Skip to main content
Log in

A review on numerical approach of reflow soldering process for copper pillar technology

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper reviewed the state-of-art copper pillar technology in flip-chip packaging, driven by the semiconductor industry’s demands for thinner and faster data transmission. This technology with area array feature is a surface mount technology process used to form interconnection bonding between ball grid array chip and printed circuit board (PCB) by the reflow soldering process. The conversion of the flip-chip interconnection bump from the solder ball to the Cu pillar bump with the solder cap and the joint performance within the reflow oven are presented in this review. The simulation tools have recently facilitated the Cu pillar bump research during the PCB assembly process. Thus, this review focuses on the simulation modeling of the PCB assembly within a reflow oven using different numerical approaches. The thermal and air flow aspects of the reflow process are reviewed. The temperature distribution and the thermal stress condition of the PCB assembly within the reflow oven are predicted to understand better the fluid–structure interaction in the reflow oven. The considerations of air flow and thermal effects enhanced the study of fluid flow on the PCB assembly. Moreover, the Cu pillar technology challenges are also highlighted in this review. This review paper is expected to provide necessary information and direction to future researchers and industrial engineers when designing a brand-new surface-mounted component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Datta M (2020) Manufacturing processes for fabrication of flip-chip micro-bumps used in microelectronic packaging: an overview. J Micromanufacturing 3:69–83. https://doi.org/10.1177/2516598419880124

    Article  Google Scholar 

  2. Zhang L, Tu KN (2014) Structure and properties of lead-free solders bearing micro and nano particles. Mater Sci Eng 82:1–32. https://doi.org/10.1016/j.mser.2014.06.001

    Article  Google Scholar 

  3. Zhang L, Liu ZQ, Chen SW, Wang YD, Long WM, Guo YH, Wang SQ, Ye G, Liu WY (2018) Materials, processing and reliability of low temperature bonding in 3D chip stacking. J Alloys Compd 750:980–995. https://doi.org/10.1016/j.jallcom.2018.04.040

    Article  Google Scholar 

  4. Lanzone R (2013) Chapter 1 market trends: past, present, and future. In: Tong HM, Lai YS, Wong CP (eds) Advanced Flip Chip Packaging. Springer, Boston, MA, pp 1–21

    Google Scholar 

  5. Thakur V, Mallik S, Vuppala V (2015) CFD Simulation of solder paste flow and deformation behaviours during stencil printing process. Int J Recent Adv Mech Eng 4:1–13. https://doi.org/10.14810/ijmech.2015.4101

  6. Wong CP, Luo S, Zhang Z (2000) Flip the chip. Science 290:2269–2270. https://doi.org/10.1126/science.290.5500.2269

    Article  Google Scholar 

  7. Ker MD, Peng JJ (2002) Fully process-compatible layout design on bond pad to improve wire bond reliability in CMOS ICs. IEEE Trans Components Packag Technol 25:309–316. https://doi.org/10.1109/TCAPT.2002.1010022

    Article  Google Scholar 

  8. Chen L (2011) Finite volume methods. Comput Fluid Dyn 1–24. https://doi.org/10.1007/978-3-319-99693-6_4

  9. Lau JH (2016) Recent advances and new trends in flip chip technology. J Electron Packag Trans ASME 138:16–22. https://doi.org/10.1115/1.4034037

    Article  Google Scholar 

  10. Tsai WS, Huang CY, Chung CK, Yu KH, Lin CF (2017) Generational changes of flip chip interconnection technology. 2017 12th International Microsystems, Packaging Assembly and Circuits Technology Conference (IMPACT) 306–310. https://doi.org/10.1109/impact.2017.8255955

  11. Gregorich T, Gu A (2019) Accelerate the development of advanced IC packages using 3D X-ray microscopes to measure and characterize buried features. ZEISS Process Control Solutions

  12. Qin HB, Zhang XP, Zhou MB, Li XP, Mai YW (2015) Geometry effect on mechanical performance and fracture behavior of micro-scale ball grid array structure Cu/Sn-3.0Ag-0.5Cu/Cu solder joints. Microelectron Reliab 55:1214–1225. https://doi.org/10.1016/j.microrel.2015.05.013

