Skip to main content

Advertisement

Log in

Toward product green design of modeling, assessment, optimization, and tools: a comprehensive review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Serious environmental problems, such as global resource depletion and climate warming, have currently become the most discussed issues. The design and development of a green product is crucial for mitigating environmental problems. Note that product design determines nearly 80% of the product cost and 70% of the environmental impact, which has a decisive impact on the product life cycle. Therefore, the green design of products can effectively solve the problem of environmental pollution and climate change from the source with respect to the principles of social, economic, and ecological sustainability. A comprehensive literature review is urgently needed to support green design efficiently and comprehensively in view of the complexity of the product design information and the diversity of green design methods. Therefore, this paper focuses on the four key aspects of product green design, i.e., modeling, assessment, optimization, and tools, which systematically investigates the literature and analyzes the characteristics, application, and mutual problem of the methods. Based on this, conclusions for the future research directions of product green design were drawn from the following aspects: (1) the life cycle integrated model considering the complex mapping association mechanism, (2) the inventory data acquisition strategy for life cycle environmental impact assessment, (3) the life cycle optimization on the basis of the artificial intelligence, and (4) the integrated tool of green design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data and materials used or analyzed during the current study are included in this manuscript.

Code availability

Not applicable.

References

  1. Mahbub N, Gemechu E, Zhang H, Kumar A (2019) The life cycle greenhouse gas emission benefits from alternative uses of biofuel coproducts. Sustain Energy Technol Assessments 34:173–186. https://doi.org/10.1016/j.seta.2019.05.001

    Article  Google Scholar 

  2. Li B, Hong J, Liu Z (2017) A novel topology optimization method of welded box-beam structures motivated by low-carbon manufacturing concerns. J Clean Prod 142:2792–2803. https://doi.org/10.1016/j.jclepro.2016.10.189

    Article  Google Scholar 

  3. Kumar A, Sharma MP (2014) Estimation of GHG emission and energy recovery potential from MSW landfill sites. Sustain Energy Technol Assessments 5:50–61. https://doi.org/10.1016/j.seta.2013.11.004

    Article  Google Scholar 

  4. Dowlatshahi S (1992) Product design in a concurrent engineering environment: an optimization approach. Int J Prod Res 30:1803–1818. https://doi.org/10.1080/00207549208948123

    Article  Google Scholar 

  5. Ballouki I, Douimi M, Ouzizi L (2018) Decision support tool selection for eco-design integration into the simultaneous design of product and its supply chain. J Environ Assess Policy Manag. https://doi.org/10.1142/S1464333218500072

    Article  Google Scholar 

  6. Zhai LY, Khoo LP, Zhong ZW (2009) Design concept evaluation in product development using rough sets and grey relation analysis. Expert Syst Appl 36:7072–7079. https://doi.org/10.1016/j.eswa.2008.08.068

    Article  Google Scholar 

  7. Gaha R, Yannou B, Benamara A (2014) A new eco-design approach on CAD systems. Int J Precis Eng Manuf 15:1443–1451. https://doi.org/10.1007/s12541-014-0489-4

    Article  Google Scholar 

  8. Olivier JGJ, Janssens-Maenhout G, Muntean M, Peters J (2016) Trends in global CO2 emissions: 2016 report; PBL Netherlands Environmental Assessment Agency: The Hague. PBL Netherlands Environ Assess Agency Eur Comm Jt Res Cent 86

  9. Höglmeier K, Steubing B, Weber-Blaschke G, Richter K (2015) LCA-based optimization of wood utilization under special consideration of a cascading use of wood. J Environ Manage 152:158–170. https://doi.org/10.1016/j.jenvman.2015.01.018

    Article  Google Scholar 

  10. Carvalho MM, Fleury A, Lopes AP (2013) An overview of the literature on technology roadmapping (TRM): contributions and trends. Technol Forecast Soc Change 80:1418–1437. https://doi.org/10.1016/j.techfore.2012.11.008

    Article  Google Scholar 

  11. Tranfield D, Denyer D, Smart P (2003) Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br J Manag 14:207–222. https://doi.org/10.1111/1467-8551.00375

    Article  Google Scholar 

  12. Cao D, Qin S, Liu YS (2013) Advances in conceptual design theories, methodologies, and applications. Adv Mech Eng 2013:2013–2015. https://doi.org/10.1155/2013/207492

    Article  Google Scholar 

  13. Gero JS (1990) Design prototypes. A knowledge representation schema for design. AI Mag 11:26–36

    Google Scholar 

  14. Li L, Yu S, Tao J, Li L (2018) A FBS-based energy modelling method for energy efficiency-oriented design. J Clean Prod 172:1–13. https://doi.org/10.1016/j.jclepro.2017.09.254

    Article  Google Scholar 

  15. Jeong MG, Suh HW (2010) Morrison JR (2010) A framework for stepwise life cycle assessment during product design with case-based reasoning. IEEE Int Conf Autom Sci Eng CASE 2010:118–123. https://doi.org/10.1109/COASE.2010.5584670

    Article  Google Scholar 

  16. Zhang L, Peng H, Liu Z et al (2013) Knowledge reuse in green product concept design process. J Mech Eng 49:72–79. https://doi.org/10.3901/JME.2013.07.072

