Skip to main content

Advertisement

Log in

Review of self-cleaning TiO2 thin films deposited with spin coating

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper reviewed the deposition of thin films of TiO2 for self-cleaning applications deposited using the spin coater. The overwhelming global demand for electricity pushes power producers to develop substitute energy sources. Renewable energy sources such as solar, wind, tidal, geothermal, and hydroelectric are now considered to create alternative power sources. The most abundant form on earth is solar energy, converted to electrical energy using a solar panel. Regrettably, solar panels attract contaminants once exposed to the atmosphere, causing their efficiency to drop. Self-cleaning is one of the researched technologies to help maintain clean photovoltaic surfaces. Titanium dioxide (TiO2) is among the materials studied for self-cleaning, and the spin-coating method offers great promise. This paper presented the background and working principle of the spin coater, precautions to be taken with the spin-coating process, and the merits and demerits of the process. The paper highlighted the self-cleaning mechanism and the spin-coating method to create self-cleaning TiO2 thin films for application on several surfaces, including the solar panel. Commonly used self-cleaning materials were also reviewed, including materials used to dope or create TiO2 composite for better self-cleaning capability. Effects of process parameters, available substrates, surfactants, solvents, and stabilizing agents on the final TiO2 thin film performance and recent innovative efforts to improve the spin-coating process and the self-cleaning abilities of TiO2 are reviewed. This will contribute to the body of knowledge on spin-coating techniques, self-cleaning thin films, and TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

All data and material will be made available on request.

Code availability

Not applicable.

References

  1. Trinnaman J, Clarke A (eds) (2004) 2004 Survey of energy resources. Elsevier

  2. Richard SS, Anne RD, Luke DO, Darryn WW (2015) Impact of future nitrous oxide and carbon dioxide emissions on the stratospheric ozone layer. Environ Res Lett 10(3):034011. https://doi.org/10.1088/1748-9326/10/3/034011

  3. Wang C, Yu S, Guo K, Guo P, Chang R, Sun C (2020) Maximizing solar energy utilization through multicriteria pareto optimization of energy harvesting and regulating smart windows. Cell Reports Physical Science. https://doi.org/10.1016/j.xcrp.2020.100108

    Article  Google Scholar 

  4. Santoni F, Piergentili F, Candini GP, Perelli M, Negri A, Marino M (2014) An orientable solar panel system for nanospacecraft. Acta Astronaut 101:120–128. https://doi.org/10.1016/j.actaastro.2014.04.020

    Article  Google Scholar 

  5. Mani M, Pillai R (2010) Impact of dust on solar photovoltaic (PV) performance: research status, challenges and recommendations. Renew Sustain Energy Rev 14(9):3124–3313. https://doi.org/10.1016/j.rser.2010.07.065

    Article  Google Scholar 

  6. Jiang Y, Lu L, Ferro AR, Ahmadi G (2018) Analyzing wind cleaning process on the accumulated dust on solar photovoltaic (PV) modules on flat surfaces. Sol Energy 159:1031–1036. https://doi.org/10.1016/j.solener.2017.08.083

    Article  Google Scholar 

  7. Neagoe M, Visa I, Burduhos B (2014) Increasing the tracking efficiency of photovoltaic systems. In: Sustainable energy in the built environment-steps towards nZEB. Springer, Cham,  pp 443–460

  8. Guldin S, Kohn P, Stefik M, Song J, Divitini G, Ecarla F, Ducati C, Wiesner U, Steiner U (2013) Self-cleaning antireflective optical coatings. Nano Lett 13(11):5329–5335

    Article  Google Scholar 

  9. Astaneh SH, Jursich G, Sukotjo C, Takoudis CG (2019) Surface and subsurface film growth of titanium dioxide on polydimethylsiloxane by atomic layer deposition. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2019.07.029

    Article  Google Scholar 

  10. Chou LH, Chang WC, He GY, Chiu YC, Liu CL (2016) Controllable electrical performance of spray-coated semiconducting small molecule/insulating polymer blend thin film for organic field effect transistors application. React Funct Polym 108:130–136. https://doi.org/10.1016/j.reactfunctpolym.2016.04.017

    Article  Google Scholar 

  11. Cohen E, Lightfoot EJ (2000) Coating processes. Kirk‐Othmer Encyclopedia of Chemical Technology, pp 1–68. https://doi.org/10.1002/0471238961.1921182203150805.a01.pub3

  12. Emslie AG, Bonnern FT, Peck LG (1958) Flow of a viscous liquid on a rotating disk. J Appl Phys 29(5):858–862. https://doi.org/10.1063/1.1723300

    Article  MathSciNet  MATH  Google Scholar 

  13. Danglad-Flores J, Eickelmann S, Riegler H (2018) Deposition of polymer films by spin casting: a quantitative analysis. Chem Eng Sci 179:257–326. https://doi.org/10.1016/j.ces.2018.01.012

    Article  Google Scholar 

  14. Wilson SK, Hunt R, Duffy BR (2000) The rate of spreading in spin coating. J Fluid Mech 413:65–68. https://doi.org/10.1017/s0022112000008089

    Article  MATH  Google Scholar 

  15. Ferdaus M, Rashid MM, Rahman A (2014) Design and fabrication of a simple cost effective spin coater for deposition of thin film. Adv Environ Biol 729–734

  16. Fardousi M, Hossain MF, Islam MS, Rahat S (2013) Cost-effective home-made spin coater for depositing thin films. Journal of Modern Science and Technology 1(1):126–134

    Google Scholar 

  17. Manikandan N, Shanthi B, Muruganand S (2015) Construction of spin coating machine controlled by arm processor for physical studies of PVA. Internation Journal of Electronics and Electrical Engineering 3(4):318–322. https://doi.org/10.12720/ijeee.3.4.318-322

    Article  Google Scholar 

  18. Zhu M, Deng Y, Liu W, Li X (2018) Preparation of Se-based solar cell using spin-coating method in ambient condition. Chin Phys B 27(1):015202

    Article  Google Scholar 

  19. Husain AAF, Hasan WW (2017) Transparent solar cell using spin coating and screen printing. Pertanika Journal of Science and Technology 25:225–233

    Google Scholar 

  20. Liu YY, Yuan YZ, Li CF, Gao XT, Cao XZ, Li JB (2008) The structure and photoluminescence properties of RF-sputtered films of ZnO on Teflon substrate. Mater Lett 62(17–18):2907–2909. https://doi.org/10.1016/j.matlet.2008.01.070

    Article  Google Scholar 

  21. Lukong VT, Ukoba KO, Jen TC (2021) Analysis of sol aging effects on self-cleaning properties of TiO2 thin film. Materials Research Express 8(10):105502. https://doi.org/10.1088/2053-1591/ac2b58

    Article  Google Scholar 

  22. Heeravathi S, Christy AA (2020) Spin coating methods and applications–a review. J Xi’an Univ Archit Technol 12:231–235

    Google Scholar 

  23. Malik O, De La Hidalga-Wade FJ, Amador RR (2017) Spray pyrolysis processing for optoelectronic applications. InTech, London, p 197. https://doi.org/10.5772/67431

  24. Guire MRD, Bauermann LP, Parikh H, Bill J (2013) Chemical bath deposition. Chemical solution deposition of functional oxide thin films. https://doi.org/10.1007/978-3-211-99311-8_14

    Article  Google Scholar 

  25. Cao X, Chen H, Gu X, Liu B, Wang W, Cao Y, Zhou C (2014) Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes. ACS Nano 8(12):12769–12776. https://doi.org/10.1021/nn505979j