    Article  Google Scholar 

  13. Kang SK, Shih DY, Bernier WE (2013) Chapter 4 flip-chip interconnections: past, present, and future. In: Tong HM, Lai YS, Wong CP (eds) Advanced Flip Chip Packaging. Springer, Boston, MA, pp 85–154

    Chapter  Google Scholar 

  14. World Health Organization (WHO) (2019) Lead poisoning and health. https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health. Accessed 9 Aug 2021

  15. Weng WNC (2017) Chapter 5 evolution of Pb-free solders. In: Mohamad AA (ed) Recent Progress in Soldering Materials. IntechOpen, London, United Kingdom, pp 91–108

  16. United Nations Environment Programme (UNEP) (2019) Update on the Global Status of Legal Limits on Lead in Paint: September 2019

  17. Peng F, Liu WS, Ma YZ, Liang CP, Huang YF, Tang SW (2019) Microstructure of Sn-20In-2.8Ag solder and mechanical properties of joint with Cu. Solder Surf Mt Technol 31:1–5. https://doi.org/10.1108/SSMT-12-2017-0044

    Article  Google Scholar 

  18. Srivalli C, Abdullah MZ, Khor CY (2015) Numerical investigations on the effects of different cooling periods in reflow-soldering process. Heat Mass Transf 51:1413–1423. https://doi.org/10.1007/s00231-015-1506-6

    Article  Google Scholar 

  19. Tao YQ, Ding DY, Li T, Guo J, Fan GL (2017) Reflow of tiny 01005 capacitor/SAC305 solder joints in protective atmosphere. Solder Surf Mt Technol 29:144–150. https://doi.org/10.1108/SSMT-10-2016-0021

    Article  Google Scholar 

  20. Rusdi MS, Abdullah MZ, Chellvarajoo S, Abdul Aziz MS, Abdullah MK, Rethinasamy P, Veerasamy S, Santhanasamy DG (2019) Stencil printing process performance on various aperture size and optimization for lead-free solder paste. Int J Adv Manuf Technol 102:3369–3379. https://doi.org/10.1007/s00170-019-03423-9

    Article  Google Scholar 

  21. Sloan M, Flanagan K, Sandy-Smith B (2018) Reflow profiling for next-generation solder alloys. Proc China Adv SMT Academic Conf 1–14

  22. Yasmin T, Sadiq M (2013) Effect of lanthanum doping on the microstructure evolution and intermetallic compound (IMC) growth during thermal aging of SAC305 solder alloy. J Mater Sci Eng 03. https://doi.org/10.4172/2169-0022.1000141

  23. Lasky RC, Singer A, Chouta P (2002) Chapter 8 packaging assembly techniques. In: Fiber Optic Data Communication: Technol Trends Adv Academic Press 303–320

  24. Kisiel R, Szczepański Z (2005) Trends in assembling of advanced IC packages. J Telecommun Inf Technol 63–69

  25. Daubenspeck TH, Gambino JP, Christopher DM, Sayter W, Sullivan TD (2013) IC chip package having IC chip with overhang and/or BGA blocking underfill material flow and related methods. 1–7

  26. Patel B, Farkas S, Ables WH (2018) Ball grid array system. 1–29

  27. Haga C, Swanson L (2007) Thermally enhanced BGA package with ground ring. 1–9

  28. Hagberg J, Putaala J, Raumanni J, Salmela O, Galkin T (2017) BGA interconnection reliability in mirrored module configurations. IEEE Trans Components, Packag Manuf Technol 7:1634–1643. https://doi.org/10.1109/TCPMT.2017.2739204

    Article  Google Scholar 

  29. Andros F (2001) Chapter 16 tape ball grid array. In: Puttlitz KJ, Totta PA (eds) Area Array Interconnection Handbook, 1st edn. Springer, Boston, MA, pp 614–615