    Article  Google Scholar 

  17. Deng YM (2002) Function and behavior representation in conceptual mechanical design. Artif Intell Eng Des Anal Manuf AIEDAM 16:343–362. https://doi.org/10.1017/s0890060402165024

    Article  Google Scholar 

  18. Gero JS, Kannengiesser U (2004) The situated function-behaviour-structure framework. Des Stud 25:373–391. https://doi.org/10.1016/j.destud.2003.10.010

    Article  Google Scholar 

  19. Cascini G, Fantoni G, Montagna F (2013) Situating needs and requirements in the FBS framework. Des Stud 34:636–662. https://doi.org/10.1016/j.destud.2012.12.001

    Article  Google Scholar 

  20. Vermaas PE, Dorst K (2007) On the conceptual framework of John Gero’s FBS-model and the prescriptive aims of design methodology. Des Stud 28:133–157. https://doi.org/10.1016/j.destud.2006.11.001

    Article  Google Scholar 

  21. Meljer BR, Tomlyama T, van der Hoist BH, Van Der Werff K (2003) Knowledge structuring for function design. CIRP Ann - Manuf Technol 52:89–92. https://doi.org/10.1016/S0007-8506(07)60538-1

  22. Christophe F, Bernard A, Coatanéa É (2010) RFBS: a model for knowledge representation of conceptual design. CIRP Ann - Manuf Technol 59:155–158. https://doi.org/10.1016/j.cirp.2010.03.105

    Article  Google Scholar 

  23. Umeda Y, Ishii M, Yoshioka M et al (1996) Supporting conceptual design based on the function-behavior-state modeler. Artif Intell Eng Des Anal Manuf AIEDAM 10:275–288. https://doi.org/10.1017/s0890060400001621

    Article  Google Scholar 

  24. Habib T, Komoto H (2014) Comparative analysis of design concepts of mechatronics systems with a CAD tool for system architecting. Mechatronics 24:788–804. https://doi.org/10.1016/j.mechatronics.2014.03.003

    Article  Google Scholar 

  25. Deng YM, Zhu YW (2009) Function to structure/material mappings for conceptual design synthesis and their supportive strategies. Int J Adv Manuf Technol 44:1063–1072. https://doi.org/10.1007/s00170-008-1923-5

    Article  Google Scholar 

  26. Yang Y, Zhu Z, Yao L (2011) Design modeling and solving implementation for product conceptual design in quality function deployment. Adv Mater Res 279:394–399. https://doi.org/10.4028/www.scientific.net/AMR.279.394

    Article  Google Scholar 

  27. Chen Y, Zhao M, Xie Y, Zhang Z (2015) A new model of conceptual design based on scientific ontology and intentionality theory. Part II: the process model. Des Stud 38:139–160. https://doi.org/10.1016/j.destud.2015.01.003

    Article  Google Scholar 

  28. Zhang H, Han X, Li R et al (2016) A new conceptual design method to support rapid and effective mapping from product design specification to concept design. Int J Adv Manuf Technol 87:2375–2389. https://doi.org/10.1007/s00170-016-8576-6

    Article  Google Scholar 

  29. Lu Y, Zhang G, Qi J, Huang Y (2021) Operational state assessment of cross-linked polyethylene power cable on the basis of an optimized cloud matter-element theory. Sustain Energy Technol Assessments 48:101584. https://doi.org/10.1016/j.seta.2021.101584

    Article  Google Scholar 

  30. Zhu Q, Yu Y, Cai W (2005) Extension set and the research of the extension ADD transformation. Proc - 3rd Int Conf Inf Technol Appl ICITA 2005 I:399–402. https://doi.org/10.1109/icita.2005.142

  31. Ju Y, Yu Y, Ju G, Cai W (2005) Extension set and restricting qualifications of matter-elements’ extension. Proc - 3rd Int Conf Inf Technol Appl ICITA 2005 I:395–398. https://doi.org/10.1109/icita.2005.141

  32. Liu X, Qin J, Tang Y (2006) An innovative function-tree building method based on similarity theory and extension theory. 2006 7th Int Conf Comput Ind Des Concept Des CAIDC. https://doi.org/10.1109/CAIDCD.2006.329434

  33. Yin L, Zhao J, Hao X, et al (2016) Research on the configuration design method of the product based on the extension case-based reasoning. Proc - 2015 8th Int Symp Comput Intell Des Isc 2015 1:388–391. https://doi.org/10.1109/ISCID.2015.236

  34. Liao Y, Yang C, Li W (2015) Extension innovation design of product family based on kano requirement model. Procedia Comput Sci 55:268–277. https://doi.org/10.1016/j.procs.2015.07.045

    Article  Google Scholar 

  35. Wang MH, Chen PY (2013) Using extension theory to design a low-cost and high-accurate personal recognition system. Int J Distrib Sens Networks. https://doi.org/10.1155/2013/952568

    Article  Google Scholar 

  36. Huang Y, Chen H, Outang C (2000) The integration of extension theory to design a new fuzzy inference model. Int J Artif Intell Tools 09:473–492. https://doi.org/10.1142/s0218213000000306