    Article  Google Scholar 

  26. Chaki SH, Mahato KS, Malek TJ, Deshpande MP (2017) CuAlS2 thin films – dip coating deposition and characterization. J Sci 2(2):215–224. https://doi.org/10.1016/j.jsamd.2017.04.002

    Article  Google Scholar 

  27. Furuhashi T, Yamada Y, Hayashi M (2017) Characteristics of nickel thin films prepared by electroless plating in foam of electrolyte. MRS Communications 7:953–959. https://doi.org/10.1557/mrc.2017.124

    Article  Google Scholar 

  28. Vilcot JP, Ayachi B, Aviles T, Miska P (2017) Full sputtering deposition of thin film solar cells: a way of achieving high efficiency sustainable tandem cells? J Electron Mater 46(11):6523–6527. https://doi.org/10.1007/s11664-017-5694-3

    Article  Google Scholar 

  29. Yuan Q, Wu J, Qin C, Xu A (2016) Zhang, Lin, S, Ren, X, & Zhang, P. Spin-coating synthesis and characterization of Zn-doped hydroxyapatite/polylactic acid composite coatings. Surf Coat Technol 307:461–469. https://doi.org/10.1016/j.surfcoat.2016.09.021

    Article  Google Scholar 

  30. Park J, Shin K, Lee C (2016) Roll-to-roll coating technology and its applications: a review. Int J Precis Eng Manuf 17(4):537–550. https://doi.org/10.1007/s12541-016-0067-z

    Article  Google Scholar 

  31. Kuzanyan AS, Kuzanyan AA (2016) Pulsed laser deposition of large-area thin films and coatings. Applications of laser ablation - thin film deposition. Nanomaterial Synthesis and Surface Modification. https://doi.org/10.5772/64978

    Article  Google Scholar 

  32. Nguyen NT (2011) Micromixers: fundamentals, design and fabrication. William Andrew

  33. Attaullah S, Mansoor H, Muhammad QK, Tahir Z, Tanveer A (2016) Synthesis and characterization of undoped and sliver doped titanium dioxide thin film by using sol-gel spin coating method. https://doi.org/10.15224/978-1-63248-138-2-06

    Article  Google Scholar 

  34. Larson RG, Rehg TJ (1997) Spin coating. In: Liquid film coating. Springer, Dordrecht, pp 709–734. https://doi.org/10.1007/978-94-011-5342-3_20

  35. Chu M, You H, Meena JS, Shieh S, Shao C, Chang F, Ko F (2012) Facile electroless deposition of zinc oxide ultrathin film for zinc acetate solution-processed transistors. Int J Electrochem Sci 7:5977–5989

    Google Scholar 

  36. Sevvanthi P, Claude A, Jayanthi C, Poiyamozhi A (2012) Instrumentation for fabricating an indigenous spin coating apparatus and growth of zinc oxide thin films and their characterizations. Adv Appl Sci Res 3(6):3573–3580

    Google Scholar 

  37. Lee UG, Kim W-B, Han DH, Chung HS (2019) A modified equation for thickness of the film fabricated by spin coating. Symmetry 11:1183. https://doi.org/10.3390/sym11091183

    Article  Google Scholar 

  38. Sahu N, Parija B, Panigrahi S (2009) Fundamental understanding and modeling of spin coating process: a review. Indian J Phys 83(4):493–502. https://doi.org/10.1007/s12648-009-0009-z

    Article  Google Scholar 

  39. Lukong VT, Mouchou RT, Enebe GC, Ukoba K, Jen TC (2022) Deposition and characterization of self-cleaning TiO2 thin films for photovoltaic application. Mater Today. https://doi.org/10.1016/j.matpr.2022.02.089

  40. Souza FL, Lopes KP, Nascente PA, Leite ER (2009) Nanostructured hematite thin films produced by spin-coating deposition solution: application in water splitting. Sol Energy Mater Sol Cells 93(3):362–368. https://doi.org/10.1016/j.solmat.2008.11.049

    Article  Google Scholar 

  41. Spangler LL, Torkelson JM, Royal JS (1990) Influence of solvent and molecular weight on thickness and surface topography of spin-coated polymer films. Polym Eng Sci 30(11):644–653. https://doi.org/10.1002/pen.760301104

    Article  Google Scholar 

  42. Meyerhofer D (1978) Characteristics of resist films produced by spinning. J Appl Phys 49(7):3993–3997. https://doi.org/10.1063/1.325357

    Article  Google Scholar 

  43. Tyona MD (2013) A comprehensive study of spin coating as a thin film deposition technique and spin coating equipment. Adv Mater Res 2(4):181. https://doi.org/10.12989/amr.2013.2.4.181

  44. Schubert DW, Dunkel T (2003) Spin coating from a molecular point of view: its concentration regimes, influence of molar mass and distribution. Mater Res Innovations 7(5):314–321. https://doi.org/10.1007/s10019-003-0270-2

    Article  Google Scholar 

  45. Lawrence CJ (1988) The mechanics of spin coating of polymer films. Phys Fluids 31(10):2786–2795. https://doi.org/10.1063/1.866986

    Article  Google Scholar 

  46. Bornside DE, Macosko CW, Scriven LE (1989) Spin coating: one-dimensional model. J Appl Phys 66(11):5185–5193. https://doi.org/10.1063/1.343754

    Article  Google Scholar 

  47. Chen BT (1983) Investigation of the solvent-evaporation effect on spin coating of thin films. Polym Eng Sci 23(7):399–403. https://doi.org/10.1002/pen.760230706

    Article  Google Scholar 

  48. Arscott S (2020) The limits of edge bead planarization and surface levelling in spin-coated liquid films. J Micromech Microeng 30(2):025003. https://doi.org/10.1088/1361-6439/ab60be

    Article  Google Scholar 

  49. Shiratori S, Kubokawa T (2015) Double-peaked edge-bead in drying film of solvent-resin mixtures. Phys Fluids 27(10):102105. https://doi.org/10.1063/1.4934670

    Article  Google Scholar 

  50. Kozuka H, Ishikawa Y, Ashibe N (2004) Radiative striations of spin-coating films: Surface roughness measurement and in-situ observation. J Solgel Sci Technol 31(1):245–248

    Article  Google Scholar 

  51. Shiratori S, Kato D, Sugasawa K, Nagano H, Shimano K (2020) Spatio-temporal thickness variation and transient Marangoni number in striations during spin coating. Int J Heat Mass Transf 154:119678. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119678

    Article  Google Scholar 

  52. Yan Y, Li J, Liu Q, Zhou P (2021) Evaporation effect on thickness distribution for spin-coated films on rectangular and circular substrates. Coatings 11(11):1322. https://doi.org/10.3390/coatings11111322

    Article  Google Scholar 

  53. Wang Z, Ma J, Wang P (2011) Optimization of membrane structure using the spin-coating method. Desalin Water Treat 34(1–3):197–203. https://doi.org/10.5004/dwt.2011.2799

    Article  Google Scholar 

  54. Kang JG (2018) Spin coater. Standard operating procedure. braun.matse.illinois.edu https://braun.matse.illinois.edu/files/2018/02/Spin-Coater.pdf

  55. Ferdaus M, Rashid MM, Rahman A (2014) Design and fabrication of a simple cost effective spin coater for deposition of thin film. Adv Environ Biol pp 729–734

  56. Nistico R, Scalarone D, Magnacca G (2017) Sol-gel chemistry, templating and spin-coating deposition: a combined approach to control in a simple way the porosity of inorganic thin films/coatings. Microporous Mesoporous Mater 248:18–29. https://doi.org/10.1016/j.micromeso.2017.04.017