    Chapter  Google Scholar 

  30. Aryan P, Sampath S, Sohn H (2018) An overview of non-destructive testing methods for integrated circuit packaging inspection. Sensors 18:1981. https://doi.org/10.3390/s18071981

    Article  Google Scholar 

  31. Bogatin E (1997) Grid array packaging: BGA and CSP. In: Potter D, Peters L (eds) Roadmaps of Packaging Technology. Integrated Circuit Engineering Corporation, Scottsdale, AZ, pp 1–76

    Google Scholar 

  32. Kuzawlnski MJ (2001) Chapter 15 plastic ball grid array. In: Puttlitz KJ, Totta PA (eds) Area Array Interconnection Handbook, 1st edn. Boston, MA, pp 577–613

  33. Hong SG, Yeh CS (2004) The effects of copper oxides on the thermal degradation of bismaleimide triazine prepreg. Polym Degrad Stab 83:529–537. https://doi.org/10.1016/j.polymdegradstab.2003.09.008

    Article  Google Scholar 

  34. Lu QH, Zheng F (2018) Chapter 5 polyimides for electronic applications. In: Yang SY (ed) Advanced Polyimide Materials: Synthesis, Characterization, and Applications. 1st edn. Elsevier Inc., pp 195–255

  35. Badri SHBS, Aziz MHA, Ong NR, Sauli Z, Alcain JB, Retnasamy V (2017) Ceramic ball grid array package stress analysis. 3rd Electronic and Green Materials International Conference 2017 (EGM 2017) AIP Conf. Proc 1885:1–5. https://doi.org/10.1063/1.5002485

    Article  Google Scholar 

  36. Hotchkiss G, Amador G, Edwards D, Hundt P, Stack L, Stierman R, Heinen G (2001) Wafer level packaging of a tape flip-chip chip scale packages. Microelectron Reliab 41:705–713. https://doi.org/10.1016/S0026-2714(00)00261-4

    Article  Google Scholar 

  37. Ishida H, Matsushita K (2014) Characteristics of ceramic BGA using polymer core solder balls. 2014 IEEE 64th Electron Compo Technol Conf (ECTC) 404–410. https://doi.org/10.1109/ECTC.2014.6897317

  38. van Driel WD, Mavinkurve A, van Gils MAJ, Zhang GQ (2007) Advanced structural similarity rules for the BGA package family. Microelectron Reliab 47:205–214. https://doi.org/10.1016/j.microrel.2006.09.005

    Article  Google Scholar 

  39. Greig WJ (2007) Integrated circuit packaging, assembly and interconnections, 1st edn. Springer Science, Boston, MA

    Google Scholar 

  40. Koh W, Lin B, Tai J (2011) Copper pillar bump technology progress overview. 2011 12th Int Conf Electron Pack Technol High Density Pack 1133–1137. https://doi.org/10.1109/ICEPT.2011.6067027

  41. Lin V, Kao N, Jiang DS, Hsiao CS (2013) Stress simulation and design optimal study for Cu pillar bump structure. 2013 IEEE 15th Electron Pack Technol Conf (EPTC 2013) 598–601. https://doi.org/10.1109/EPTC.2013.6745790

  42. Wang T, Tung F, Foo L, Dutta V (2001) Studies on a novel flip-chip interconnect structure - pillar bump. 2001 Proceedings. 51st Electron Compo Technol Conf (Cat. No.01CH37220) 945–949. https://doi.org/10.1109/ECTC.2001.927911.

