Skip to main content

Advertisement

Log in

Drilling performance of short Washingtonia filifera fiber–reinforced epoxy biocomposites: RSM modeling

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The present study focuses on the optimization of the drilling process parameters of treated and untreated Washingtonia filifera (WF) fiber–reinforced polymer biocomposites using the desirability function approach based on the response surface methodology (RSM). Drill diameter, feed rate, and spindle speed were the three main input factors used to evaluate drilling performance. In this study, in order to have a better machinability especially a low delamination factor (Fd), the authors focused on the influence of the fiber treatment rate in the optimization of the drilling parameters. The findings revealed that diameter, feed rate, and treatment ratio were found to be important influencing factors on the delamination factor Fd. The latter was modeled statistically with a central composite design (CCD). The optimized numerical model for the delamination factor of the biocomposite reinforced with treated fiber (with 1% NaOH) showed the lowest delamination factor of 1.035 for a drill diameter of 5 mm, a feed rate of 50 mm/min and a spindle speed of 2500 rev/min. The analysis of variance (ANOVA) established the importance level of each parameter and indicated that the model was significant with a good correlation between the experimental data with R2 = 0.9713 and adjusted R2 = 0.9561.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Diabor E, Funkenbusch P, Kaufmann EE (2019) Characterization of cassava fiber of different genotypes as a potential reinforcement biomaterial for possible tissue engineering composite scaffold application. Fibers and polymers 20:217–228

    Article  Google Scholar 

  2. Tabet Z, Belaadi A, Boumaaza M, Bourchak M (2021) Drilling of a bidirectional jute fibre and cork-reinforced polymer biosandwich structure: ANN and RSM approaches for modelling and optimization. Int J Adv Manuf Technol 117:3819–3839. https://doi.org/10.21203/rs.3.rs-503708/v1

    Article  Google Scholar 

  3. Belaadi A, Bourchak M, Aouici H (2016) Mechanical properties of vegetal yarn: statistical approach. Compos Part B Eng 106:139–153. https://doi.org/10.1016/j.compositesb.2016.09.033

    Article  Google Scholar 

  4. Belaadi A, Amroune S, Bourchak M (2019) Effect of eco-friendly chemical sodium bicarbonate treatment on the mechanical properties of flax fibres: Weibull statistics. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-019-04628-8

    Article  Google Scholar 

  5. Boumaaza M, Belaadi A, Bourchak M (2022) Systematic review on reinforcing mortars with natural fibers: challenges of environment-friendly option. J Nat Fibers 1–25. https://doi.org/10.1080/15440478.2022.2060408

    Article  Google Scholar 

  6. Dembri I, Belaadi A, Boumaaza M, Bourchak M (2022) Tensile behavior and statistical analysis of washingtonia filifera fibers as potential reinforcement for industrial polymer biocomposites. J Nat Fibers 1–16. https://doi.org/10.1080/15440478.2022.2069189

    Article  Google Scholar 

  7. Zhou Y, Fan M, Chen L (2016) Interface and bonding mechanisms of plant fibre composites: an overview. Compos Part B Eng 101:31–45

    Article  Google Scholar 

  8. Dutta S, Kim NK, Das R, Bhattacharyya D (2019) Effects of sample orientation on the fire reaction properties of natural fibre composites. Composites. Part B, Engineering 157:195–206

    Article  Google Scholar 

  9. Saaidia A, Belaadi A, Haddad A (2022) Moisture absorption of cork-based biosandwich material extracted from Quercussuber L. plant: ANN and Fick’s modelling. J Nat Fibers 1–18. https://doi.org/10.1080/15440478.2022.2072996

    Article  Google Scholar 

  10. Atagur M, Seki Y, Oncu O et al (2020) Evaluating of reinforcing effect of Ceratonia Siliqua for polypropylene: tensile, flexural and other properties. Polym Test 89:106607

    Article  Google Scholar 

  11. Malkapuram R, Kumar V, Singh Negi Y (2009) Recent development in natural fiber reinforced polypropylene composites. J Reinf Plast Compos 28:1169–1189

    Article  Google Scholar 

  12. Benzannache N, Belaadi A, Boumaaza M, Bourchak M (2021) Improving the mechanical performance of biocomposite plaster/ Washingtonian filifira fibres using the RSM method. J Build Eng. https://doi.org/10.1016/j.jobe.2020.101840

    Article  Google Scholar 

  13. Lekrine A, Belaadi A, Makhlouf A et al (2022) Structural, thermal, mechanical and physical properties of Washingtonia filifera fibres reinforced thermoplastic biocomposites. Mater Today Commun 103574. https://doi.org/10.1016/j.mtcomm.2022.103574