    Article  Google Scholar 

  37. Murayama T, Oba F, Abe S, Yamamichi Y (2001) Disassembly sequence generation using information entropy and heuristics for component replacement. Proc IEEE Int Symp Assem Task Plan. https://doi.org/10.1109/isatp.2001.928991

    Article  Google Scholar 

  38. Zhao Y, Wang H, Hong H, Chen J (2012) Cased-based reasoning based on extension theory for conflict resolution in cooperative design. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 7467 LNCS:134–142. https://doi.org/10.1007/978-3-642-32609-7_18

  39. Wang TC, Yang AJ, Zhong SS (2014) Multi-attribute extension fuzzy optimized decision-making model of scheme design. Teh Vjesn 21:239–247

    Google Scholar 

  40. Dou RL, Zheng H (2013) Extraction of energy unit for electromechanical products based on extension theory. Int Asia Conf Ind Eng Manag Innov Core Areas Ind Eng IEMI 2012 - Proc 183–187. https://doi.org/10.1007/978-3-642-38445-5_18

  41. Ko YT (2020) Modeling an innovative green design method for sustainable products. Sustain. https://doi.org/10.3390/su12083351

    Article  Google Scholar 

  42. Li AH, Zhang GQ, Li YL (2013) Research on ceramic title automatic packaging corner machine based on extension theory. Appl Mech Mater 420:99–104. https://doi.org/10.4028/www.scientific.net/AMM.420.99

    Article  Google Scholar 

  43. Case K, Gao J (1993) Feature technology: an overview. Int J Comput Integr Manuf 6:2–12. https://doi.org/10.1080/09511929308944549

    Article  Google Scholar 

  44. Shah JJ, Mathew A (1991) Experimental investigation of the step form-feature information model. Comput Des 23:282–296. https://doi.org/10.1016/0010-4485(91)90068-8

    Article  MATH  Google Scholar 

  45. Krithika LB, Priya GGL (2021) Graph based feature extraction and hybrid classification approach for facial expression recognition. J Ambient Intell Humaniz Comput 12:2131–2147. https://doi.org/10.1007/s12652-020-02311-5

    Article  Google Scholar 

  46. Salomons OW, Kappert JH, van Slooten F et al (1993) Computer support in the (re)design of mechanical products. IFIP Trans B Comput Appl Technol 91–103

  47. Yang CH, Wang CS, Chen CF et al (2014) Fuzzy decision making in shape feature design for product development. IEEE Int Conf Ind Eng Eng Manag 580–584. https://doi.org/10.1109/IEEM.2014.7058704

  48. Chen Z, Tao J, Yu S (2017) A feature-based CAD-LCA software integration approach for eco-design. Procedia CIRP 61:721–726. https://doi.org/10.1016/j.procir.2016.11.228

    Article  Google Scholar 

  49. Pang Y, Nee AYC, Ong SK et al (2006) Assembly feature design in an augmented reality environment. Assem Autom 26:34–43. https://doi.org/10.1108/01445150610645648

    Article  Google Scholar 

  50. Baotong L, Jun H, Zhihui Q, Yubao C (2008) Study on modelling of the product design knowledge based on functional feature partition. Proc - Int Conf Comput Sci Softw Eng CSSE 5:1102–1105. https://doi.org/10.1109/CSSE.2008.191

  51. Cheng Z, Ma Y (2017) A functional feature modeling method. Adv Eng Informatics 33:1–15. https://doi.org/10.1016/j.aei.2017.04.003

    Article  Google Scholar 

  52. Samanta K, Koc B (2004) Heterogeneous object design with material feature blending. Comput Aided Des Appl 1:429–437. https://doi.org/10.1080/16864360.2004.10738285

    Article  Google Scholar 

  53. Liu X, Li Y, Wang L (2015) Combining dynamic machining feature with function blocks for adaptive machining. IEEE Trans Autom Sci Eng 13:828–841. https://doi.org/10.1109/TASE.2015.2409294

    Article  Google Scholar 

  54. Givehchi M, Haghighi A, Wang L (2015) Generic machining process sequencing through a revised enriched machining feature concept. J Manuf Syst 37:564–575. https://doi.org/10.1016/j.jmsy.2015.04.004

    Article  Google Scholar 

  55. Manafi D, Nategh MJ, Parvaz H (2017) Extracting the manufacturing information of machining features for computer-aided process planning systems. Proc Inst Mech Eng Part B J Eng Manuf 231:2072–2083. https://doi.org/10.1177/0954405415623487

    Article  Google Scholar 

  56. Ong SK, Fang HC, Nee AYC (2016) A design feature-based approach for product remanufacturability assessment and analysis. Procedia CIRP 53:15–20. https://doi.org/10.1016/j.procir.2016.07.005

    Article  Google Scholar 

  57. Zhou G, Zhou C, Lu Q et al (2018) Feature-based carbon emission quantitation strategy for the part machining process. Int J Comput Integr Manuf 31:406–425. https://doi.org/10.1080/0951192X.2017.1328561

    Article  Google Scholar 

  58. Hu L, Tang R, He K, Jia S (2015) Estimating machining-related energy consumption of parts at the design phase based on feature technology. Int J Prod Res 53:7016–7033. https://doi.org/10.1080/00207543.2014.944281

