Skip to main content

Advertisement

Log in

Dry machining of nodular cast iron using a YAG-reinforced alumina ceramic cutting tool

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this work, an alumina-yttrium aluminum garnet (Al2O3-YAG) cutting tool was developed and characterized aiming application in dry machining of nodular (spheroidal) cast iron. Ceramic powders containing 85 wt.% Al2O3 and 15 wt.% Y3Al5O12(YAG) were homogenized, compacted, and sintered at 1600 °C for 2 h at a heating rate of 5 °C/min. The sintered ceramic presented relative density of 98.3 ± 0.2%. X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed α-Al2O3 and YAG as crystal phases, both with equiaxed grains with average sizes of 1–4 μm (Al2O3 phase) and 0.7–1 μm (YAG phase). In addition, this ceramic composite presented Vickers hardness and fracture toughness of 15.2 ± 0.2 GPa and 4.6 ± 0.3 MPa.m1/2, respectively. The dry machining performance of the Al2O3-YAG cutting tool was compared with that of a commercial cemented carbide cutting tool using cutting speed (VC) of 200 and 500 m/min, feed rate (f) of 0.25 and 0.10 mm/rev, and axial depth of cut (ap) of 0.60 mm. The results showed that the best setting for the cemented carbide cutting tool was obtained at VC = 200 m/min and f = 0.25 mm/rev, which produced the best machinability with average surface roughness (Ra) of 3.516 μm, cutting length (LC) of 6000 m, and maximum flank wear (VBmax) of 0.58 mm. For the Al2O3-YAG cutting tool, the best setting was achieved at VC = 500 m/min and f = 0.10 mm/rev, which produced Ra = 0.848 μm, LC = 12,293 m, and VBmax = 0.54 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Paneto FJ, Pereira JL, Lima JO, Jesus EJ, Silva LA, Sousa LE, Cabral RF, Santos C (2015) Effect of porosity on hardness of Al2O3-Y3Al5O12 ceramic composite. Int J Refract Metal Hard Mater 48:365–368. https://doi.org/10.1016/j.ijrmhm.2014.09.010

    Article  Google Scholar 

  2. Camuşcu N (2006) Effect of cutting speed on the performance of Al2O3 based ceramic tools in turning nodular cast iron. Mater Des 27:997–1006. https://doi.org/10.1016/j.matdes.2005.02.011

    Article  Google Scholar 

  3. Norfauzi T, Hadzley AB, Azlan UAA, Afuzaa AA, Faiz MM, Naim MF (2019) Fabrication and machining performance of ceramic cutting tool based on the Al2O3-ZrO2-Cr2O3 compositions. J Mater Res Technol 8(6):5114–5123. https://doi.org/10.1016/j.jmrt.2019.08.034

    Article  Google Scholar 

  4. Du W, Ai Y, He W, Chen W, Liang BL, Lv C (2020) Formation and control of intragranular ZrO2 strengthened and toughened Al2O3 ceramics. Ceram Int 46(6):8452–8461. https://doi.org/10.1016/j.ceramint.2019.12.080

    Article  Google Scholar 

  5. Banik SR, Iqbal IM, Nath R, Bora LJ, Singh BK, Mandal N, Sankar MR (2019) State of the art on zirconia toughened alumina cutting tools. Mater Today Proc 18(7):2632–2641. https://doi.org/10.1016/j.matpr.2019.07.123

    Article  Google Scholar 

  6. Bučevac D, Omerašević M, Egelja A, Radovanović Ž, Kljajević L, Nenadović S, Krstić V (2020) Effect of YAG content on creep resistance and mechanical properties of Al2O3-YAG composite. Ceram Int 46(10 Part B):15998–16007. https://doi.org/10.1016/j.ceramint.2020.03.150

  7. Song JG (2010) Oxidation Behavior of ZrB2–YAG–Al2O3 Ceramics at high temperature. Mater Manuf Processes 25(8):724–729. https://doi.org/10.1080/10426910903229362

    Article  Google Scholar 

  8. Yao B, Su H, Zhang J, Ren Q, Ma W, Liu L, Fu H (2016) Sintering densification and microstructure formation of bulk Al2O3/YAG eutectic ceramics by hot pressing based on fine eutectic structure. Mater Des 92:213–222. https://doi.org/10.1016/j.matdes.2015.12.017