  14. Cherief M, Belaadi A, Bouakba M et al (2020) Behaviour of lignocellulosic fibre-reinforced cellular core under low-velocity impact loading: Taguchi method. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-020-05393-9

    Article  Google Scholar 

  15. Dobah Y, Bourchak M, Bezazi A et al (2016) Multi-axial mechanical characterization of jute fiber/polyester composite materials. Compos Part B Eng 90:450–456. https://doi.org/10.1016/j.compositesb.2015.10.030

    Article  Google Scholar 

  16. Belaadi A, Laouici H, Bourchak M (2020) Mechanical and drilling performance of short jute fibre-reinforced polymer biocomposites: statistical approach. Int J Adv Manuf Technol 106:1–18. https://doi.org/10.1007/s00170-019-04761-4

    Article  Google Scholar 

  17. dos Santos JC, de Oliveira LÁ, Vieira LM et al (2019) Eco-friendly sodium bicarbonate treatment and its effect on epoxy and polyester coir fibre composites. Construct Build Mater 211:427–436. https://doi.org/10.1016/j.conbuildmat.2019.03.284

    Article  Google Scholar 

  18. Boumaaza M, Belaadi A, Bourchak M (2021) The effect of alkaline treatment on mechanical performance of natural fibers-reinforced plaster: optimization using RSM. J Nat Fibers 18:2220–2240. https://doi.org/10.1080/15440478.2020.1724236

    Article  Google Scholar 

  19. Bedjaoui A, Belaadi A, Amroune S, Madi B (2019) Impact of surface treatment of flax fibers on tensile mechanical properties accompanied by a statistical study. Int J Integr Eng 11

  20. Benzidane R, Sereir Z, Bennegadi ML et al (2018) Morphology, static and fatigue behavior of a natural UD composite: the date palm petiole ‘wood.’ Compos Struct 203:110–123

    Article  Google Scholar 

  21. Djoudi T, Hecini M, Scida D et al (2021) Physico-mechanical characterization of composite materials based on date palm tree fibers. J Nat Fibers 18:789–802

    Article  Google Scholar 

  22. de Olveira LÁ, dos Santos JC, Panzera TH et al (2018) Investigations on short coir fibre–reinforced composites via full factorial design. Polym Polym Compos 26:391–399

    Google Scholar 

  23. Mercy JL, Sivashankari P, Sangeetha M et al (2020) Genetic optimization of machining parameters affecting thrust force during drilling of pineapple fiber composite plates – an experimental approach. J Nat Fibers 1–12. https://doi.org/10.1080/15440478.2020.1788484

    Article  Google Scholar 

  24. Béakou A, Ntenga R, Lepetit J et al (2008) Physico-chemical and microstructural characterization of “Rhectophyllum camerunense” plant fiber. Compos Part A Appl Sci Manuf 39:67–74. https://doi.org/10.1016/j.compositesa.2007.09.002

    Article  Google Scholar 

  25. Kumar R, Sivaganesan S, Senthamaraikannan P et al (2022) Characterization of new cellulosic fiber from the bark of Acacia nilotica L. plant. J Nat Fibers 19:199–208. https://doi.org/10.1080/15440478.2020.1738305

    Article  Google Scholar 

  26. Resende LM, Franca AS, Oliveira LS (2019) Buriti (Mauritia flexuosa L. f.) fruit by-products flours: Evaluation as source of dietary fibers and natural antioxidants. Food Chem 270:53–60. https://doi.org/10.1016/j.foodchem.2018.07.079

    Article  Google Scholar 

  27. Belaadi A, Laouici H, Bourchak M (2020) Mechanical and drilling performance of short jute fibre-reinforced polymer biocomposites: statistical approach. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-019-04761-4

    Article  Google Scholar 

  28. Jayabal S, Natarajan U (2011) Drilling analysis of coir-fibre-reinforced polyester composites. Bull Mater Sci 34:1563–1567. https://doi.org/10.1007/s12034-011-0359-y

    Article  Google Scholar 

  29. Chaitanya S, Singh I (2018) Sisal fiber-reinforced green composites: effect of ecofriendly fiber treatment. Polym Compos 39:4310–4321. https://doi.org/10.1002/pc.24511

    Article  Google Scholar 

  30. Feito N, Díaz-álvarez J, Díaz-álvarez A et al (2014) Experimental analysis of the influence of drill point angle and wear on the drilling of woven CFRPs. Materials 7:4258–4271. https://doi.org/10.3390/ma7064258

    Article  Google Scholar 

  31. Wei Y, An Q, Ming W, Chen M (2016) Effect of drilling parameters and tool geometry on drilling performance in drilling carbon fiber – reinforced plastic / titanium alloy stacks. Adv Mech Eng 8:1–16. https://doi.org/10.1177/1687814016670281