    Article  Google Scholar 

  59. Meng Q, Li FY, Zhou LR et al (2015) A rapid life cycle assessment method based on green features in supporting conceptual design. Int J Precis Eng Manuf - Green Technol 2:189–196. https://doi.org/10.1007/s40684-015-0023-x

    Article  Google Scholar 

  60. He B, Hua Y (2017) Feature-based integrated product model for low-carbon conceptual design. J Eng Des 28:408–432. https://doi.org/10.1080/09544828.2017.1316833

    Article  Google Scholar 

  61. Wang G, Li F, Zhao F et al (2021) A product carbon footprint model for embodiment design based on macro-micro design features. Int J Adv Manuf Technol 116:3839–3857. https://doi.org/10.1007/s00170-021-07557-7

    Article  Google Scholar 

  62. Tao J, Chen Z, Yu S, Liu Z (2017) Integration of life cycle assessment with computer-aided product development by a feature-based approach. J Clean Prod 143:1144–1164. https://doi.org/10.1016/j.jclepro.2016.12.005

    Article  Google Scholar 

  63. Skerritt B (2018) Graph theory graph theory. Mediu - Univ Liverpool 274

  64. Wang J, Zuo X, He Y (2010) Graph-based network analysis of resting-state functional MRI. Front Syst Neurosci 4:1–14. https://doi.org/10.3389/fnsys.2010.00016

    Article  Google Scholar 

  65. Care CM (1982) Graph theory and applications Phys Bull 33:332–332. https://doi.org/10.1088/0031-9112/33/9/033

    Article  Google Scholar 

  66. Tian G, Ren Y, Feng Y et al (2019) Modeling and planning for dual-objective selective disassembly using and/or graph and discrete artificial bee colony. IEEE Trans Ind Informatics 15:2456–2468. https://doi.org/10.1109/TII.2018.2884845

    Article  Google Scholar 

  67. Li F, Duan G, Wang J et al (2002) Green design assessing system model of products. IEEE Int Symp Electron Environ. https://doi.org/10.1109/isee.2002.1003252

    Article  Google Scholar 

  68. Raghavan S, Ball MO, Trichur VS (2002) Bicriteria product design optimization: an efficient solution procedure using AND/OR trees. Nav Res Logist 49:574–592. https://doi.org/10.1002/nav.10031

    Article  MathSciNet  MATH  Google Scholar 

  69. Qian X, Zhang HC (2009) Design for environment: an environmentally conscious analysis model for modular design. IEEE Trans Electron Packag Manuf 32:164–175. https://doi.org/10.1109/TEPM.2009.2022544

    Article  Google Scholar 

  70. Venkata Rao R, Gandhi OP (2002) Digraph and matrix methods for the machinability evaluation of work materials. Int J Mach Tools Manuf 42:321–330. https://doi.org/10.1016/S0890-6955(01)00133-X

    Article  Google Scholar 

  71. He B, Luo T, Huang S (2019) Product sustainability assessment for product life cycle. J Clean Prod 206:238–250. https://doi.org/10.1016/j.jclepro.2018.09.097

    Article  Google Scholar 

  72. Aviso KB, Lee JY, Dulatre JC et al (2017) A P-graph model for multi-period optimization of sustainable energy systems. J Clean Prod 161:1338–1351. https://doi.org/10.1016/j.jclepro.2017.06.044

    Article  Google Scholar 

  73. Anand A, Wani MF (2010) Product life-cycle modeling and evaluation at the conceptual design stage: a digraph and matrix approach. J Mech Des Trans ASME 132:0910101–0910109. https://doi.org/10.1115/1.4002241

    Article  Google Scholar 

  74. Wani MF, Gandhi OP (2002) Maintainability design and evaluation of mechanical systems based on tribology. Reliab Eng Syst Saf 77:181–188. https://doi.org/10.1016/S0951-8320(02)00032-7

    Article  Google Scholar 

  75. He B, Wang J, Huang S, Wang Y (2015) Low-carbon product design for product life cycle. J Eng Des 26:321–339. https://doi.org/10.1080/09544828.2015.1053437

    Article  Google Scholar 

  76. Barney A, Polatidis H, Haralambopoulos D (2022) Decarbonisation of islands: a multi-criteria decision analysis platform and application. Sustain Energy Technol Assessments 52:102115. https://doi.org/10.1016/j.seta.2022.102115

    Article  Google Scholar 

  77. Chen X, Matthews HS, Griffin WM (2021) Uncertainty caused by life cycle impact assessment methods: case studies in process-based LCI databases. Resour Conserv Recycl 172:105678. https://doi.org/10.1016/j.resconrec.2021.105678

    Article  Google Scholar 

  78. Campitelli A, Cristóbal J, Fischer J et al (2019) Resource efficiency analysis of lubricating strategies for machining processes using life cycle assessment methodology. J Clean Prod 222:464–475. https://doi.org/10.1016/j.jclepro.2019.03.073

    Article  Google Scholar 

  79. Prateep Na Talang R, Pizzol M, Sirivithayapakorn S (2017) Comparative life cycle assessment of fired brick production in Thailand. Int J Life Cycle Assess 22:1875–1891. https://doi.org/10.1007/s11367-016-1197-3