    Article  Google Scholar 

  57. Uzum A, Fukatsu K, Kanda H, Kimura Y, Tanimoto K, Yoshinaga S, Jiang Y, Ishikawa Y, Uraoka Y, Ito S (2014) Silica-sol-based spin-coating barrier layer against phosphorous diffusion for crystalline silicon solar cells. Nanoscale Res Lett 9(1):1–7. https://doi.org/10.1186/1556-276X-9-659

    Article  Google Scholar 

  58. Zhang F, Di CA, Berdunov N, Hu Y, Hu Y, Gao X, Meng Q, Sirringhaus H, Zhu D (2013) Ultrathin film organic transistors: precise control of semiconductor thickness via spin‐coating. Adv Mater 25(10):1401–1407. http://ir.sioc.ac.cn/handle/331003/29302

  59. Ogawa M (1996) A simple sol–gel route for the preparation of silica–surfactant mesostructured materials. Chem Commun 10:1149–1150. https://doi.org/10.1039/CC9960001149

    Article  Google Scholar 

  60. Moreira J, Vale AC, Alves NM (2021) Spin-coated freestanding films for biomedical applications. J Mater Chem B 9(18):3778–3799. https://doi.org/10.1039/D1TB00233C

    Article  Google Scholar 

  61. Palmieri V, Papi M, Conti C, Ciasca G, Maulucci G, De Spirito M (2016) The future development of bacteria fighting medical devices: the role of graphene oxide. Expert Rev Med Devices 13(11):1013–1019. https://doi.org/10.1080/17434440.2016.1245612

    Article  Google Scholar 

  62. Singh R, Bathaei MJ, Istif E, Beker L (2020) A review of bioresorbable implantable medical devices: materials, fabrication, and implementation. Adv Healthcare Mater 9(18):2000790. https://doi.org/10.1002/adhm.202000790

    Article  Google Scholar 

  63. Liu Y (2017) Application of graphene oxide in water treatment. In IOP Conference Series: Earth and Environmental Science 94(1):012060). IOP Publishing. https://doi.org/10.1088/1755-1315/94/1/012060

  64. Alnoor O, Laoui T, Ibrahim A, Kafiah F, Nadhreen G, Akhtar S, Khan Z (2020) Graphene oxide-based membranes for water purification applications: effect of plasma treatment on the adhesion and stability of the synthesized membranes. Membranes 10(10):292. https://doi.org/10.3390/membranes10100292

    Article  Google Scholar 

  65. Seo HJ, Lee JW, Na YH, Boo JH (2020) Enhancement of photocatalytic activities with nanosized polystyrene spheres patterned titanium dioxide films for water purification. Catalysts 10(8):886. https://doi.org/10.3390/catal10080886

    Article  Google Scholar 

  66. Zaslavsky A, Aydin C, Luryi S, Cristoloveanu S, Mariolle D, Fraboulet D, Deleonibus S (2003) Ultrathin silicon-on-insulator vertical tunneling transistor. Appl Phys Lett 83(8):1653 1655. https://doi.org/10.1063/1.1600832

  67. Kanarik KJ, Lill T, Hudson EA, Sriraman S, Tan S, Marks J, Vahedi V, Gottscho RA (2015) Overview of atomic layer etching in the semiconductor industry. J Vac Sci Technol A: Vac Surf Films 33(2):020802. https://doi.org/10.1116/1.4913379

    Article  Google Scholar 

  68. Wang S, Zhao X, Tong Y, Tang Q, Liu Y (2020) Directly spin coating a low-viscosity organic semiconductor solution onto hydrophobic surfaces: toward high-performance solution-processable organic transistors. Adv Mater Interfaces. https://doi.org/10.1002/admi.201901950

    Article  Google Scholar 

  69. Yasuda HK (2012) Plasma polymerization. Academic press

  70. Toolan DT, Howse JR (2013) Development of in situ studies of spin coated polymer films. J Mater Chem C 1(4):603–616. https://doi.org/10.1039/C2TC00026A

    Article  Google Scholar 

  71. MicroChemicals (2017) Basics of micro structuring. http://www.microchemical.com/download/applications-notes.html

  72. Velumani M, Meher SR, Alex ZC (2019) Composite metal oxide thin film based impedometric humidity sensors. Sens Actuators, B Chem. https://doi.org/10.1016/j.snb.2019.127084

    Article  Google Scholar 

  73. Jiji V, Vinodkumar R (2019) Effect of CuO on the photoluminescence quenching and photocatalytic activity of ZnO multilayered thin films prepared by sol-gel spin coating technique. Mater Res Express 6:106405

  74. Atay F, Durmaz D (2020) Structural, optical and surface properties of multilayer anatase-TiO2 films grown by sol–gel spin coating technique. J Electron Mater. https://doi.org/10.1007/s11664-020-08304-6

    Article  Google Scholar 

  75. Thakur A, Kumar A (2022) Self-healing nanocoatings for automotive application. In Nanotechnology in the Automotive Industry (pp. 403–427). Elsevier. https://doi.org/10.1016/B978-0-323-90524-4.00019-0

  76. Tyona MD (2013) A comprehensive study of spin coating as a thin film deposition technique and spin coating equipment. Department of Physics, Benue State University. https://doi.org/10.12989/amr.2013.2.4.181

  77. Hanaor DA, Triani G, Sorrell C (2011) Morphology and photocatalytic activity of highly oriented mixed phase titanium dioxide thin film. Surf Coat Tech 205(12):855–874. https://doi.org/10.1016/j.surfcoat.2011.01.007

  78. Azani A, Halin DC, Razak KA, Abdullah MMAB, Salleh MAAM, Mahmed N, Ramli MM, Azhari AW, Chobpattana V (2019) Recent graphene oxide/TiO2 thin film based on self-cleaning application. In: IOP Conference series: Materials science and engineering, vol 572, no 1. IOP Publishing, p 012079. https://doi.org/10.1088/1757-899X/572/1/012079

  79. Hoekstra DC, Nickmans K, Lub J, Debije MG, Schenning AP (2019) Air-curable, high-resolution patternable oxetane-based liquid crystalline photonic films via flexographic printing. ACS Appl Mater Interfaces 11(7):7423–7430. https://doi.org/10.1021/acsami.8b21464

    Article  Google Scholar 

  80. Patil NB, Nimbalkar AR, Patil MG (2018) ZnO thin films prepared by a sol-gel spin coating technique for NO2 detection. Mater Sci Eng, B 227:53–60. https://doi.org/10.1016/j.mseb.2017.10.011

    Article  Google Scholar 

  81. Fane AG, Wang R, Jia Y (2011) Membrane technology: past, present and future. In: Membrane and desalination technologies. Humana Press, Totowa, NJ, pp 1–45. https://doi.org/10.1007/978-1-59745-278-6_1

  82. Scriven LE (1988) Physics and applications of dip coating and spin coating. MRS Online Proceedings Library (OPL). https://doi.org/10.1557/PROC-121-717

    Article  Google Scholar 

  83. Karpitschka S, Weber CM, Riegler H (2015) Spin casting of dilute solutions: vertical composition profile during hydrodynamic-evaporative film thinning. Chem Eng Sci 129:243–248. https://doi.org/10.1016/j.ces.2015.01.028

    Article  Google Scholar 

  84. Taherinia M, Nasiri M, Abedini E, Pouretedal HR (2017) The effect of solvent of titanium precursor in the sol-gel process on the activity of TiO2 nanoparticles for H2 production. Iranian Journal of Hydrogen & Fuel Cell 4(2):139–151. https://doi.org/10.22104/ijhfc.2017.2372.1147

