Skip to main content
Log in

Mechanics of tube spinning: a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This review presents a survey of most literature published on tube spinning in English language. This paper aims to provide insight into mechanics of the process and act as a guide for researchers working on tube spinning and other flexible forming processes. The review has revealed several gaps in knowledge of tube spinning mechanics. Evolution of stress and strain state in the tube is not well understood, mainly due to long computational times required to model the process accurately. Failure mechanisms of spinning are not understood. Toolpath design has been explored, but no attempt has been made to automate it. Studies on novel process configurations have demonstrated the potential of the process for further flexibility and production of a wider range of complex geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Music O, Allwood JM, Kawai K (2010) A review of the mechanics of metal spinning. J Mater Process Technol 210(1):3–23. https://doi.org/10.1016/j.jmatprotec.2009.08.021

    Article  Google Scholar 

  2. Xia QX, Cheng XQ, Hu Y, Ruan F (2006) Finite element simulation and experimental investigation on the forming forces of 3D non-axisymmetrical tubes spinning. Int J Mech Sci 48(7):726–735. https://doi.org/10.1016/j.ijmecsci.2006.01.014

    Article  Google Scholar 

  3. Kwiatkowski L, Tekkaya AE, Kleiner M (2013) Fundamentals for controlling thickness and surface quality during dieless necking-in of tubes by spinning. CIRP Ann 62(1):299–302. https://doi.org/10.1016/j.cirp.2013.03.054

    Article  Google Scholar 

  4. Semiatin SL (ed) (2006) Metal HandBook Vol 14A - Metalworking: Bulk Forming (Vol. 14A). ASM International

  5. Kalpakjian S, Rajagopal S (1982) Spinning of tubes: A review. J Appl Metalwork 2(3):211–223. https://doi.org/10.1007/BF02834039

    Article  Google Scholar 

  6. Runge (D.H. Pollitt, Trans) M (1993) Spinning and flow forming. Verlag Modern Industrie AG

  7. Lange K (1985) Handbook of metal forming. Society of Manufacturing Engineers 1st Edition

  8. Wong CC, Dean TA, Lin J (2003) A review of spinning, shear forming and flow forming processes. Int J Mach Tools Manuf 43(14):1419–1435. https://doi.org/10.1016/S0890-6955(03)00172-X

    Article  Google Scholar 

  9. Sivanandini M, Dhami SS, Pabla BS (2012) Flow Forming Of Tubes-A Review. Int J Sci Eng Res 3(5):1–11

  10. Marini D, Cunningham D, Corney J (2015) A review of flow forming processes and mechanisms. Key Eng Mater 651–653:750–758. https://doi.org/10.4028/www.scientific.net/kem.651-653.750

    Article  Google Scholar 

  11. Gur M, Tirosh J (1982) Plastic flow instability under compressive loading during shear spinning process. J Eng Ind Trans ASME 104(1):17–22. https://doi.org/10.1115/1.3185791

  12. Kalpakjian S (2009) Manufacturing engineering and technology. Pearson Education

  13. Ernestus AW (1959) Roll extrusion, A new metal-forming technique. Am Mach, June 29:84–86

  14. Corn DL (1979) Roll extruding precision seamless pipe and tubing. Met Prog, June 1977, pp 28–31

  15. Rajagopal S, Kalpakjian S (1981) Internal shear forging processes for missile primary structures. liT Research Institute, Final Report under U. S. Army Missile Command Contract No. DAAK40–78-C0264

  16. Groche P, Fritsche D (2006) Application and modelling of flow forming manufacturing processes for internally geared wheels. Int J Mach Tool Manuf 46(11 SPEC. ISS.):1261–1265. https://doi.org/10.1016/j.ijmachtools.2006.01.016

  17. Sariyarlioglu EC, Aydin G, Gulen A, Simsek AK (2018) Comparison between conventional flow forming methods and core mandrel flow forming method. 5th International Conference on New Forming Technology (ICNFT2018), Bremen, Germany

  18. Neugebauer R, Glass R, Hoffmann M (2005) Spin extrusion - A new partial forming technology based on 7 NC-axes machining. CIRP Ann Manuf Technol 54(1):241–244. https://doi.org/10.1016/S0007-8506(07)60093-6

    Article  Google Scholar 

  19. Wong CC, Danno A, Tong KK, Yong MS (2008) Cold rotary forming of thin-wall component from flat-disc blank. J Mater Process Technol 208(1–3):53–62. https://doi.org/10.1016/j.jmatprotec.2007.12.123

    Article  Google Scholar 

  20. Lee KS, Lu L (2001) A study on the flow forming of cylindrical tubes. J Mater Process Technol 113(1–3):739–742. https://doi.org/10.1016/S0924-0136(01)00585-4

