Skip to main content
Log in

Determination of the optimal milling feed direction for unidirectional CFRPs using a predictive cutting-force model

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

To minimize the cutting force during milling of unidirectional carbon-fiber-reinforced plastics (CFRPs), we present a method that uses a predictive cutting-force model to optimize the feed direction. A CFRP with six different absolute fiber-orientation angles was used to derive specific cutting forces. Cutting force was predicted using regression of the specific cutting force and verified by milling tests, with 2–10-mm radial depths of cut at each fiber-orientation angle. The fiber cutting angle, which significantly affects CFRP cutting characteristics, can easily be changed by varying the feed direction. Therefore, the optimal feed direction is derived by predicting the cutting force in the feed direction in the range 0–180° using the cutting-force model and comparing the cutting forces in all feed directions. The optimal feed direction is expressed by a second-order polynomial function of the radial depth of cut. In the validation of the proposed method, the cutting force and cycle time in the optimal feed direction were reduced by 54% and 53%, respectively. Because only the feed-direction angle is changed, which is a relatively easy adjustment in the milling process, this method efficiently reduces the cutting force in CFRP milling. Also, as a predictive cutting-force model is employed, it is possible to derive the optimal feed direction under various cutting conditions with minimal experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(\mathrm{\varnothing }\) :

Fiber cutting angle (deg)

\(\theta\) :

Cutting-tool rotation angle (deg)

\({\theta }_{S}\) :

Cutting-tool entry angle (deg)

\({R}_{d}\) :

Radial depth of cut (mm)

\(D\) :

Cutting-tool diameter (mm)

\({\theta }_{E}\) :

Cutting-tool exit angle (deg)

\({\theta }_{c}\) :

Immersion-angle range of the cutting tool (deg)

\(\varphi\) :

Fiber-orientation angle (deg)

\({\varphi }_{a}\) :

Absolute fiber-orientation angle (deg)

\({f}_{d}\) :

Feed direction (deg)

\({F}_{t}, {F}_{r}\) :

Tangential cutting force (N), radial cutting force (N)

\({dF}_{t}, {dF}_{r}\) :

Differential tangential cutting force (N), differential radial cutting force (N)

\({F}_{x}, {F}_{y}\) :

Milling force in x-direction (N), milling force in y-direction (N)

\({K}_{t}, {K}_{r}\) :

Tangential specific cutting force (N/mm2), radial specific cutting force (N/mm2)

\(h\) :

Chip thickness (mm)

\(a\) :

Axial depth of cut (mm)

\(da\) :

Differential axial depth of cut (mm)

\({f}_{t}\) :

Feed rate (mm/rev-tooth)

\(R\) :

Cutting-tool radius (mm)

\(\rho\) :

Run-out error (mm)

\(\lambda\) :

Run-out error angle (deg)

\({F}_{res}\) :

Resultant cutting force (N)

\({N}_{t}\) :

Number of teeth on the cutting tool

\({F}_{sum}\) :

Sum of the resultant cutting forces (N)

References

  1. Hale J (2012) Boeing 787 from ground up. Boeing Comer. Aeromagazine 9. https://www.boeing.com/commercial/aeromagazine/articles/qtr_4_06/article_04_2.html

  2. Grzesik W (2017) Machinability of engineering materials. Adv Mach Process Met Mater 241–264. https://doi.org/10.1016/b978-0-444-63711-6.00013-2

  3. Geier N, Xu J, Pereszlai C et al (2020) Drilling of carbon fibre reinforced polymer (CFRP) composites: Difficulties, challenges and expectations. Procedia Manuf 54:284–289. https://doi.org/10.1016/j.promfg.2021.07.045

    Article  Google Scholar 

  4. Seo JW, Kim DY, Kim DC, Park HW (2021) Recent developments and challenges on machining of carbon fiber reinforced polymer composite laminates. Int J Precis Eng Manuf 22:2027–2044. https://doi.org/10.1007/s12541-021-00596-w

    Article  Google Scholar 

  5. Geier N, Poór DI, Pereszlai C, Tamás-Bényei P (2022) Drilling of recycled carbon fibre–reinforced polymer (rCFRP) composites: analysis of burrs and microstructure. Int J Adv Manuf Technol 120:1677–1693. https://doi.org/10.1007/s00170-022-08847-4