    Article  Google Scholar 

  80. Filleti RAP, Silva DAL, da Silva EJ, Ometto AR (2017) Productive and environmental performance indicators analysis by a combined LCA hybrid model and real-time manufacturing process monitoring: a grinding unit process application. J Clean Prod 161:510–523. https://doi.org/10.1016/j.jclepro.2017.05.158

    Article  Google Scholar 

  81. Peng S, Li T, Tang Z et al (2016) Comparative life cycle assessment of remanufacturing cleaning technologies. J Clean Prod 137:475–489. https://doi.org/10.1016/j.jclepro.2016.07.120

    Article  Google Scholar 

  82. Liu J, Wang L, Li F et al (2021) Evaluation and improvement of the greenness of plasma spraying through life cycle assessment and grey relational analysis. Int J Life Cycle Assess 26:1586–1606. https://doi.org/10.1007/s11367-021-01910-4

    Article  Google Scholar 

  83. Çetinkaya E, Rosen MA, Dinçer I (2012) Life cycle assessment of a fluidized bed system for steam production. Energy Convers Manag 63:225–232. https://doi.org/10.1016/j.enconman.2012.02.028

    Article  Google Scholar 

  84. Wang F, Deng Y, Yuan C (2020) Life cycle assessment of lithium oxygen battery for electric vehicles. J Clean Prod 264:121339. https://doi.org/10.1016/j.jclepro.2020.121339

    Article  Google Scholar 

  85. Xiao R, Zhang Y, Liu X, Yuan Z (2015) A life-cycle assessment of household refrigerators in China. J Clean Prod 95:301–310. https://doi.org/10.1016/j.jclepro.2015.02.031

    Article  Google Scholar 

  86. Devanathan S, Ramanujan D, Bernstein WZ et al (2010) Integration of sustainability into early design through the function impact matrix. J Mech Des Trans ASME 132:0810041–0810048. https://doi.org/10.1115/1.4001890

    Article  Google Scholar 

  87. Chan HK, Wang X, White GRT, Yip N (2013) An extended fuzzy-AHP approach for the evaluation of green product designs. IEEE Trans Eng Manag 60:327–339. https://doi.org/10.1109/TEM.2012.2196704

    Article  Google Scholar 

  88. Tao J, Yu S (2018) A meta-model based approach for LCA-oriented product data management. Procedia CIRP 69:423–428. https://doi.org/10.1016/j.procir.2017.12.010

    Article  Google Scholar 

  89. Peng S, Li T, Shi J, Zhang H (2015) Simplified life cycle assessment and analysis of remanufacturing cleaning technologies. Procedia CIRP 29:810–815. https://doi.org/10.1016/j.procir.2015.01.030

    Article  Google Scholar 

  90. Hur T, Lee J, Ryu J, Kwon E (2005) Simplified LCA and matrix methods in identifying the environmental aspects of a product system. J Environ Manage 75:229–237. https://doi.org/10.1016/j.jenvman.2004.11.014

    Article  Google Scholar 

  91. Klocke F, Kampker A, Döbbeler B et al (2014) Simplified life cycle assessment of a hybrid car body part. Procedia CIRP 15:484–489. https://doi.org/10.1016/j.procir.2014.06.056

    Article  Google Scholar 

  92. Karka P, Papadokonstantakis S, Kokossis A (2019) Environmental impact assessment of biomass process chains at early design stages using decision trees. Int J Life Cycle Assess 24:1675–1700. https://doi.org/10.1007/s11367-019-01591-0

    Article  Google Scholar 

  93. Sahabuddin M, Khan I (2021) Multi-criteria decision analysis methods for energy sector’s sustainability assessment: robustness analysis through criteria weight change. Sustain Energy Technol Assessments 47:101380. https://doi.org/10.1016/j.seta.2021.101380

    Article  Google Scholar 

  94. Kannan G, Pokharel S, Kumar PS (2009) A hybrid approach using ISM and fuzzy TOPSIS for the selection of reverse logistics provider. Resour Conserv Recycl 54:28–36. https://doi.org/10.1016/j.resconrec.2009.06.004

    Article  Google Scholar 

  95. Kim Y, Chung ES, Jun SM, Kim SU (2013) Prioritizing the best sites for treated wastewater instream use in an urban watershed using fuzzy TOPSIS. Resour Conserv Recycl 73:23–32. https://doi.org/10.1016/j.resconrec.2012.12.009

    Article  Google Scholar 

  96. Hsiao SW, Ko YC (2013) A study on bicycle appearance preference by using FCE and FAHP. Int J Ind Ergon 43:264–273. https://doi.org/10.1016/j.ergon.2013.04.003

    Article  Google Scholar 

  97. Sabaghi M, Mascle C, Baptiste P (2016) Evaluation of products at design phase for an efficient disassembly at end-of-life. J Clean Prod 116:177–186. https://doi.org/10.1016/j.jclepro.2016.01.007

    Article  Google Scholar 

  98. Peng C, Feng D, Guo S (2021) Material selection in green design: a method combining dea and topsis. Sustain. https://doi.org/10.3390/su13105497