    Article  Google Scholar 

  85. John AK, Palaty S (2018) Influence of solvent and pH on the synthesis of visible light active titanium dioxide nano particles. J Sol-Gel Sci Technol 87(2):391–399. https://doi.org/10.1007/s10971-018-4746-3

    Article  Google Scholar 

  86. Rasheed T, Bilal M, Nabeel F, Adeel M, Iqbal HM (2019) Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment. Environ Int 122:52–66

    Article  Google Scholar 

  87. Sadikin SN, Rahman MYA, Umar AA, Salleh MM (2017) Effect of spin-coating cycle on the properties of TiO2 thin film and performance of DSSC. Int J Electrochem Sci 12(6):5529–5538. https://doi.org/10.20964/2017.06.57

    Article  Google Scholar 

  88. Manley EF, Strzalka J, Fauvell TJ, Jackson NE, Leonardi MJ, Eastham ND, Marks TJ, Chen LX (2017) In situ GIWAXS analysis of solvent and additive effects on PTB7 thin film microstructure evolution during spin coating. Adv Mater 29(43):1703933. https://doi.org/10.1002/adma.201703933

  89. Zhang F, Di CA, Berdunov N, Hu Y, Hu Y, Gao X, Meng Q, Sirringhaus H, Zhu D (2013) Ultrathin film organic transistors: precise control of semiconductor thickness via spin-coating. Adv Mater 25(10):1401–1407. https://doi.org/10.1002/adma.201204075

    Article  Google Scholar 

  90. Wang S, Zhao X, Tong Y, Tang Q, Liu Y (2020) Directly spin coating a low-viscosity organic semiconductor solution onto hydrophobic surfaces: toward high-performance solution-processable organic transistors. Adv Mater Interfaces 7(8):1901950. https://doi.org/10.1002/admi.201901950

    Article  Google Scholar 

  91. Baker JA, Mouhamad Y, Hooper KE, Burkitt D, Geoghegan M, Watson TM (2017) From spin coating to roll-to-roll: investigating the challenge of upscaling lead halide perovskite solar cells. IET Renew Power Gener 11(5):546–549. https://doi.org/10.1049/iet-rpg.2016.0683

    Article  Google Scholar 

  92. Lingaraja D, Praveen Kumar S (2016) Methods and materials for adsorbing the benzene molecule based on micro electro mechanical system. In: Artificial intelligence and evolutionary computations in engineering systems. Springer, New Delhi, pp 1059–1066. https://doi.org/10.1007/978-81-322-2656-7_98

  93. Makhlouf ASH, Tiginyanu I (ed) (2011) New book. Nanocoatings and ultra-thin films: technologies and applications. Woodhead Publishing Ltd, ISBN: 978–0–8509–490–2

  94. Reddy KCS, Karthik D, Bhanupriya D, Ganesh K, Ramakrishna M, Sakthivel S (2018) Broad band antireflective coatings using novel in-situ synthesis of hollow MgF2 nanoparticles. Sol Energy Mater Sol Cells 176:259–265. https://doi.org/10.1016/j.solmat.2017.12.010

    Article  Google Scholar 

  95. Abayli D, Baydogan N (2019) The variations of hydrophilic self-cleaning properties and refractive index dependence in the ZrO2 thin films by Gamma Irradiation. Characterization and Application of Nanomaterials 2(2):42–48

    Article  Google Scholar 

  96. Mihoreanu C, Banciu A, Enesca A, Duta A (2017) Silica-based thin films for self-cleaning applications in solar energy converters. J Energy Eng 143(5):04017029. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000461

    Article  Google Scholar 

  97. Choi BK, Lee IH, Kim J, Chang YJ (2017) Tunable wetting property in growth mode-controlled WS2 thin films. Nanoscale Res Lett 12(1):1–6. https://doi.org/10.1186/s11671-017-2030-z

    Article  Google Scholar 

  98. Jothibas M, Manoharan C, Jeyakumar SJ, Praveen P, Punithavathy IK, Richard JP (2018) Synthesis and enhanced photocatalytic property of Ni doped ZnS nanoparticles. Sol Energy 159:434–443. https://doi.org/10.1016/j.solener.2017.10.055

    Article  Google Scholar 

  99. Zhao G, Xue Y, Huang Y, Ye Y, Walsh FC, Chen J, Wang S (2016) One-step electrodeposition of a self-cleaning and corrosion resistant Ni/WS 2 superhydrophobic surface. RSC Adv 6(64):59104–59112. https://doi.org/10.1039/C6RA07899K

  100. Al-Kuhaili MF, Saleem M, Durrani SMA (2012) Optical properties of iron oxide (α-Fe2O3) thin films deposited by the reactive evaporation of iron. J Alloy Compd 521:178–182. https://doi.org/10.1016/j.jallcom.2012.01.115

    Article  Google Scholar 

  101. Jeong E, Zhao G, Song M, Yu SM, Rha J, Shin J, Yun J (2018) Simultaneous improvements in self-cleaning and light-trapping abilities of polymer substrates for flexible organic solar cells. J Mater Chem A 6(5):2379–2387. https://doi.org/10.1039/c7ta09351a

    Article  Google Scholar 

  102. Timoumi A, Alamri SN, Alamri H (2018) The development of TiO2 -graphene oxide nano composite thin films for solar cells. Results in Physics. https://doi.org/10.1016/j.rinp.2018.06.017

    Article  Google Scholar 

  103. Pore V, Kivelä T, Ritala M, Leskelä M (2008) Atomic layer deposition of photocatalytic TiO2 thin films from TiF4 and H2O. Dalton Trans 45:6467. https://doi.org/10.1039/b809953g

    Article  Google Scholar 

  104. Syed JA, Tang S, Meng X (2017) Super-hydrophobic multilayer coatings with layer number tuned swapping in surface wettability and redox catalytic anti-corrosion application. Scientific Rep 7(1). https://doi.org/10.1038/s41598-017-04651-3

  105. Barati D, Aliofkhazraei G, Khorsand M, Sokhanvar S, Kaboli A (2018) Science and engineering of superhydrophobic surfaces: review of corrosion resistance, chemical and mechanical stability. Arab J Chem. https://doi.org/10.1016/j.arabjc.2018.01.013

    Article  Google Scholar 

  106. Mozumder MS, Mourad AH, Pervez H, Surkatti R (2019) Recent developments in multifunctional coatings for solar panel applications: a review. Sol Energy Mater Sol Cells 189:75–102. https://doi.org/10.1016/j.solmat.2018.09.015

    Article  Google Scholar 

  107. Lafuma A, Quéré D (2003) Superhydrophobic states. Nat Mater 2(7):457–460. https://doi.org/10.1038/nmat924

    Article  Google Scholar 

  108. Liu K, Jiang L (2012) Bio-inspired self-cleaning surfaces. Annu Rev Mater Res 42:231–263. https://doi.org/10.1146/annurev-matsci-070511-155046

    Article  Google Scholar 

  109. Barthlott W, Ehler N (1977) Raster-elektronenmikroskopie der Epidermis-oberflächen von Spermatophyten. Akad. d. Wiss. ud Literatur

  110. Hu S, Lopez S, Niewiarowski PH, Xia Z (2012) Dynamic self-cleaning in gecko setae via digital hyperextension. J R Soc Interface 9(76):2781–2790. https://doi.org/10.1098/rsif.2012.0108

    Article  Google Scholar 

  111. Nishimoto S, Bhushan B (2013) Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Adv 3(3):671–690. https://doi.org/10.1039/C2RA21260A