    Article  Google Scholar 

  6. Alajarmeh O, Zeng X, Aravinthan T et al (2021) Compressive behaviour of hollow box pultruded FRP columns with continuous-wound fibres. Thin-Walled Struct 168:108300. https://doi.org/10.1016/j.tws.2021.108300

    Article  Google Scholar 

  7. Vedernikov A, Tucci F, Safonov A et al (2020) Investigation on the shape distortions of pultruded profiles at different pulling speed. Procedia Manuf 47:1–5. https://doi.org/10.1016/j.promfg.2020.04.107

    Article  Google Scholar 

  8. Gemi L, Morkavuk S, Köklü U, Yazman Ş (2020) The effects of stacking sequence on drilling machinability of filament wound hybrid composite pipes: part-2 damage analysis and surface quality. Compos Struct 235. https://doi.org/10.1016/j.compstruct.2019.111737

  9. Doğan MA, Yazman Ş, Gemi L et al (2022) A review on drilling of FML stacks with conventional and unconventional processing methods under different conditions. Compos Struct 297. https://doi.org/10.1016/j.compstruct.2022.115913

  10. Han C, Bin KK, Lee SW et al (2021) Thrust force-based tool wear estimation using discrete wavelet transformation and artificial neural network in CFRP drilling. Int J Precis Eng Manuf 22:1527–1536. https://doi.org/10.1007/s12541-021-00558-2

    Article  Google Scholar 

  11. Wang DH, Ramulu M, Arola D (1995) Orthogonal cutting mechanisms of graphite/epoxy composite. Part I: unidirectional laminate. Int J Mach Tools Manuf 35:1623–1638. https://doi.org/10.1016/0890-6955(95)00014-O

    Article  Google Scholar 

  12. Ramulu M (1997) Machining and surface integrity of fibre-reinforced plastic composites. Sadhana 22:449–472. https://doi.org/10.1007/BF02744483

    Article  Google Scholar 

  13. Wang DH, Ramulu M, Arola D (1995) Orthogonal cutting mechanisms of graphite/epoxy composite. Part II: multi-directional laminate. Int J Mach Tools Manuf 35:1639–1648. https://doi.org/10.1016/0890-6955(95)00015-P

    Article  Google Scholar 

  14. Wang XM, Zhang LC (2003) An experimental investigation into the orthogonal cutting of unidirectional fibre reinforced plastics. Int J Mach Tools Manuf 43:1015–1022. https://doi.org/10.1016/S0890-6955(03)00090-7

    Article  Google Scholar 

  15. Sheikh-Ahmad JY (2009) The machining of polymers composites. Springer New York, NY. https://doi.org/10.1007/978-0-387-68619-6

  16. Kaneeda, T. (1989). CFRP cutting mechanism. In Proc. of 17th North American Manufacturing Research Conf. (Vol. 220).

  17. Altintas Y (2012) Manufacturing automation: Metal cutting mechanics, machine tool vibrations, and CNC design. Manuf Autom. https://doi.org/10.1017/CBO9780511843723

    Article  Google Scholar 

  18. Altintaş Y, Budak E (1995) Analytical prediction of stability lobes in milling. CIRP Ann Manuf Technol 44:357–362. https://doi.org/10.1016/S0007-8506(07)62342-7

    Article  Google Scholar 

  19. Budak E (2006) Analytical models for high performance milling. Part I: Cutting forces, structural deformations and tolerance integrity. Int J Mach Tools Manuf 46:1478–1488. https://doi.org/10.1016/j.ijmachtools.2005.09.009

    Article  Google Scholar 

  20. Kang G, Kim J, Choi Y, Lee DY (2022) In-process identification of the cutting force coefficients in milling based on a virtual machining model. Int J Precis Eng Manuf 23:839–851. https://doi.org/10.1007/s12541-022-00677-4

    Article  Google Scholar 

  21. Wu J, Yu G, Gao Y, Wang L (2018) Mechatronics modeling and vibration analysis of a 2-DOF parallel manipulator in a 5-DOF hybrid machine tool. Mech Mach Theory 121:1339–1351. https://doi.org/10.1016/j.mechmachtheory.2017.10.023

    Article  Google Scholar 

  22. Wu J, Ye H, Yu G, Huang T (2022) A novel dynamic evaluation method and its application to a 4-DOF parallel manipulator. Mech Mach Theory 168:104627. https://doi.org/10.1016/j.mechmachtheory.2021.104627