    Article  Google Scholar 

  21. Rasoli MA, Abdullah A, Farzin M, Tehrani AF, Taherizadeh A (2012) Influence of ultrasonic vibrations on tube spinning process. J Mater Process Technol 212(6):1443–1452. https://doi.org/10.1016/j.jmatprotec.2012.02.006

    Article  Google Scholar 

  22. Mohebbi MS, Akbarzadeh A (2010b) A novel spin-bonding process for manufacturing multilayered clad tubes. J Mater Process Technol 210(3):510–517. https://doi.org/10.1109/TNS.2009.2034154

  23. Lyu W, Zhan M, Gao PF, Li M, Lei YD, Ma F (2021) Improvement of rib-grid structure of thin-walled tube with helical grid-stiffened ribs based on the multi-mode filling behaviors in flow forming. J Mater Process Technol 296:117–167

  24. Lyu W, Zhan M, Gao PF, Ma F, Li R, Zhang H, Dong Y (2022) Rib filling behavior in flow forming of thin walled tube with helical grid stiffened ribs. Int J Adv Manuf Technol 119:2877–2894

  25. Roy MJ and Maijer DM (2014) Response of A356 to warm rotary forming and subsequent T6 heat treatment. Mater Sci Eng A 611:223–233

  26. Romero P, Otero N, Cabrera JM and Masagué D (2010) Laser assisted conical spin forming of dual phase automotive steel. Experimental demonstration of work hardening reduction and forming limit extension, 6th International Conference on Laser Assisted Net Shape Engineering, LANE 2010, Phys Procedia, vol 5 No. 2 pp 215–225

  27. Han D, Yang H, Zhang LW, Mou SZ, Yang YT and He XX (2010) Effects of heat treatment and spinning temperature on microstructure and properties of 3A21 aluminium alloy. J Solid Rocket Technol vol 33. No. 2 225–228

  28. Singhal RP, Das SR, Prakash R (1987) Some experimental observations in the shear spinning of long tubes. J Mech Work Technol. https://doi.org/10.1016/0378-3804(87)90057-X

    Article  Google Scholar 

  29. Sariyarlioglu EC (2021) Analysis of tube spinning process. MSc Thesis, Mechanical Engineering Department, Istanbul Technical University, Istanbul, Turkey

  30. Fonte V, Tosdale J, Chang C-W (1999) Flow forming of zirconium and titanium pipe. http://www.wahchanglabs.com/pdf/1999/1999022.pdf. Accessed 21.12.11

  31. Nagarajan HN, Kotrappa H, Mallanna C, Venkatesh VC (1981) Mechanics of flow forming. CIRP Ann Manuf Technol 30(1):159–162. https://doi.org/10.1016/S0007-8506(07)60915-9

    Article  Google Scholar 

  32. Hayama M, Kudo H (1979a) Analysis of diametral growth and working forces in tube spinning. Bulletin of the JSME 22(167):776–784. https://doi.org/10.1299/jsme1958.22.776

  33. Kemin X, Yan L, Xianming Z (1997b) The disposal of key problems in the FEM analysis of tube stagger spinning. J Mater Process Technol 69(1–3):176–179. https://doi.org/10.1016/S0924-0136(97)00014-9

  34. Xu Y, Zhang SH, Li P, Yang K, Shan DB, Lu Y (2001) 3D rigid-plastic FEM numerical simulation on tube spinning. J Mater Process Technol 113(1–3):710–713. https://doi.org/10.1016/S0924-0136(01)00644-6

    Article  Google Scholar 

  35. Hua FA, Yang YS, Zhang YN, Guo MH, Guo DY, Tong WH, Hu ZQ (2005) Three-dimensional finite element analysis of tube spinning. J Mater Process Technol 168(1):68–74. https://doi.org/10.1016/j.jmatprotec.2004.10.014

    Article  Google Scholar 

  36. Parsa MH, Pazooki AMA, Nili Ahmadabadi M (2009) Flow-forming and flow formability simulation. Int J Adv Manuf Technol 42(5–6):463–473. https://doi.org/10.1007/s00170-008-1624-0

    Article  Google Scholar 

  37. Hayama M, Kudo H (1979b) Experimental study of tube spinning. Bulletin of the JSME 22(167):769–775. https://www.jstage.jst.go.jp/article/jsme1958/22/167/22_167_769/_article

  38. Li Y, Wang J, Lu GD, Chen QS (2013) Three-dimensional finite element analysis of effects of roller intervals on tool forces and wall thickness in stagger spinning of thin-walled tube. Proc Inst Mech Eng C J Mech Eng Sci 227(7):1429–1440. https://doi.org/10.1177/0954406212466518