    Article  Google Scholar 

  99. Tian G, Zhang H, Zhou M, Li Z (2018) AHP, gray correlation, and TOPSIS combined approach to green performance evaluation of design alternatives. IEEE Trans Syst Man, Cybern Syst 48:1093–1105. https://doi.org/10.1109/TSMC.2016.2640179

    Article  Google Scholar 

  100. Krohling RA, Campanharo VC (2011) Fuzzy TOPSIS for group decision making: a case study for accidents with oil spill in the sea. Expert Syst Appl 38:4190–4197. https://doi.org/10.1016/j.eswa.2010.09.081

    Article  Google Scholar 

  101. Ng CY, Chuah KB (2012) Evaluation of eco design alternatives by integrating AHP and topsis methodology under a fuzzy environment. Int J Manag Sci Eng Manag 7:43–52. https://doi.org/10.1080/17509653.2012.10671206

    Article  Google Scholar 

  102. Gao Y, Liu Z, Hu D et al (2010) Selection of green product design scheme based on multi-attribute decision-making method. Int J Sustain Eng 3:277–291. https://doi.org/10.1080/19397038.2010.516371

    Article  Google Scholar 

  103. Wang X, Chan HK, Li D (2015) A case study of an integrated fuzzy methodology for green product development. Eur J Oper Res 241:212–223. https://doi.org/10.1016/j.ejor.2014.08.007

    Article  Google Scholar 

  104. Tian ZP, Wang J, Wang JQ, Zhang HY (2017) Simplified neutrosophic linguistic multi-criteria group decision-making approach to green product development. Gr Decis Negot 26:597–627. https://doi.org/10.1007/s10726-016-9479-5

  105. Yang W, Xu K, Lian J et al (2018) Multiple flood vulnerability assessment approach based on fuzzy comprehensive evaluation method and coordinated development degree model. J Environ Manage 213:440–450. https://doi.org/10.1016/j.jenvman.2018.02.085

    Article  Google Scholar 

  106. Ahmadi SHR, Noorollahi Y, Ghanbari S et al (2020) Hybrid fuzzy decision making approach for wind-powered pumped storage power plant site selection: a case study. Sustain Energy Technol Assessments 42:100838. https://doi.org/10.1016/j.seta.2020.100838

    Article  Google Scholar 

  107. Zhao X, Hwang BG, Gao Y (2016) A fuzzy synthetic evaluation approach for risk assessment: a case of Singapore’s green projects. J Clean Prod 115:203–213. https://doi.org/10.1016/j.jclepro.2015.11.042

    Article  Google Scholar 

  108. Raian S, Ali SM, Sarker MR et al (2022) Assessing sustainability risks in the supply chain of the textile industry under uncertainty. Resour Conserv Recycl 177:105975. https://doi.org/10.1016/j.resconrec.2021.105975

    Article  Google Scholar 

  109. Moore R, Lodwick W (2003) Interval analysis and fuzzy set theory. Fuzzy Sets Syst 135:5–9. https://doi.org/10.1016/S0165-0114(02)00246-4

    Article  MathSciNet  MATH  Google Scholar 

  110. Shidpour H, Da Cunha C, Bernard A (2016) Group multi-criteria design concept evaluation using combined rough set theory and fuzzy set theory. Expert Syst Appl 64:633–644. https://doi.org/10.1016/j.eswa.2016.08.022

    Article  Google Scholar 

  111. Yan L, Jun L, Yi T (2009) Selecting machining method based on fuzzy comprehensive evaluation. Proc - 2009 IEEE Int Conf Intell Comput Intell Syst ICIS 1:133–136. https://doi.org/10.1109/ICICISYS.2009.5357920

  112. Liu J, Zeng F, Wei X (2013) Research on applying fuzzy comprehensive evaluation method to conceptual design of marine power plant based on QFD. Proc - 6th Int Symp Comput Intell Des Isc 1:85–87. https://doi.org/10.1109/ISCID.2013.28

  113. Chen C, Hu M, Chen W et al (2010) (2010) Fuzzy evaluation on design schemes of multi-deployment & locking mechanism for solar wings. IEEE Int Conf Mechatronics Autom ICMA 2010:318–322. https://doi.org/10.1109/ICMA.2010.5589048

    Article  Google Scholar 

  114. Zhang HQ, Li Z, Yang JR, Li Y (2019) Construction of design evaluation system base on fuzzy theory. Proc - Int Jt Conf Information, Media, Eng IJCIME 2019:276–279. https://doi.org/10.1109/IJCIME49369.2019.00062

    Article  Google Scholar 

  115. Chiou HK, Tzeng GH (2002) Fuzzy multiple-criteria decision-making approach for industrial green engineering. Environ Manage 30:816–830. https://doi.org/10.1007/s00267-002-2673-z

    Article  Google Scholar 

  116. Gorai AK, Kanchan UA, Goyal P (2014) Design of fuzzy synthetic evaluation model for air quality assessment. Environ Syst Decis 34:456–469. https://doi.org/10.1007/s10669-014-9505-6

    Article  Google Scholar 

  117. Zhu Z, Zhang P, Zeng L et al (2019) A study on fuzzy comprehensive evaluation of screw pump design schemes with value engineering. 2019 IEEE 6th Int Conf Ind Eng Appl ICIEA 658–666. https://doi.org/10.1109/IEA.2019.8714834