    Article  Google Scholar 

  9. Lach R, Wojteczko K, Dudek A, Pedzich Z (2014) Fracture behaviour of alumina-YAG particulate composites. J Eur Ceram Soc 34:3373–3378. https://doi.org/10.1016/j.jeurceramsoc.2014.04.020

    Article  Google Scholar 

  10. Parthasarathy TA, Mah T, Matson LE (2004) Processing, structure and properties of alumina-YAG eutectic composites. J Ceram Process Res 5(4):380–390

    Google Scholar 

  11. Rakshit R, Das AK (2019) A review on cutting of industrial ceramic materials. Precis Eng 59:90–109. https://doi.org/10.1016/j.precisioneng.2019.05.009

    Article  Google Scholar 

  12. Sharma V, Pandey PM (2016) Recent advances in turning with textured cutting tools: a review. J Clean Prod 137:701–715. https://doi.org/10.1016/j.jclepro.2016.07.138

    Article  Google Scholar 

  13. Yigit R, Celik E, Findik F, Koksal S (2008) Effect of cutting speed on the performance of coated and uncoated cutting tools in turning nodular cast iron. J Mater Process Technol 204:80–88. https://doi.org/10.1016/j.jmatprotec.2007.10.082

    Article  Google Scholar 

  14. Grzesik W, Kiszka P, Kowalczyk D, Rech J, Claudin C (2012) Machining of nodular cast iron (PF-NCI) using CBN tools. Procedia CIRP 1:483–487. https://doi.org/10.1016/j.procir.2012.04.086

    Article  Google Scholar 

  15. García J, Ciprés V, Blomqvist A, Kaplan B (2019) Cemented carbide microstructures: a review. Int J Refract Metal Hard Mater 80:40–68. https://doi.org/10.1016/j.ijrmhm.2018.12.004

    Article  Google Scholar 

  16. Warmuzek M, Polkowska A (2020) Micromechanism of damage of the graphite spheroid in the nodular cast iron during static tensile test. J Manuf Mater Process 4(22):1–19. https://doi.org/10.3390/jmmp4010022

    Article  Google Scholar 

  17. Bayraktar S (2021) Dry cutting: a sustainable machining technology. In Sustainable Manufacturing, Handbooks in Advanced Manufacturing, pp 231–257. https://doi.org/10.1016/B978-0-12-818115-7.00004-3

  18. Akhtar SS (2021) Review - a critical review on self-lubricating ceramic-composite cutting tools. Ceram Int. In press. https://doi.org/10.1016/j.ceramint.2021.04.094

  19. ISO 1832:2017 Indexable inserts for cutting tools – Designation, ISO, 2017

  20. ASTM C1327:2015 Standard test method for Vickers indentation hardness of advanced ceramics, ASTM, 2015

  21. ASTM C1421:2018 Standard test method for determination of fracture toughness of advanced ceramics at ambient temperature, ASTM, 2018

  22. González H, Calleja A, Pereira O, Ortega N, Lopez de Lacalle LN, Barton M (2018) Super abrasive machining of integral rotary components using grinding flank tools. Metals 8(1):24. https://doi.org/10.3390/met8010024

  23. ISO 5608:2012 Turning and copying tool holders and cartridges for indexable inserts - Designation, ISO, 2012

  24. Rajain K, Sliusarenko O, Bizzarri M, Barton M (2022) Curve-guided 5-axis CNC flank milling of free-form surfaces using custom-shaped tools. Comput Aided Geom Des 94:102082

    Article  MathSciNet  Google Scholar 

  25. Escudero GG et al (2022) 5-axis double-flank CNC machining of spiral bevel gears via custom-shaped tools—Part II: Physical validations and experiments. Int J Adv Manuf Technol 119(3):1647–1658

    Article  Google Scholar 

  26. Barton M, Bizzarri M, Rist F, Sliusarenko O, Pottmann H (2021) Geometry and tool motion planning for curvature adapted CNC machining. ACM Trans Graph 40(4):1–16

  27. Souza JVC, Nono MCA, Ribeiro MV, Machado JPB, Silva OMM (2009) Cutting forces in turning of gray cast iron using silicon nitride based cutting tool. Mater Des 30:2715–2720. https://doi.org/10.1016/j.matdes.2008.09.041