    Article  Google Scholar 

  112. González Lazo MA, Katrantzis I, Dalle Vacche S, Karasu F, Leterrier Y (2016) A facile in situ and uv printing process for bioinspired self-cleaning surfaces. Materials 9(9):738. https://doi.org/10.3390/ma9090738

    Article  Google Scholar 

  113. Furstner RB (2005) NeinhuisCandWalzelP. Langmuir 21:956–961. https://doi.org/10.1021/la0401011

    Article  Google Scholar 

  114. Parkin IP, Palgrave RG (2005) Self-cleaning coatings Journal of materials chemistry 15(17):1689–1695. https://doi.org/10.1039/B412803F

    Article  Google Scholar 

  115. Fateh R, Dillert R, Bahnemann D (2013) Preparation and characterization of transparent hydrophilic photocatalytic TiO2/SiO2 thin films on polycarbonate. Langmuir 29(11):3730–3739. https://doi.org/10.1021/la400191x

    Article  Google Scholar 

  116. Bashouti MY (2009) Controlling the electronic properties of silicon nanowires with functional molecular groups. Small 5:2761. https://doi.org/10.1002/smll.200901402

    Article  Google Scholar 

  117. Bashouti MY, Sardashti K, Schmitt SW, Pietsch M, Ristein J, Haick H, Christiansen SH (2013) Oxide-free hybrid silicon nanowires: from fundamentals to applied nanotechnology. Prog Surf Sci 88(1):39–60. https://doi.org/10.1016/j.progsurf.2012.12.001

    Article  Google Scholar 

  118. Heckenthaler T, Sadhujan S, Morgenstern Y, Natarajan P, Bashouti M, Kaufman Y (2019) Self-cleaning mechanism: why nanotexture and hydrophobicity matter. Langmuir 35(48):15526–15534. https://doi.org/10.1021/acs.langmuir.9b01874

    Article  Google Scholar 

  119. Sow PK, Ashwin Y (2020) A design framework for the fabrication of a low-cost goniometer apparatus for contact angle and surface tension measurements. Meas Sci Technol 31(12):125401. https://doi.org/10.1088/1361-6501/aba78c

    Article  Google Scholar 

  120. Jung JY, Kim YW, Yoo JY, Koo J, Kang YT (2010) Forces acting on a single particle in an evaporating sessile droplet on a hydrophilic surface. Anal Chem 82(3):784–788. https://doi.org/10.1021/ac902288z

    Article  Google Scholar 

  121. Yu YS, Xia XL, Zheng X, Huang X, Zhou JZ (2017) Quasi-static motion of microparticles at the depinning contact line of an evaporating droplet on PDMS surface. Sci China Phys Mech Astron 60(9):1–7. https://doi.org/10.1007/s11433-017-9060-3

    Article  Google Scholar 

  122. Mallamace F, Mallamace D, Chen SH, Lanzafame P, Papanikolaou G (2021) Hydrophilic and hydrophobic effects on the structure and themodynamic properties of confined water: water in solutions. Int J Mol Sci 22(14):7547. https://doi.org/10.3390/ijms22147547

    Article  Google Scholar 

  123. Samuel B, Zhao H, Law KY (2011) Study of wetting and adhesion interactions between water and various polymer and superhydrophobic surfaces. J Phys Chem C 115(30):14852–14861. https://doi.org/10.1021/jp2032466

    Article  Google Scholar 

  124. Roach P, Shirtcliffe NJ, Newton MI (2008) Progess in superhydrophobic surface development. Soft Matter 4(2):224–240. https://doi.org/10.1039/B712575P

    Article  Google Scholar 

  125. Van Oss CJ (2006) Interfacial forces in aqueous media. CRC Press. https://doi.org/10.1201/9781420015768

    Article  Google Scholar 

  126. Law KY (2014) Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: getting the basics right. J Phys Chem Lett 5(4):686–688. https://doi.org/10.1021/jz402762h

    Article  Google Scholar 

  127. Lukong VT, Mouchou RT, Enebe GC, Ukoba K, Jen TC (2022) Deposition and characterization of self-cleaning TiO2 thin films for photovoltaic application. Mater Today. https://doi.org/10.1016/j.matpr.2022.02.089

  128. Banerjee S, Dionysiou DD, Pillai SC (2015) Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl Catal B 176:396–428. https://doi.org/10.1016/j.apcatb.2015.03.058

    Article  Google Scholar 

  129. Atefeh T, Davood R (2018) Thickness dependence of structural, optical and morphological properties of sol-gel derived TiO2 thin film. Materials Research Express 6:016417. https://doi.org/10.1088/2053-1591/aae4d0

    Article  Google Scholar 

  130. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. Photochem J Photobiol C 13:169–189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001

    Article  Google Scholar 

  131. Peeters H, Keulemans M, Nuyts G, Vanmeert F, Li C, Minjauw M, Detavernier C, Bals S, Lenaerts S, Verbruggen SW (2020) Plasmonic gold-embedded TiO2 thin films as photocatalytic self-cleaning coatings. Appl Catal B: Environ 267:118654

  132. Razak KA, Che HD, Al Bakri M, Salleh MA, Mahmed N, Danial NS (2018) Effect of annealing temperature on silver doped titanium dioxide (Ag/TiO2) thin film via sol-gel method. Solid State Phenom 280:26–30. https://doi.org/10.4028/www.scientific.net/SSP.280.26

  133. Mohd ND, Sahdan MZ, Nayan N, Saim H, Adriyanto F, Bakri AS, Morsin M (2018) Difference in structural and chemical properties of sol–gel spin coated Al doped TiO2, Y doped TiO2 and Gd doped TiO2 based on trivalent dopants. RSC Adv 8(52):29686–29697. https://doi.org/10.1039/c8ra03950j

    Article  Google Scholar 

  134. Zhuoran W, Chen D, Guozhen S (2016) Design of nanostructures for flexible energy conversion and storage. Flexible Electronics pp 189–317. https://doi.org/10.1142/9789814651998_0006

  135. Jinbo X, Qianqian S, Fei Y, Wei L, Xuguang L (2014) Investigation on the influence of pH on structure and photoelectrochmical properties of CdSe electrolytically deposited intoTiO2 nanotube arrays. https://doi.org/10.1016/j.jallcom.2014.04.041

  136. Zhu X, Gu P, Wu H, Yang D, Sun H, Wangyang P, Li J, Tian H (2017) Influence of substrate on structural, morphological and optical properties of TiO2 thin films deposited by reaction magnetron sputtering. AIP Adv 7(12):125326. https://doi.org/10.1063/1.5017242

    Article  Google Scholar 

  137. Hussin R, Choy KL, Hou XH (2015) The effect of substrate on TiO2 thin films deposited by atomic layer deposition (ALD). Adv Mater Res 1087:147–151. Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMR.1087.147

  138. Ibrahim SA, Sreekantan S (2011) Effect of pH on TiO2 nanoparticles via sol-gel method. Adv Mater Res 173:184–189. Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMR.173.184

  139. Tsega M, Dejene FB (2017) Influence of acidic pH on the formulation of TiO2 nanocrystalline powders with enhanced photoluminescence property. Heliyon 3(2):e00246. https://doi.org/10.1016/j.heliyon.2017.e00246

    Article  Google Scholar 

  140. Jaramillo J, Garzón BA, Mejía LT (2016) Influence of the pH of the synthesis using sol-gel method on the structural and optical properties of TiO2. J Phys 687(1):012099. IOP Publishing. https://doi.org/10.1088/1742-6596/687/1/012099