    Article  Google Scholar 

  32. Azuan SAS, Juraidi JM, Muhamad WMW (2012) Evaluation of delamination in drilling rice husk reinforced polyester composites. Appl Mech Mater 232:106–110. https://doi.org/10.4028/www.scientific.net/AMM.232.106

    Article  Google Scholar 

  33. Çelik YH, Alp MS (2020) Determination of milling performance of jute and flax fiber reinforced composites. J Nat Fibers 1–15. https://doi.org/10.1080/15440478.2020.1764435

    Article  Google Scholar 

  34. Adda B, Belaadi A, Boumaaza M, Bourchak M (2021) Experimental investigation and optimization of delamination factors in the drilling of jute fiber–reinforced polymer biocomposites with multiple estimators. Int J Adv Manuf Technol 116:2885–2907. https://doi.org/10.1007/s00170-021-07628-9

    Article  Google Scholar 

  35. Belaadi A, Boumaaza M, Amroune S, Bourchak M (2020) Mechanical characterization and optimization of delamination factor in drilling bidirectional jute fibre-reinforced polymer biocomposites. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-020-06217-6

    Article  Google Scholar 

  36. Durão LMP, Gonçalves DJS, Tavares JMRS et al (2013) Drilling delamination outcomes on glass and sisal reinforced plastics. Mater Sci Forum 730–732:301–306. https://doi.org/10.4028/www.scientific.net/MSF.730-732.301

    Article  Google Scholar 

  37. Chegdani F, El M, Chebbi A (2021) Cutting behavior of flax fibers as reinforcement of biocomposite structures involving multiscale hygrometric shear. Compos B 211:108660. https://doi.org/10.1016/j.compositesb.2021.108660

    Article  Google Scholar 

  38. Díaz-Álvarez A, Díaz-Álvarez J, Cantero JL, Santiuste C (2020) Analysis of orthogonal cutting of biocomposites. Compos Struct 234:111734. https://doi.org/10.1016/j.compstruct.2019.111734

    Article  Google Scholar 

  39. Ojo SO, Ismail SO, Paggi M, Dhakal HN (2017) A new analytical critical thrust force model for delamination analysis of laminated composites during drilling operation. Compos Part B Eng 124:207–217. https://doi.org/10.1016/j.compositesb.2017.05.039

    Article  Google Scholar 

  40. Krishnaraj V, Zitoune R, Davim JP (2013) Effects of drilling parameters on mechanical strength BT - drilling of polymer-matrix composites. In: Krishnaraj V, Zitoune R, Davim JP (eds) Springer. Berlin Heidelberg, Berlin, Heidelberg, pp 85–96

    Google Scholar 

  41. Venkateshwaran N, ElayaPerumal A (2013) Hole quality evaluation of natural fiber composite using image analysis technique. J Reinf Plast Compos 32:1188–1197. https://doi.org/10.1177/0731684413486847

    Article  Google Scholar 

  42. Sridharan V, Muthukrishnan N (2013) Optimization of machinability of polyester/modified jute fabric composite using grey relational analysis (GRA). Procedia Eng 64:1003–1012. https://doi.org/10.1016/j.proeng.2013.09.177

    Article  Google Scholar 

  43. Chandramohan D, Marimuthu K (2011) Drilling of natural fiber particle reinforced polymer composite material. Int J Adv Eng Res Stud I:134–145

    Google Scholar 

  44. Nagamadhu M, Upadhya R, Sehgal S et al (2020) Mechanical and drilling process characterisation of herringbone sisal fabric reinforced vinyl ester sandwich composites. Adv Mater Process Technol 1–18. https://doi.org/10.1080/2374068X.2020.1855963

    Article  Google Scholar 

  45. Rezghi Maleki H, Hamedi M, Kubouchi M, Arao Y (2019) Experimental study on drilling of jute fiber reinforced polymer composites. J Compos Mater 53:283–295

    Article  Google Scholar 

  46. Chandramohan D, Rajesh S (2014) Study of machining parameters on natural fiber particle reinforced polymer composite materiaL. Acad J Manuf Eng 12

  47. Chaudhary V, Gohil PP (2016) Investigations on drilling of bidirectional cotton polyester composite. Mater Manuf Processes. https://doi.org/10.1080/10426914.2015.1059444

    Article  Google Scholar 

  48. Machado CM, Silva D, Vidal C et al (2021) A new approach to assess delamination in drilling carbon fibre-reinforced epoxy composite materials. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-021-06636-z

    Article  Google Scholar 

  49. Majumder A (2010) Comparison of ANN with RSM in predicting surface roughness with respect to process parameters in Nd: YAG Laser drilling. Int J Eng Sci Technol 2:5175–5186