  118. Liu Y, Huang HZ, Ling D (2013) Reliability prediction for evolutionary product in the conceptual design phase using neural network-based fuzzy synthetic assessment. Int J Syst Sci 44:545–555. https://doi.org/10.1080/00207721.2011.617887

    Article  MATH  Google Scholar 

  119. Mangla SK, Kumar P, Barua MK (2015) Risk analysis in green supply chain using fuzzy AHP approach: a case study. Resour Conserv Recycl 104:375–390. https://doi.org/10.1016/j.resconrec.2015.01.001

    Article  Google Scholar 

  120. Tasri A, Susilawati A (2014) Selection among renewable energy alternatives based on a fuzzy analytic hierarchy process in Indonesia. Sustain Energy Technol Assessments 7:34–44. https://doi.org/10.1016/j.seta.2014.02.008

    Article  Google Scholar 

  121. Bouzon M, Govindan K, Rodriguez CMT, Campos LMS (2016) Identification and analysis of reverse logistics barriers using fuzzy Delphi method and AHP. Resour Conserv Recycl 108:182–197. https://doi.org/10.1016/j.resconrec.2015.05.021

    Article  Google Scholar 

  122. Pires A, Bin CN, Martinho G (2011) An AHP-based fuzzy interval TOPSIS assessment for sustainable expansion of the solid waste management system in Setúbal Peninsula, Portugal. Resour Conserv Recycl 56:7–21. https://doi.org/10.1016/j.resconrec.2011.08.004

    Article  Google Scholar 

  123. Ho W (2008) Integrated analytic hierarchy process and its applications - a literature review. Eur J Oper Res 186:211–228. https://doi.org/10.1016/j.ejor.2007.01.004

    Article  MathSciNet  MATH  Google Scholar 

  124. Albayrak E, Erensal YC (2004) Using analytic hierarchy process (AHP) to improve human performance: an application of multiple criteria decision making problem. J Intell Manuf 15:491–503. https://doi.org/10.1023/B:JIMS.0000034112.00652.4c

    Article  Google Scholar 

  125. Li F, Li J, Duan G, Li J (2006) Green design-oriented product AHP life cycle environmental impact assessment model. IET Conf Publ. https://doi.org/10.1049/cp:20060910

    Article  Google Scholar 

  126. Yang C, Liu T, Kao C, Wang H (2010) Integrating AHP and DELPHI methods to construct a green product assessment hierarchy for early stages of product design and development. Int J Oper Res 7:35–43

    Article  Google Scholar 

  127. Chandrakumar C, Kulatunga AK, Mathavan S (2016) Fuzzy AHP based multi-criteria decisions support system for eco-design. Proc Int Conf Ind Eng Oper Manag 8–10:322–329

  128. Kaya Ö, Alemdar KD, Atalay A et al (2022) Electric car sharing stations site selection from the perspective of sustainability: a GIS-based multi-criteria decision making approach. Sustain Energy Technol Assessments. https://doi.org/10.1016/j.seta.2022.102026

    Article  Google Scholar 

  129. Wang YM, Luo Y, Hua Z (2008) On the extent analysis method for fuzzy AHP and its applications. Eur J Oper Res 186:735–747. https://doi.org/10.1016/j.ejor.2007.01.050

    Article  MATH  Google Scholar 

  130. Cy NG (2016) An evidential reasoning-based AHP approach for the selection of environmentally-friendly designs. Environ Impact Assess Rev 61:1–7. https://doi.org/10.1016/j.eiar.2016.06.006

    Article  Google Scholar 

  131. Ayag Z (2005) An integrated approach to evaluating conceptual design alternatives in a new product development environment. Int J Prod Res 43:687–713. https://doi.org/10.1080/00207540512331311831

    Article  Google Scholar 

  132. Chan HK, Wang X, Raffoni A (2014) An integrated approach for green design: Life-cycle, fuzzy AHP and environmental management accounting. Br Account Rev 46:344–360. https://doi.org/10.1016/j.bar.2014.10.004

    Article  Google Scholar 

  133. Ayaǧ Z, Özdemir RG (2007) An analytic network process-based approach to concept evaluation in a new product development environment. J Eng Des 18:209–226. https://doi.org/10.1080/09544820600752740

    Article  Google Scholar 

  134. Tao X, Li J, Huang T, Duan P (2021) Discrete imperialist competitive algorithm for the resource-constrained hybrid flowshop problem with energy consumption. Complex Intell Syst 7:311–326. https://doi.org/10.1007/s40747-020-00193-w

    Article  Google Scholar 

  135. Kong L, Wang L, Li F et al (2020) A new sustainable scheduling method for hybrid flow-shop subject to the characteristics of parallel machines. IEEE Access 8:79998–80009. https://doi.org/10.1109/ACCESS.2020.2982570

    Article  Google Scholar 

  136. Tang D, Dai M, Salido MA, Giret A (2016) Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization. Comput Ind 81:82–95. https://doi.org/10.1016/j.compind.2015.10.001

    Article  Google Scholar 

  137. Su JCP, Chu CH, Te WY (2012) A decision support system to estimate the carbon emission and cost of product designs. Int J Precis Eng Manuf 13:1037–1045. https://doi.org/10.1007/s12541-012-0135-y