  141. Sadiq SA, Waseem Z, Hanif S, Riaz S, Hayat K, Batool AIF, Jamil Y, Naz MY, Anwar H (2020) Investigation of the role of pH on structural and morphological properties of titanium dioxide nanoparticles. In IOP Conference Series: Materials Science and Engineering 863(1):012046. IOP Publishing. https://doi.org/10.1088/1757-899X/863/1/012046

  142. Muhammad B, Bibi A, Javed A, Irfana S, Adnan M (2019) Effects of solvent on the structure and properties of titanium dioxide nanoparticles and their antibacterial activity. Iran J Chem Chem Eng Research 38(4)

  143. Wang J, Bai LY (2015) Properties of TiO2 thin film prepared by sol-gel dip coating. In Appl Mech Mater 723:528–531. Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMM.723.528

  144. Kundu S, Kafizas A, Hyett G, Mills A, Darr JA, Parkin IP (2011) An investigation into the effect of thickness of titanium dioxide and gold–silver nanoparticle titanium dioxide composite thin-films on photocatalytic activity and photo-induced oxygen production in a sacrificial system. J Mater Chem 21(19):6854–6863. https://doi.org/10.1039/C0JM03492D

    Article  Google Scholar 

  145. Mufti N, Laila IK, Fuad A (2017) The effect of TiO2 thin film thickness on self-cleaning glass properties. J Phy 853(1):012035. IOP Publishing. https://doi.org/10.1088/1742-6596/853/1/012035

  146. Taherniya A, Raoufi D (2018) Thickness dependence of structural, optical and morphological properties of sol-gel derived TiO2 thin film. Materials Research Express 6(1):016417. https://doi.org/10.1088/2053-1591/aae4d0

    Article  Google Scholar 

  147. Galkina OL, Vinogradov VV, Agafonov AV, Vinogradov AV (2012) Surfactant-assisted sol-gel synthesis of TiO2 with uniform particle size distribution. Int J Inorg Chem. https://doi.org/10.1155/2011/108087

    Article  Google Scholar 

  148. Sharma AK, Lee BK (2020) Surfactant-aided sol-gel synthesis of TiO2–MgO nanocomposite and their photocatalytic azo dye degradation activity. J Compos Mater 54(12):1561–1570. https://doi.org/10.1177/0021998316636464

    Article  Google Scholar 

  149. Casino S, Di Lupo F, Francia C, Tuel A, Bodoardo S, Gerbaldi C (2014) Surfactant-assisted sol gel preparation of high-surface area mesoporous TiO2 nanocrystalline Li-ion battery anodes. J Alloy Compd 594:114–121. https://doi.org/10.1016/j.jallcom.2014.01.111

    Article  Google Scholar 

  150. Al-Shomara SM, Alahmad WR (2019) Annealing temperature effect on structural, optical and photocatalytic activity of nanocrystalline TiO2 films prepared by sol-gel method used for solar cell application. Dig J Nanomater Biostruct 14:617–625

    Google Scholar 

  151. Bakri AS, Sahdan MZ, Adriyanto F, Raship NA, Said NDM, Abdullah SA, Rahim MS (2017) Effect of annealing temperature of titanium dioxide thin films on structural and electrical properties. In AIP Conference Proceedings 1788(1):030030. AIP Publishing LLC. https://doi.org/10.1063/1.4968283

  152. Pawar SG, Chougule MA, Dalavi DS, Patil PS, Moholkar AV, Sen S, Kim JH, Patil VB (2013) Effect of annealing on microstructural and optoelectronic properties of nanocrystalline TiO2 thin films. J Exp Nanosci 8(4):500–508. https://doi.org/10.1080/17458080.2011.597438

    Article  Google Scholar 

  153. Sahbeni K, Sta I, Jlassi M, Kandyla M, Hajji M, Kompitsas M, Dimassi W (2017) Annealing temperature effect on the physical properties of titanium oxide thin films prepared by the sol-gel method. J Phys Chem A 7:257. https://doi.org/10.4172/2161-0398.1000257

    Google Scholar 

  154. Regonini D, Alves AK, Berutti FA, Clemens F (2014) Effect of aging time and film thickness on the photoelectrochemical properties of TiO2 sol-gel photoanodes. Int J Photoenergy. https://doi.org/10.1155/2014/472539

    Article  Google Scholar 

  155. Dahlan D (2016) Effect of aging time on the synthesis of Fe-doped TiO2 thin films by spin coating method. KnE Engineering. https://doi.org/10.18502/keg.v1i1.500

    Article  Google Scholar 

  156. Behnajady MA, Eskandarloo H, Modirshahla N, Shokri M (2011) Investigation of the effect of sol–gel synthesis variables on structural and photocatalytic properties of TiO2 nanoparticles. Desalination 278(1–3):10–17. https://doi.org/10.1016/j.desal.2011.04.019

    Article  Google Scholar 

  157. Barua N, Moushumi JF, Rashid AKMB (2018) Effect of concentration of precursor solution on surface morphology and optical properties of titania thin film. In IOP Conference Series: Materials Science and Engineering 438(1):012032. IOP Publishing. https://doi.org/10.1088/1757-899X/438/1/012032

  158. Lourduraj S, Williams RV (2017) Effect of molarity on sol–gel routed nano TiO2 thin films. J Adv Dielectr 7(06):1750042. https://doi.org/10.1142/S2010135X17500424

    Article  Google Scholar 

  159. Spiridonova J, Katerski A, Danilson M, Krichevskaya M, Krunks M, Oja Acik I (2019) Effect of the titanium isopropoxide: acetylacetone molar ratio on the photocatalytic activity of TiO2 thin films. Molecules 24(23):4326. https://doi.org/10.3390/molecules24234326

    Article  Google Scholar 

  160. Maarof SKM, Abdullah S, Rusop M (2013) Synthetizations of nanostructured titanium dioxide at low molarity of sol-gel process. In IOP Conference Series: Materials Science and Engineering 46(1):012009. IOP Publishing. https://doi.org/10.1088/1757-899X/46/1/012009

  161. Zulkefle MA, Abdul Rahman R, Yusof KA, Abdullah WFH, Rusop M, Herman SH (2016) Spin speed and duration dependence of TiO2 thin films pH sensing behavior. J Sens. https://doi.org/10.1155/2016/9746156

    Article  Google Scholar 

  162. Sadikin SN, Rahman MYA, Umar AA, Salleh MM (2017) Effect of spin-coating cycle on the properties of TiO2 thin film and performance of DSSC. Int J Electrochem Sci 12(6):5529–5538. https://doi.org/10.20964/2017.06.57

    Article  Google Scholar 

  163. Danish M, Ambreen S, Chauhan A, Pandey A (2015) Optimization and comparative evaluation of optical and photocatalytic properties of TiO2 thin films prepared via sol–gel method. J Saudi Chem Soc 19(5):557–562. https://doi.org/10.1016/j.jscs.2015.05.010

    Article  Google Scholar 

  164. Doghmane HE, Touam T, Chelouche A, Challali F, Djouadi D (2020) Synthesis and characterization of Tio2 thin films for photovoltaic and optoelectronic applications. In: Belasri A., Beldjilali S. (eds) ICREEC 2019. Springer Proceedings in Energy Springer, Singapore. https://doi.org/10.1007/978-981-15-5444-5_39

  165. Manzoor M, Rafiq A, Ikram M, Nafees M, Ali S (2018) Structural, optical, and magnetic study of Ni-doped TiO2 nanoparticles synthesized by sol–gel method. International Nano Letters 8(1):1–8. https://doi.org/10.1007/s40089-018-0225-7