    Google Scholar 

  50. Vinayagamoorthy R, Manoj IV, Narendra Kumar G et al (2018) A central composite design based fuzzy logic for optimization of drilling parameters on natural fiber reinforced composite. J Mech Sci Technol 32:2011–2020. https://doi.org/10.1007/s12206-018-0409-0

    Article  Google Scholar 

  51. Boumaaza M, Belaadi A, Bourchak M et al (2022) Comparative study of flexural properties prediction of Washingtonia filifera rachis biochar bio-mortar by ANN and RSM models. Construct Build Mater 318:125985. https://doi.org/10.1016/j.conbuildmat.2021.125985

  52. Sridharan V, Raja T, Muthukrishnan N (2016) Study of the effect of matrix, fibre treatment and graphene on delamination by drilling jute / epoxy nanohybrid composite. Arab J Sci Eng 10–14. https://doi.org/10.1007/s13369-015-2005-2

    Article  Google Scholar 

  53. Nagarajan VA, Sundaram S, Rajadurai JS (2011) A novel approach based on digital image analysis to evaluate refined delamination factor for E-Glass 21xK43 Gevetex/LY556/DY063 epoxy composite laminates. Proc Inst Mech Eng Part B J Eng Manuf 225:1977–1982. https://doi.org/10.1177/0954405411404774

    Article  Google Scholar 

  54. Haji A, Qavamnia SS (2015) Response surface methodology optimized dyeing of wool with cumin seeds extract improved with plasma treatment. Fibers Polym 16:46–53. https://doi.org/10.1007/s12221-015-0046-5

    Article  Google Scholar 

  55. Haji A, Mehrizi MK, Sharifzadeh J (2016) Dyeing of wool with aqueous extract of cotton pods improved by plasma treatment and chitosan: optimization using response surface methodology. Fibers Polym 17:1480–1488. https://doi.org/10.1007/s12221-016-6457-0

    Article  Google Scholar 

  56. Faidi K, Baaka N, Hammami S et al (2016) Extraction of carotenoids from Lycium ferocissimum fruits for cotton dyeing: optimization survey based on a central composite design method. Fibers Polym 17:36–43. https://doi.org/10.1007/s12221-016-5424-0

    Article  Google Scholar 

  57. Rajabi M, Zahedi P, Hassannejad Z, Haririan I (2019) Optimization of electrospinning parameters for producing silk fibroin/poly(ethylene oxide) nanofibers using D-optimal method. J Nat Fibers 16:1113–1123. https://doi.org/10.1080/15440478.2018.1453431

    Article  Google Scholar 

  58. Barreno-Avila E, Moya-Moya E, Pérez-Salinas C (2022) Rice-husk fiber reinforced composite (RFRC) drilling parameters optimization using RSM based desirability function approach. Mater Today Proc 49:167–174. https://doi.org/10.1016/j.matpr.2021.07.498

    Article  Google Scholar 

  59. Boumaaza M, Belaadi A, Bourchak M (2021) The effect of alkaline treatment on mechanical performance of natural fibers-reinforced plaster: part II optimization comparison between ANN and RSM statistics. J Nat Fibers 1–16. https://doi.org/10.1080/15440478.2021.1964129

    Article  Google Scholar 

  60. Vinayagamoorthy R, Rajeswari N, Sivanarasimha S, Balasubramanian K (2015) Fuzzy based optimization of thrust force and torque during drilling of natural hybrid composites. Appl Mech Mater 265–269. Trans Tech Publ

Download references

Funding

This work is funded by the Deanship of Scientific Research at Najran University under the Research Collaboration Funding program grant code (NU/RC/SERC/11/4).

Author information

Authors and Affiliations

Authors

Contributions

Isma Dembri: conceptualization, investigation, methodology, writing—review and editing. Ahmed Belaadi: conceptualization, investigation, methodology, supervision, writing—review and editing. Messaouda Boumaaza: conceptualization, investigation, writing—review and editing. Hassan Alshahrani: investigation, writing—review and editing. Mostefa Bourchak: investigation, writing—review and editing.

Corresponding author

Correspondence to Ahmed Belaadi.

Ethics declarations

Ethics approval

The work contains no libelous or unlawful statements, does not infringe on the rights of others, or contains material or instructions that might cause harm or injury.

Consent to participate

The authors consent to participate.

Consent for publication

The authors consent to publish.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dembri, I., Belaadi, A., Boumaaza, M. et al. Drilling performance of short Washingtonia filifera fiber–reinforced epoxy biocomposites: RSM modeling. Int J Adv Manuf Technol 121, 7833–7850 (2022). https://doi.org/10.1007/s00170-022-09849-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09849-y

Keywords

Navigation