  43. Henderson C (2012) Copper pillar bumping technology. Semit Mon Newsl 1–8

  44. Lau JH (2018) Chapter 2 flip chip technology versus FOWLP. In: Fan-Out Wafer-Level Packaging. Springer, Singapore 21–68

  45. Flack WW, Nguyen HA, Capsuto E, McEwen C (2007) Characterization of a thick copper pillar bump process. 2007 12th Int Sympo Adv Pack Mater: Processes Properties, and Interfaces 208–213. https://doi.org/10.1109/ISAPM.2007.4419942

  46. Wong SCK (2012) Development of a flip-chip composite interconnection system. Dissertation, Nanyang Technological University

  47. Amkor Technolgy Solutions (2019) Copper pillar bumping

  48. Long XJ, Shang JT, Zhang L (2020) Design optimization of pillar bump structure for minimizing the stress in brittle low K dielectric material layer. Acta Metall Sin 33:583–594. https://doi.org/10.1007/s40195-019-00948-6

    Article  Google Scholar 

  49. Asghar R, Rehman F, Aman A, Iqbal K, Nawaz AA (2020) Defect minimization and process improvement in SMT lead-free solder paste printing: a comparative study. Solder Surf Mt Technol 32:1–9. https://doi.org/10.1108/SSMT-05-2019-0019

    Article  Google Scholar 

  50. Sriperumbudur SS (2016) Effects of solder paste volume on PCBA assembly yield and reliability. Dissertation, Rochester Institute of Technology

  51. Cirimele R (2001) Bga rework: A comparitive study of selective solder paste deposition for area array packages. Rolling Meadows, Illinois

  52. Amin N, Cheah AY, Yi LZ, Komain Z (2008) Implementation of novel reflow profile of no-clean fluxes to enhance flux stability and oxide layer removal of the high lead solder bump. 2008 33rd IEEE/CPMT Int Electron Manufac Technol Conf (IEMT) 1–6. https://doi.org/10.1109/IEMT.2008.5507833

  53. Lau CS, Khor CY, Soares D, Teixeira JC, Abdullah MZ (2016) Thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components: a review. Solder Surf Mt Technol 28:41–62. https://doi.org/10.1108/SSMT-10-2015-0032

    Article  Google Scholar 

  54. Straubinger D, Bozsóki I, Bušek D, Géczy A (2020) Modelling of temperature distribution along PCB thickness in different substrates during reflow. Circuit World 46:85–92. https://doi.org/10.1108/CW-07-2019-0074

    Article  Google Scholar 

  55. Esfandyari A, Bachy B, Raithel S, Syed-Khaja A, Franke J (2017) Simulation, optimization and experimental verification of the over-pressure reflow soldering process. Procedia CIRP 62:565–570. https://doi.org/10.1016/j.procir.2016.06.092

    Article  Google Scholar 

  56. Tsai TN (2009) Modeling and optimization of reflow thermal profiling operation: a comparative study. J Chinese Inst Ind Eng 26:480–492. https://doi.org/10.1080/10170660909509162

    Article  Google Scholar 

  57. Hanss A, Elger G (2018) Residual free solder process for fluxless solder pastes. Solder Surf Mt Technol 30:118–128. https://doi.org/10.1108/SSMT-10-2017-0030

    Article  Google Scholar 

  58. Aarti T, Priyadarshani M, PK P (2016) Implementation of reflow soldering oven. Int J Emerg Technol Eng Res 4:208–211

    Google Scholar 

  59. Blackwell GR (2006) The Electronic Packaging Handbook. CRC Press LLC, Boca Raton

    Google Scholar 

  60. Suraski D (2000) Reflow profiling the benefits of implementing a ramp-to-spike profile. SMT Surf Mt Technol Mag 1–4

  61. Briggs, Ed RCL (2011) Best practices reflow profiling for lead-free SMT assembly. SMTA Int Conf 1–8

  62. Pan J, Toleno BJ, Chou TC, Dee WJ (2006) The effect of reflow profile on SnPb and SnAgCu solder joint shear strength. Solder Surf Mt Technol 18:48–56. https://doi.org/10.1108/09540910610717901

    Article  Google Scholar 

  63. Ferreira AC, Teixeira SFCF, Oliveira RF, Rodrigues NJ, Teixeira JCF, Soares D (2017) CFD modeling the cooling stage of reflow soldering process. ASME 2016 Int Mechanic Eng Congress Expos 2:1–9. https://doi.org/10.1115/IMECE2016-66447

