Google Scholar 

  30. Hol J, Meinders VT, de Rooij MB, van den Boogaard AH (2015) Multi-scale friction modeling for sheet metal forming: the boundary lubrication regime. Tribol Int 81:112–128. https://doi.org/10.1016/j.triboint.2014.07.015

    Article  Google Scholar 

  31. Dou S, Xia J (2019) Analysis of sheet metal forming (stamping process): a study of the variable friction coefficient on 5052 aluminum alloy. Met 9(8):853. https://doi.org/10.3390/met9080853

    Article  Google Scholar 

  32. Kim H, Altan T (2014) Effects of surface finish and die temperature on friction and lubrication in forging. Procedia Eng 81:1848–1853. https://doi.org/10.1016/j.proeng.2014.10.244

    Article  Google Scholar 

Download references

Funding

This work is supported by financial support from the National Natural Science Foundation of China (No. 52275386), the Natural Science Foundation of Hunan Province (No. 2022JJ30565), and the Scientific Research Project of Hunan Provincial Department of Education (No. 21B0104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzheng Dong.

Ethics declarations

Ethics approval

This research did not involve any human participants or animals.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, W., Zhao, A., Tong, H. et al. A study on variable friction model in cold forging process with zinc phosphate coating. Int J Adv Manuf Technol 124, 3439–3451 (2023). https://doi.org/10.1007/s00170-022-10725-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10725-y

Keywords

Navigation