    Article  Google Scholar 

  39. Ge T, Wang J, Lu GD, Pan GJ (2015) A study of influence of interference phenomenon on stagger spinning of thin-walled tube. Proc Inst Mech Eng, Part B: J Eng Manuf. https://doi.org/10.1177/0954405414543487

    Article  Google Scholar 

  40. Kalpakcioglu S (1964) Maximum reduction in power spinning of tubes. J Eng Ind Trans ASME 86:49–54

    Article  Google Scholar 

  41. Chang SC, Huang CA, Yu SY, Chang Y, Han WC, Shieh TS, Chung H-C, Yao H-T, Shyu G-D, Hou H-Y, Wang C-C, Wang WS (1998) Tube spinnability of AA 2024 and 7075 aluminum alloys. J Mater Process Technol 80–81:676–682. https://doi.org/10.1016/S0924-0136(98)00174-5

    Article  Google Scholar 

  42. Podder B, Mondal C, Ramesh Kumar K, Yadav DR (2012) Effect of preform heat treatment on the flow formability and mechanical properties of AISI4340 steel. Mater Des. https://doi.org/10.1016/j.matdes.2012.01.002

    Article  Google Scholar 

  43. Bylya OI, Khismatullin T, Blackwell P, Vasin RA (2018) The effect of elasto-plastic properties of materials on their formability by flow forming. J Mater Process Technol 252(February 2017):34–44. https://doi.org/10.1016/j.jmatprotec.2017.09.007

  44. Brandon DG, Ari-gur P, Bratt Z, Gur M (1980) Texture inhomogeneity and the strain distribution in shear-spun steel tubes. Mater Sci Eng 44(2):185–194. https://doi.org/10.1016/0025-5416(80)90119-6

    Article  Google Scholar 

  45. Debin S, Guoping Y, Wenchen X (2009) Deformation history and the resultant microstructure and texture in backward tube spinning of Ti-6Al-2Zr-1Mo-1V. J Mater Process Technol 209(17):5713–5719. https://doi.org/10.1016/j.jmatprotec.2009.05.034

    Article  Google Scholar 

  46. Roy MJ, Klassen RJ, Wood JT (2009) Evolution of plastic strain during a flow forming process. J Mater Process Technol 209(2):1018–1025. https://doi.org/10.1016/j.jmatprotec.2008.03.030

    Article  Google Scholar 

  47. Haghshenas M, Klassen RJ (2015) Mechanical characterization of flow formed FCC alloys. Mater Sci Eng A 641:249–255. https://doi.org/10.1016/j.msea.2015.06.046

    Article  Google Scholar 

  48. Kalpakcioglu S (1961) An experimental study of plastic deformation in power spinning. CIRP Ann Manuf Technol 10(1):58–64

    Google Scholar 

  49. Ram Mohan T, Mishra R (1972) Studies on power spinning of tubes. Int J Prod Res 10(4):351–364. https://doi.org/10.1080/00207547208929937

    Article  Google Scholar 

  50. Mohebbi MS, Akbarzadeh A (2010a) Experimental study and FEM analysis of redundant strains in flow forming of tubes. J Mater Process Technol 210(2):389–395. https://doi.org/10.1016/j.jmatprotec.2009.09.028

  51. Bennich P (1976) Tube spinning. Int J Prod Res 14(1):11–21. https://doi.org/10.1080/00207547608956577

    Article  Google Scholar 

  52. Park J-W, Kim Y-H, Bae W-B (1997) Analysis of tube-spinning processes by the upper-bound stream function method. J Mater Process Technol 66:195–203

    Article  Google Scholar 

  53. Wong CC, Lin J, Dean TA (2005) Effects of roller path and geometry on the flow forming of solid cylindrical components. J Mater Process Technol 167:344–353. https://doi.org/10.1016/j.jmatprotec.2005.05.039

    Article  Google Scholar 

  54. Gür CH, Arda EB (2003) Effect of tube spinning and subsequent heat treatments on strength, microstructure and residual stress state of AISI/SAE type 4140 steel. Mater Sci Technol 19(11):1590–1594. https://doi.org/10.1179/026708303225008022

    Article  Google Scholar 

  55. Kubilay C (2014) Flowforming of aeroengine materials. PhD thesis, University of Manchester

  56. Tsivoulas D, Quinta da Fonseca J, Tuffs M, Preuss M (2015) Effects of flow forming parameters on the development of residual stresses in Cr-Mo-V steel tubes. Mater Sci Eng A 624:193–202. https://doi.org/10.1016/j.msea.2014.11.068