    Article  Google Scholar 

  28. ISO 4287:1997 Geometrical product specifications (GPS) - surface texture: profile method - terms, definitions and surface texture parameters, ISO, 1997

  29. ABNT/NBR 6916:2017 Nodular cast iron or spheroidal graphite cast iron – Specification, ABNT, 2017

  30. Banik SR, Iqbal IM, Nath R, Bora LJ, Singh BK, Mandal N, Sankar MR (2019) State of the art on zirconia toughened alumina cutting tools. Mater Today Proc 18:2632–2641. https://doi.org/10.1016/j.matpr.2019.07.123

    Article  Google Scholar 

  31. ISO 3685:1993 Tool-life testing with single-point turning tools, ISO, 1993

  32. Shi JL, Li L, Guo JK (1998) Boundary stress and its effect on toughness in thin boundary layered and particulate composites: model analysis and experimental test on T-TZP, based ceramic composites. J Eur Ceram Soc 18:2035–2043

    Article  Google Scholar 

  33. Shi JL, Lu ZL, Guo JK (2000) Model analysis of boundary residual stress and its effect on toughness in thin boundary layered yttria-stabilized tetragonal zirconia polycrystalline ceramics. J Mater Res 15(3):727–732

    Article  Google Scholar 

  34. Taya M, Hayashi S, Kobayashi AS, Yoon HS (1990) Toughening of a particulate-reinforced ceramic-matrix composite by thermal residual stress. J Am Ceram Soc 73(5):1382–1391

    Article  Google Scholar 

  35. Pauling L, Hendricks SB (1925) The crystal structures of hematite and corundum. J Am Chem Soc 47(3):781–790

  36. Bagdasarov KS et al (1991) Photoinduced effects and real structure of crystals of yttrium aluminum garnet. Sov Phys Crystallogr 36(3):398–405

  37. Bo P, Bartoň M (2019) On initialization of milling paths for 5-axis flank CNC machining of free-form surfaces with general milling tools. Comput Aided Geom Des 71:30–42

    Article  MathSciNet  Google Scholar 

  38. Zhang X, Zhang J, Zheng X, Pang B, Zhao W (2017) Tool orientation optimization of 5-axis ball-end milling based on an accurate cutter/workpiece engagement model. CIRP J Manuf Sci Technol 19:106–116

    Article  Google Scholar 

  39. Brandt G, Gerendas A, Mikus M (1990) Wear mechanisms of ceramic cutting tools when machining ferrous and non-ferrous alloys. J Eur Ceram Soc 6(5):273–290

    Article  Google Scholar 

  40. Lartigue C, Tournier C, Ritou M, Dumur D (2004) High-performance NC for HSM by means of polynomial trajectories. CIRP Ann 53(1):317–320

    Article  Google Scholar 

  41. Amaitik SM, Taşgin TT, Kilic SE (2006) Tool-life modelling of carbide and ceramic cutting tools using multi-linear regression analysis. Proc Inst Mech Eng B J Eng Manuf 220(2):129–136

    Article  Google Scholar 

  42. Souza JVC, Silva OMM, Nono MCA, Machado JPB, Pimenta M, Ribeiro MV (2011) Si3N4 ceramic cutting tool sintered with CeO2 and Al2O3 additives with AlCrN coating. Mater Res 14(4):514–518. https://doi.org/10.1590/S1516-14392011005000077

    Article  Google Scholar 

  43. Mandal N, Doloi B, Mondal B (2013) Predictive modeling of surface roughness in high speed machining of AISI 4340 steel using yttria stabilized zirconia toughened alumina turning insert. Int J Refract Metal Hard Mater 38:40–46. https://doi.org/10.1016/j.ijrmhm.2012.12.007

    Article  Google Scholar 

Download references

Funding

The authors would like to thank LABNANO–CBPF for the technical support provided to the electron microscopy work. Dr. Claudinei dos Santos thanks CNPq (grant no. 311119/2017–4) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Vitor Candido de Souza.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent for publication

The authors of that article accept and give the license to publish to the journal Advanced Manufacturing Technology or another one of your property.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Sousa, L.F., Simba, B.G., de Souza, J.V.C. et al. Dry machining of nodular cast iron using a YAG-reinforced alumina ceramic cutting tool. Int J Adv Manuf Technol 123, 99–110 (2022). https://doi.org/10.1007/s00170-022-10149-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10149-8

Keywords

Navigation