    Article  Google Scholar 

  166. Messemeche R, Saidi H, Attaf A, Benkhetta A, Chala S, Azizi R, Nouadji R (2020) Elaboration and characterization of nano-crystalline layers of transparent titanium dioxide (Anatase-TiO2) deposited by a sol-gel (spin coating) process. https://doi.org/10.1016/j.surfin.2020.100482Get

  167. Matsui T, Sai H, Bidiville A, Hsu HJ, Matsubara K (2018) Progress and limitations of thin-film silicon solar cells. Sol Energy 170:486–498. https://doi.org/10.1016/j.solener.2018.05.077

    Article  Google Scholar 

  168. Parthasarathy P, Vivekanandan S (2019) Biocompatible TiO2-CeO2 nano-composite synthesis, characterization and analysis on electrochemical performance for uric acid determination. https://doi.org/10.1016/j.asej.2019.11.011

  169. Yeoh ME, Chan KY (2019) Efficiency enhancement in dye-sensitized solar cells with ZnO and TiO2 blocking layers. J Electron Mater. https://doi.org/10.1007/s11664-019-07207-5

    Article  Google Scholar 

  170. Dissanayake N, Abeysundara S, Wanasekara ND (2020) Investigating the feasibility of applying spin coating method for textiles. Moratuwa. https://doi.org/10.1109/MERCon50084.2020.9185265

  171. Periyasamy AP, Venkataraman M, Kremenakova D, Militky J, Zhou Y (2020) Progress in sol-gel technology for the coatings of fabrics materials 13(8):1838. https://doi.org/10.3390/ma13081838

    Article  Google Scholar 

  172. Tomasz T, Matysiak W, Kosmalska D, Lubos A (2018) Influence of calcination temperature on optical and structural properties of TiO2 thin films prepared by means of sol-gel and spin coating. Bulletin of the Polish Academy of Sciences: Technical Sciences 66:151–156. https://doi.org/10.24425/119069

    Article  Google Scholar 

  173. Zhang H, Sun S, Ding H, Deng T, Wang J (2020) Effect of calcination temperature on the structure and properties of SiO2 microspheres/nano-TiO2 composites. Mater Sci Semicond Process 115:105099. https://doi.org/10.1016/j.mssp.2020.105099

    Article  Google Scholar 

  174. Yu J, Zhao X, Zhao Q (2000) Effect of film thickness on the grain size and photocatalytic activity of the sol-gel derived nanometer TiO2 thin films. J Mater Sci Lett 19:1015–1017. https://doi.org/10.1023/A:1006705316651

    Article  Google Scholar 

  175. Timoumi A, Albetran HM, Alamri HR, Alamri SN, Low IM (2020) Impact of annealing temperature on structural, morphological and optical properties of GO-TiO2 thin films prepared by spin coating technique. Superlattices Microstruct 139:106423. https://doi.org/10.1016/j.spmi.2020.106423

    Article  Google Scholar 

  176. Lourduraj S, Williams RV (2017) Effect of iron doping on structural and optical properties of TiO2 thin film by sol–gel routed spin coating technique. J Adv Dielectr 07(04):1750024. https://doi.org/10.1142/s2010135x17500242

    Article  Google Scholar 

  177. Wang Q, Li XL, Nie W, Xia YM, Dai JF (2010) The preparation and photocatalytic activity of SWNTs doped ZnO/TiO2 compound films. Adv Mater Res 97:1611–1615. Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMR.97-101.1611

  178. Lien SY, Nautiyal A, Jhu JH, Hsu JK, Lee SJ (2013) Surface chemistry of super-hydrophilic SiO2-doped TiO2 photo-catalysts for self-cleaning glass. Asian J Chem 25(11):6071. https://doi.org/10.14233/ajchem.2013.14257

  179. Chen Z, Cao C, Chen S, Luo H, Gao Y (2014) Crystallized mesoporous TiO2 (A)–VO2(M/R) nanocomposite films with self-cleaning and excellent thermochromic properties. Journal of Materials Chemistry A 2(30):11874–11884. https://doi.org/10.1039/C4TA01585A

    Article  Google Scholar 

  180. Choi T, Kim JS, Kim JH (2016) Transparent nitrogen doped TiO2/WO3 composite films for self-cleaning glass applications with improved photodegradation activity. Adv Powder Technol 27(2):347–353. https://doi.org/10.1016/j.apt.2016.01.005

  181. Prabhu S, Cindrella L, Kwon OJ, Mohanraju K (2017) Superhydrophilic and self-cleaning rGO-TiO2 composite coatings for indoor and outdoor photovoltaic applications. Sol Energy Mater Sol Cells 169:304–312. https://doi.org/10.1016/j.solmat.2017.05.023

    Article  Google Scholar 

  182. Adak D, Ghosh S, Chakrabarty P, Mondal A, Saha H, Mukherjee R, Bhattacharyya R (2017) Self-cleaning V-TiO:SiO2 thin-film coatings with enhanced transmission for solar glass cover and related applications. Sol Energy 155:410–418. https://doi.org/10.1016/j.solener.2017.06.014

    Article  Google Scholar 

  183. Hussin SHAA (2017) Study the nanoporous SiO2–TiO2 doped with Er and La thin films properties antireflection and self-cleaning applications (Doctoral dissertation, College of Science for Women Physics Department Study the Nanoporous SiO2–TiO2 Doped With Er and La Thin Films Properties Antireflection and Self-Cleaning Applications A thesis submitted to the Council of College of Science for Women, University of Baghdad)

  184. Du Z, Cheng C, Tan L, Lan J, Jiang S, Zhao L, Guo R (2018) Enhanced photocatalytic activity of Bi2WO6/TiO2 composite coated polyester fabric under visible light irradiation. Appl Surf Sci 435:626–634. https://doi.org/10.1016/j.apsusc.2017.11.136

    Article  Google Scholar 

  185. Kongsong P, Masae M, Jeenarong A (2018) Super hydrophilic property and photocatalytic activity of Na doped K/TiO2 thin films coated on the substrates under visible light irradiation. Dig J Nanomater Biostruct 13(2):459–464

    Google Scholar 

  186. Azani A, Halin DS, Razak KA, Abdullah MM, Salleh MA, Mahmed N, Ramli MM, Sepeai S, Sharin MF, Chobpattana V (2019) Self-cleaning property of graphene oxide/TiO2 thin film. In AIP Conference Proceedings 2129(1):020062. AIP Publishing LLC. https://doi.org/10.1063/1.5118070

  187. Razak KA, Halin DS, Abdullah MM, Azani A, Mohd Salleh MA, Mahmed N, Chobpattana V (2020) Self-cleaning property of Ag/TiO2 thin film. Mater Sci Forum 1010:397–404. Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/MSF.1010.397

  188. Appasamy JS, Kurnia JC, Assadi MK (2020) Synthesis and evaluation of nitrogen-doped titanium dioxide/single walled carbon nanotube-based hydrophilic self-cleaning coating layer for solar photovoltaic panel surface. Sol Energy 196:80–91. https://doi.org/10.1016/j.solener.2019.12.022

    Article  Google Scholar 

  189. Upadhaya D, Purkayastha DD, Krishna MG (2020) Dependence of calcination temperature on wettability and photocatalytic performance of SnO2–TiO2 composite thin films. Mater Chem Phys 241:122333. https://doi.org/10.1016/j.matchemphys.2019.122333

    Article  Google Scholar 

  190. da Silva Cardoso R, Maria de Amorim S, Scaratti G, Moura-Nickel CD, Muniz Moreira RP, Li Puma G, Moreira RD (2020) Structural, optical and photocatalytic properties of erbium (Er3+) and yttrium (Y3+) doped TiO2 thin films with remarkable self-cleaning super-hydrophilic properties. https://doi.org/10.1039/d0ra02242j