  57. Kobayashi S and Thomsen EG (1961) Theory of spin forging. Annual meeting of International Institution of Production Engineering Research, Prague

  58. Roy MJ, Maijer DM, Klassen RJ, Wood JT, Schost E (2010) Analytical solution of the tooling/workpiece contact interface shape during a flow forming operation. J Mater Process Technol 210(14):1976–1985. https://doi.org/10.1016/j.jmatprotec.2010.07.011

    Article  Google Scholar 

  59. Wong CC (2004) Incremental forming of solid cylindrical components using flow forming principles. J Mater Process Technol 153–154(1–3):60–66. https://doi.org/10.1016/j.jmatprotec.2004.04.102

    Article  Google Scholar 

  60. Xu W, Zhao X, Ma H, Shan D, Lin H (2016) Influence of roller distribution modes on spinning force during tube spinning. Int J Mech Sci 113:10–25. https://doi.org/10.1016/j.ijmecsci.2016.04.009

    Article  Google Scholar 

  61. Novella MF, Ghiotti A, Bruschi S, Capuzzo R (2016) Numerical modelling of AlSi7 tubular components flowformed at elevated temperature. Key Eng Mater 716:753–761. https://doi.org/10.4028/www.scientific.net/KEM.716.753

  62. Sariyarlioglu EC, Music O, Bakkal M (2021) Analysis of tube spinning. Proceedings of the 13th International Conference on the Technology of Plasticity (ICTP2021), Forming the Future, Springer, p 2077–2088

  63. Kemin X, Zhen W, Yan L, Kezhi L (1997a) Elasto-plastic FEM analysis and experimental study of diametral growth in tube spinning. J Mater Process Technol 69(1–3):172–175. https://doi.org/10.1016/S0924-0136(97)00013-7

  64. Jahazi M, Ebrahimi G (2000) Influence of flow-forming parameters and microstructure on the quality of a D6ac steel. J Mater Process Technol 103(3):362–366. https://doi.org/10.1177/0967010602033003003

    Article  Google Scholar 

  65. Rajan KM, Narasimhan K (2001) An investigation of the development of defects during flow forming of high strength thin wall steel tubes. Pract Fail Anal 1(5):69–76. https://doi.org/10.1361/152981501770352617

    Article  Google Scholar 

  66. Ma ZE (1993) Optimal angle of attack in tube spinning. J Mater Process Technol 37(1–4):217–224. https://doi.org/10.1016/0924-0136(93)90092-K

    Article  Google Scholar 

  67. Gao PF, Li M, Zhan M, Xing L, Ma F, Fu MW (2021) Circumferential twist in flow forming of tubular parts: Characterization, understanding and Control. J Manuf Process 65:144–152. https://doi.org/10.1016/j.jmapro.2021.03.020

    Article  Google Scholar 

  68. Kwiatkowski L (2012) Spinning, shear forming, and flow forming. In: Altan T, Tekkaya AE (eds) Sheet Metal Forming Processes and Applications. ASM International, pp 249–272

    Chapter  Google Scholar 

  69. Zong-hua S, Wei-min L, Shao-chun C, Wen-bin G, Xin-miao Q (1992) Real-time defects detection in flow-forming process. J Mater Process Technol 32(1–2):365–370

    Article  Google Scholar 

  70. Ma H, Xu W, Jin BC, Shan D, Nutt SR (2015) Damage evaluation in tube spinnability test with ductile fracture criteria. Int J Mech Sci 100:99–111

  71. Xu W, Wu H, Ma H, Shan D (2018) Damage evolution and ductile fracture prediction during tube spinning of titanium alloy. Int J Mech Sci, 135:226–239

  72. Wu H, Xu W, Shan D, Bo CJ (2019) Mechanism of increasing spinnability by multi-pass spinning forming analysis of damage evolution using a modified GTN model. Int J Mech Sci 159:1–19

  73. Gao P, Yu C, Fu M, Xing L, Zhan M, Guo J (2022) Formability enhancement in hot spinning of titanium alloy thin-walled tube via prediction and control of ductile fracture. Chin J Aeronaut 35–2:320–331

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the study equally and both authors read and approved this manuscript.

Corresponding author

Correspondence to Omer Music.

Ethics declarations

Consent for publication

This work is original and has not been published elsewhere nor it is currently under consideration for publication elsewhere.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Music, O., Sariyarlioglu, E.C. Mechanics of tube spinning: a review. Int J Adv Manuf Technol 123, 709–735 (2022). https://doi.org/10.1007/s00170-022-10175-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10175-6

Keywords

Navigation