    Article  Google Scholar 

  23. Kalla D, Sheikh-Ahmad J, Twomey J (2010) Prediction of cutting forces in helical end milling fiber reinforced polymers. Int J Mach Tools Manuf 50:882–891. https://doi.org/10.1016/j.ijmachtools.2010.06.005

    Article  Google Scholar 

  24. Karpat Y, Bahtiyar O, Deer B (2012) Mechanistic force modeling for milling of unidirectional carbon fiber reinforced polymer laminates. Int J Mach Tools Manuf 56:79–93. https://doi.org/10.1016/j.ijmachtools.2012.01.001

    Article  Google Scholar 

  25. Karpat Y, Polat N (2013) Mechanistic force modeling for milling of carbon fiber reinforced polymers with double helix tools. CIRP Ann Manuf Technol 62:95–98. https://doi.org/10.1016/j.cirp.2013.03.105

    Article  Google Scholar 

  26. Sheikh-Ahmad J, Yadav R (2008) Model for predicting cutting forces in machining CFRP. Int J Mater Prod Technol 32:152. https://doi.org/10.1504/IJMPT.2008.018978

    Article  Google Scholar 

  27. Sheikh-Ahmad J, He Y, Qin L (2019) Cutting force prediction in milling CFRPs with complex cutter geometries. J Manuf Process 45:720–731. https://doi.org/10.1016/j.jmapro.2019.08.009

    Article  Google Scholar 

  28. Xiao J, Gao C, Ke Y (2018) An analytical approach to cutting force prediction in milling of carbon fiber reinforced polymer laminates. Mach Sci Technol 22:1012–1028. https://doi.org/10.1080/10910344.2018.1449214

    Article  Google Scholar 

  29. Ning H, Zheng H, Zhang S, Yuan X (2021) Milling force prediction model development for CFRP multidirectional laminates and segmented specific cutting energy analysis. Int J Adv Manuf Technol 113:2437–2445. https://doi.org/10.1007/s00170-021-06690-7

    Article  Google Scholar 

  30. Wang C, Zhang X, Zhai Z, Chen X (2022) Parametric prediction model and periodic fluctuation interpretation of unidirectional CFRP edge milling force. Compos Struct 287:115387. https://doi.org/10.1016/j.compstruct.2022.115387

    Article  Google Scholar 

  31. Mullin R, Farhadmanesh M, Ahmadian A, Ahmadi K (2020) Modeling and identification of cutting forces in milling of carbon fibre reinforced polymers. J Mater Process Technol 280:116595. https://doi.org/10.1016/j.jmatprotec.2020.116595

    Article  Google Scholar 

  32. Karpat Y, Bahtiyar O, Deǧer B, Kaftanoǧlu B (2014) A mechanistic approach to investigate drilling of UD-CFRP laminates with PCD drills. CIRP Ann Manuf Technol 63:81–84. https://doi.org/10.1016/j.cirp.2014.03.077

    Article  Google Scholar 

  33. Seo J, Banerjee N, Kim Y et al (2020) Experimental and analytical investigation of the drilling forces of the carbon fiber reinforced plastics including thermal effects. J Manuf Process 58:1126–1137. https://doi.org/10.1016/j.jmapro.2020.08.063

    Article  Google Scholar 

  34. Mai D, Kwon BC, Ko SL (2019) Practical implementation of cutting-force model for step drill using 3D CAD data. CIRP Ann 68:85–88. https://doi.org/10.1016/j.cirp.2019.04.055

    Article  Google Scholar 

  35. Wang Q, Jia X, Hu B, Xia W (2019) A mechanistic prediction model of instantaneous cutting forces in drilling of carbon fiber-reinforced polymer. Int J Adv Manuf Technol 103:1977–1988. https://doi.org/10.1007/s00170-019-03571-y

    Article  Google Scholar 

  36. Chatelain JF, Zaghbani I (2012) A comparison of special helical cutter geometries based on cutting forces for the trimming of CFRP laminates. Int J Mech 6:52–59

    Google Scholar 

  37. Kwon BC, Mai NDD, Cheon ES, Ko SL (2020) Development of a step drill for minimization of delamination and uncut in drilling carbon fiber reinforced plastics (CFRP). Int J Adv Manuf Technol 106:1291–1301. https://doi.org/10.1007/s00170-019-04423-5