  191. Rosales A, Ortiz-Frade L, Medina-Ramirez IE, Godínez LA, Esquivel K (2021) Self-cleaning of SiO2-TiO2 coating: effect of sonochemical synthetic parameters on the morphological, mechanical, and photocatalytic properties of the films. Ultrason Sonochem 73:105483. https://doi.org/10.1016/j.ultsonch.2021.105483

    Article  Google Scholar 

  192. Banerjee S, Dionysiou DD, Pillai SC (2015) Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl Catal B 176–177:396–428. https://doi.org/10.1016/j.apcatb.2015.03.058

    Article  Google Scholar 

  193. Thuy VTT, Hao LT, Jeon H, Koo JM, Park J, Lee ES, Hwang SY, Choi S, Park J, Oh DX (2021) Sustainable, self-cleaning, transparent, and moisture/oxygen-barrier coating films for food packaging. Green Chem 23(7):2658–2667. https://doi.org/10.1039/D0GC03647A

    Article  Google Scholar 

  194. Rabajczyk A, Zielecka M, Klapsa W, Dziechciarz A (2021) Self-cleaning coatings and surfaces of modern building materials for the removal of some air pollutants. Materials 14(9):2161. https://doi.org/10.3390/ma14092161

    Article  Google Scholar 

  195. Liu J, Ye L, Wooh S, Kappl M, Steffen W, Butt HJ (2019) Optimizing hydrophobicity and photocatalytic activity of PDMS-coated titanium dioxide. ACS Appl Mater Interfaces 11:27422–27425. https://doi.org/10.1021/acsami.9b07490

    Article  Google Scholar 

  196. She Z, Li Q, Wang Z, Li L, Chen F, Zhou J (2013) Researching the fabrication of anticorrosion superhydrophobic surface on magnesium alloy and its mechanical stability and durability. Chem Eng J 228:415–424. https://doi.org/10.1016/j.cej.2013.05.017

    Article  Google Scholar 

  197. Aziz HA, Umar M (2013) Photocatalytic degradation of organic pollutants in water. INTECH: Chapter 8. https://doi.org/10.5772/53699

  198. Engel A, Große J, Dillert R, Bahnemann DW (2016) The influence of irradiance and humidity on the photocatalytic conversion of nitrogen(II) oxide. Journal of Advanced Oxidation Technologies. https://doi.org/10.1515/jaots-2015-0203

    Article  Google Scholar 

  199. Raibeck L, Reap J, Bras B (2008) Investigating environmental benefits of biologically inspired self-cleaning surfaces. In: 15th CIRP International Conference on Life Cycle Engineering. pp 640–645

  200. Mansour AMH, Al-Dawery SK (2018) Sustainable self-cleaning treatments for architectural facades in developing countries. Alex Eng J 57(2):867–873. https://doi.org/10.1016/j.aej.2017.01.042

    Article  Google Scholar 

  201. Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44:8269–8285. https://doi.org/10.1143/JJAP.44.8269

    Article  Google Scholar 

  202. Beeldens A (2006) An environmentally friendly solution for air purification and self-cleaning effect: the application of TiO2 as a photocatalyst in concrete. In: Proceedings of transport research arena Europe–TRA. Göteborg, Sweden, pp 1–9

  203. Fujishima A, Zhang X (2006) Titanium dioxide photocatalysis: present situation and future approaches. C R Chim 9(5–6):750–760. https://doi.org/10.1016/j.crci.2005.02.055

    Article  Google Scholar 

  204. Mellott NP, Durucan C, Pantano CG, Guglielmi M (2006) Commercial and laboratory prepared titanium dioxide thin films for self-cleaning glasses: photocatalytic performance and chemical durability. Thin Solid Films 502(1–2):112–120. https://doi.org/10.1016/j.tsf.2005.07.255

    Article  Google Scholar 

  205. Hsieh BJ, Tsai MC, Pan CJ, Su WN, Rick J, Chou HL, Lee JF, Hwang BJ (2017) Tuning metal support interactions enhances the activity and durability of TiO2-supported Ptnanocatalysts. ElectrochimicaActa 224:452–459.https://doi.org/10.1016/j.electacta.2016.12.020

  206. Einaga H, Ibusuki T, Futamura S (2004) Improvement of catalyst durability by deposition of Rh on TiO2 in photooxidation of aromatic compounds. Environ Sci Technol 38(1):285–289. https://doi.org/10.1021/es034336v

    Article  Google Scholar 

  207. Li J, Lu Y, Lan P, Zhang X, Xu W, Tan R, Song W, Choy KL (2013) Design, preparation, and durability of TiO2/SiO2 and ZrO2/SiO2 double-layer antireflective coatings in crystalline silicon solar modules. Sol Energy 89:134–142. https://doi.org/10.1016/j.solener.2012.12.011

    Article  Google Scholar 

  208. Cedillo-González EI, Barbieri V, Falcaro P, Torres-Martínez LM, Juárez-Ramírez I, Villanova L, Montecchi M, Pasquali L, Siligardi C (2018) Influence of domestic and environmental weathering in the self-cleaning performance and durability of TiO2 photocatalytic coatings. Build Environ 132:96–103. https://doi.org/10.1016/j.buildenv.2018.01.028

    Article  Google Scholar 

  209. Ma Y, Liu H, Wu J, Yuan L, Wang Y, Du X, Wang R, Marwa PW, Petlulu P, Chen X, Zhang H (2019) The adverse health effects of bisphenol A and related toxicity mechanisms. Environ Res 176:108575

  210. Hassan MM, Dylla H, Mohammad LN, Rupnow T (2010) Evaluation of the durability of titanium dioxide photocatalyst coating for concrete pavement. Constr Build Mater 24(8):1456–1461. https://doi.org/10.1016/j.conbuildmat.2010.01.009

    Article  Google Scholar 

  211. Zhao D, Chen C, Wang Y, Ji H, Ma W, Zang L, Zhao J (2008) Surface modification of TiO2 by phosphate: effect on photocatalytic activity and mechanism implication. J Phys Chem 5993–6001. https://doi.org/10.1021/jp712049c

  212. Wen K, Liu M, Liu X, Deng C, Zhou K (2017) Deposition of photocatalytic TiO2 coating by modifying the solidification pathway in plasma spraying. Coatings 2017:169. https://doi.org/10.3390/coatings7100169

  213. Faraldos M, Kropp R, Anderson M, Sobolev K (2015) Photocatalytic hydrophobic concrete coatings to combat air pollution. Catal Today. https://doi.org/10.1016/j.cattod.2015.07.025

    Article  Google Scholar 

  214. Hariharan C (2006) Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: revisited. Appl Catal A 304:55–61. https://doi.org/10.1016/j.apcata.2006.02.020Get

    Article  Google Scholar 

Download references

Funding

The authors would like to appreciate funding from the National Research Foundation of South Africa, The University Research Council of the University of Johannesburg, South Africa, and the Global Excellence Stature award.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Mr. Valantine Takwa Lukong performed originator, data collection, and first draft. Preliminary review and editing by Dr. Ukoba Kingsley. Prof. Tien-Chien Jen carried out the funding source, material, analysis tools, and final editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tien-Chien Jen.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors at this moment grant consent for the publication of this manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukong, V.T., Ukoba, K. & Jen, TC. Review of self-cleaning TiO2 thin films deposited with spin coating. Int J Adv Manuf Technol 122, 3525–3546 (2022). https://doi.org/10.1007/s00170-022-10043-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10043-3

Keywords

Navigation