    Article  Google Scholar 

  138. Chen W, Liu Y, Wang T, Xiang D (2016) Research on multi-target directional disassembly of products based on ant colony algorithm. 133–139. https://doi.org/10.2991/icemie-16.2016.33

  139. Wang K, Li X, Gao L (2019) Modeling and optimization of multi-objective partial disassembly line balancing problem considering hazard and profit. J Clean Prod 211:115–133. https://doi.org/10.1016/j.jclepro.2018.11.114

    Article  Google Scholar 

  140. Kong L, Wang L, Li F et al (2021) Multi-layer integration framework for low carbon design based on design features. J Manuf Syst 61:223–238. https://doi.org/10.1016/j.jmsy.2021.09.008

    Article  Google Scholar 

  141. Zhang XF, Zhang SY, Hu ZY et al (2012) Identification of connection units with high GHG emissions for low-carbon product structure design. J Clean Prod 27:118–125. https://doi.org/10.1016/j.jclepro.2012.01.011

    Article  Google Scholar 

  142. Wang Q, Tang D, Yin L et al (2016) Bi-objective optimization for low-carbon product family design. Robot Comput Integr Manuf 41:53–65. https://doi.org/10.1016/j.rcim.2016.02.001

    Article  Google Scholar 

  143. Chiang TA, Che ZH (2015) A decision-making methodology for low-carbon electronic product design. Decis Support Syst 71:1–13. https://doi.org/10.1016/j.dss.2015.01.004

    Article  Google Scholar 

  144. Simões CL, Costa Pinto LM, Simoes R, Bernardo CA (2013) Integrating environmental and economic life cycle analysis in product development: a material selection case study. Int J Life Cycle Assess 18:1734–1746

    Article  Google Scholar 

  145. Almeida CMVB, Rodrigues AJM, Bonilla SH, Giannetti BF (2010) Emergy as a tool for ecodesign: evaluating materials selection for beverage packages in Brazil. J Clean Prod 18:32–43. https://doi.org/10.1016/j.jclepro.2009.03.019

    Article  Google Scholar 

  146. Verghese KL, Horne R, Carre A (2010) PIQET: the design and development of an online streamlined LCA tool for sustainable packaging design decision support. Int J Life Cycle Assess 15:608–620. https://doi.org/10.1007/s11367-010-0193-2

    Article  Google Scholar 

  147. Yamada T, Igarashi K, Inoue M (2013) Disassembly system design with environmental and economic parts selection using the recyclability evaluation method. J Japan Ind Manag Assoc 64:293–302. https://doi.org/10.11221/jima.64.293

  148. Reyes PM, Man J, Jaska P et al (2021) Recycle system design for end-of-life electronics in developing countries. Int J Integr Supply Manag 14:101–129. https://doi.org/10.1504/IJISM.2021.113565

    Article  Google Scholar 

  149. Liu S, Du Y, Lin M (2019) Study on lightweight structural optimization design system for gantry machine tool. Concurr Eng Res Appl 27:170–185. https://doi.org/10.1177/1063293X19832940

    Article  Google Scholar 

  150. Liu Z, Lu J, Zhu P (2016) Lightweight design of automotive composite bumper system using modified particle swarm optimizer. Compos Struct 140:630–643. https://doi.org/10.1016/j.compstruct.2015.12.031

    Article  Google Scholar 

  151. Motte D, Eriksson M, Bjärnemo R (2012) A computer-based design system for lightweight gripper in the automotive industry. In: Asme International Mechanical Engineering Congress & Exposition. pp 1–11

  152. Grossa P (2017) CILCA 2017 How important is the LCA software tool you choose?

  153. Paudel AM, Kreutzmann P (2015) Design and performance analysis of a hybrid solar tricycle for a sustainable local commute. Renew Sustain Energy Rev 41:473–482. https://doi.org/10.1016/j.rser.2014.08.078

    Article  Google Scholar 

  154. Leibrecht S (2005) Fundamental principles for CAD-based ecological assessments. Int J Life Cycle Assess 10:436–444. https://doi.org/10.1065/lca2005.08.217

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the anonymous reviewers for their helpful suggestions to improve this paper.

Funding

This research was supported by the National Key R&D Program of China (Grant No. 2020YFB1711603), the National Natural Science Foundation of China (Grant No. 52175473), and the Key Technology R&D Program of Shandong (Grant No. 2020CXGC011004).

Author information

Authors and Affiliations

Authors

Contributions

Lin Kong, Liming Wang, and Fangyi Li conceived the methodology. Lin Kong performed the manuscript. Lin Kong and Jing Guo discussed the idea and revised the manuscript.

Corresponding author

Correspondence to Liming Wang.

Ethics declarations

Ethics approval and consent to participate

This paper is our original unpublished work, and it has not been submitted to any other journal for reviews.

Consent for publication

All authors agree to publish this manuscript in this journal.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, L., Wang, L., Li, F. et al. Toward product green design of modeling, assessment, optimization, and tools: a comprehensive review. Int J Adv Manuf Technol 122, 2217–2234 (2022). https://doi.org/10.1007/s00170-022-10021-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10021-9

Keywords

Navigation