    Article  Google Scholar 

  38. Wang F, Yin J, Ma J et al (2017) Effects of cutting edge radius and fiber cutting angle on the cutting-induced surface damage in machining of unidirectional CFRP composite laminates. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-017-0023-9

    Article  Google Scholar 

  39. Gemi L, Morkavuk S, Köklü U, Gemi DS (2019) An experimental study on the effects of various drill types on drilling performance of GFRP composite pipes and damage formation. Compos Part B 172:186–194. https://doi.org/10.1016/j.compositesb.2019.05.023

    Article  Google Scholar 

  40. Ashworth S, Fairclough JPA, Takikawa Y et al (2019) Effects of machine stiffness and cutting tool design on the surface quality and flexural strength of edge trimmed carbon fibre reinforced polymers. Compos A Appl Sci Manuf 119:88–100. https://doi.org/10.1016/j.compositesa.2019.01.019

    Article  Google Scholar 

  41. Hintze Wolfgang W, Hartmann D, Schütte C (2011) Occurrence and propagation of delamination during the machining of carbon fibre reinforced plastics (CFRPs) - An experimental study. Compos Sci Technol 71:1719–1726. https://doi.org/10.1016/j.compscitech.2011.08.002

    Article  Google Scholar 

  42. Voss R, Seeholzer L, Kuster F, Wegener K (2017) Influence of fibre orientation, tool geometry and process parameters on surface quality in milling of CFRP. CIRP J Manuf Sci Technol 18:75–91. https://doi.org/10.1016/j.cirpj.2016.10.002

    Article  Google Scholar 

  43. Geier N (2020) Influence of fibre orientation on cutting force in up and down milling of UD-CFRP composites. Int J Adv Manuf Technol 111:881–893. https://doi.org/10.1007/s00170-020-06163-3

    Article  Google Scholar 

  44. Hosokawa A, Hirose N, Ueda T, Furumoto T (2014) High-quality machining of CFRP with high helix end mill. CIRP Ann Manuf Technol 63:89–92. https://doi.org/10.1016/j.cirp.2014.03.084

    Article  Google Scholar 

  45. Kim G, Kim TG, Lee SW, Min BK (2022) Effect of workpiece preheating on tool wear and delamination at the hole exit in high feed drilling of carbon fiber reinforced plastics with diamond-coated tools. J Manuf Process 74:233–243. https://doi.org/10.1016/j.jmapro.2021.12.013

    Article  Google Scholar 

  46. Wang H, Zhang D, Li Y, Cong W (2020) The effects of elliptical ultrasonic vibration in surface machining of CFRP composites using rotary ultrasonic machining. Int J Adv Manuf Technol 106:5527–5538. https://doi.org/10.1007/s00170-020-04976-w

    Article  Google Scholar 

  47. Morkavuk S, Köklü U, Bağcı M, Gemi L (2018) Cryogenic machining of carbon fiber reinforced plastic (CFRP) composites and the effects of cryogenic treatment on tensile properties: a comparative study. Compos Part B 147:1–11. https://doi.org/10.1016/j.compositesb.2018.04.024

    Article  Google Scholar 

  48. Kline WA, DeVor RE, Lindberg JR (1982) The prediction of cutting forces in end milling with application to cornering cuts. Int J Mach Tool Des Res 22:7–22. https://doi.org/10.1016/0020-7357(82)90016-6

    Article  Google Scholar 

  49. Kline WA, DeVor RE (1983) The effect of runout on cutting geometry and forces in end milling. Int J Mach Tool Des Res 23:123–140. https://doi.org/10.1016/0020-7357(83)90012-4

    Article  Google Scholar 

  50. Su Y (2019) Effect of the cutting speed on the cutting mechanism in machining CFRP. Compos Struct 220:662–676. https://doi.org/10.1016/j.compstruct.2019.04.052

    Article  Google Scholar 

  51. Raschka S, Mirjalili V (2019) Python machine learning: machine learning & deep learning with python, Scikit-Learn and TensorFlow 2, Third edn. Packt Publishing, pp 195–197

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Han Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent to participate

All authors agreed to participate.

Consent for publication

All authors have agreed to manuscript submission.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, DG., Jung, YC., Kweon, SH. et al. Determination of the optimal milling feed direction for unidirectional CFRPs using a predictive cutting-force model. Int J Adv Manuf Technol 123, 3571–3585 (2022). https://doi.org/10.1007/s00170-022-10309-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10309-w

Keywords

Navigation