  64. Shenzhen Jaguar Automation Equipment Co. L (2021) Reflow soldering process. http://www.jaguar-ele.net/te_news_industry/2011-01-07/64.chtml. Accessed 16 Aug 2021

  65. IPC/JEDEC J-STD-020D.1 (2008) Industry standard moisture / reflow sensitivity classification for nonhermetic solid state surface

  66. Lau CS (2013) Thermal coupling method for reflow soldering process. Dissertation, Universiti Sains Malaysia

  67. IPC/JEDEC J-STD-020E (2015) Moisture / reflow sensitivity classification for nonhermetic surface

  68. Tsai TN (2012) Thermal parameters optimization of a reflow soldering profile in printed circuit board assembly: a comparative study. Appl Soft Comput J 12:2601–2613. https://doi.org/10.1016/j.asoc.2012.03.066

    Article  Google Scholar 

  69. Pascariu G, Cronin P, Crowley D (2003) Next-generation electronics packaging using flip chip technology. IEEE/CPMT/SEMI 28th Int Electron Manufac Technol Sympo IEMT 423–426. https://doi.org/10.1109/IEMT.2003.1225938

    Article  Google Scholar 

  70. Lu XN, Liao GL, Zha ZY, Xia Q, Shi TL (2011) A novel approach for flip chip solder joint inspection based on pulsed phase thermography. NDT E Int 44:484–489. https://doi.org/10.1016/j.ndteint.2011.05.003

    Article  Google Scholar 

  71. Hirman M, Steiner F (2017) Optimization of solder paste quantity considering the properties of solder joints. Solder Surf Mt Technol 29:15–22. https://doi.org/10.1108/SSMT-10-2016-0025

    Article  Google Scholar 

  72. Dušek K, Rudajevová A, Plaček M (2016) Influence of latent heat released from solder joints on the reflow temperature profile. J Mater Sci Mater Electron 27:543–549. https://doi.org/10.1007/s10854-015-3787-4

    Article  Google Scholar 

  73. Bao D (2012) How reduce tombstoning of small chip components

  74. Song JD, Kim YG, Park TH (2019) SMT defect classification by feature extraction region optimization and machine learning. Int J Adv Manuf Technol 101:1303–1313. https://doi.org/10.1007/s00170-018-3022-6

    Article  Google Scholar 

  75. Peo M (2017) How challenging conventional wisdom can optimize solder reflow. In: Conveyor Belt Furnace Thermal Processing. 1st edn. Springer 145–150

  76. Hong SJ, Kim HY, Han SS (2012) Process optimization for flexible printed circuit board assembly manufacturing. Trans Electr Electron Mater 13:129–135. https://doi.org/10.4313/TEEM.2012.13.3.129

    Article  Google Scholar 

  77. Ho TM, Tan KM, Khor L (2010) Tombstone reduction by reflow profile optimization, SMT stencil design and pad design. 2010 34th IEEE/CPMT Int Electron Manuf Technol Sympo (IEMT) 1–5. https://doi.org/10.1109/IEMT.2010.5746716

  78. Bao D (2013) How to minimize defects by adjusting the reflow profile

  79. Biocca P (2007) Developing a reliable lead-free SMT assembly process

  80. Yunus M, Srihari K, Pitarresi JM, Primavera A (2003) Effect of voids on the reliability of BGA/CSP solder joints. Microelectron Reliab 43:2077–2086. https://doi.org/10.1016/S0026-2714(03)00124-0

    Article  Google Scholar 

  81. Uchibori CJ, Lee M (2010) Thermal stress analysis of FCBGA during cooling under reflow process. IEEE CPMT Symposium Japan 2010:1–4. https://doi.org/10.1109/CPMTSYMPJ.2010.5680273

    Article  Google Scholar 

  82. Wickham M, Dusek M, Zou L, Hunt C (2005) Effect of voiding on lead-free reliability

  83. Wild P, Grözinger T, Lorenz D, Zimmermann A (2017) Void formation and their effect on reliability of lead-free solder joints on MID and PCB substrates. IEEE Trans Reliab 66:1229–1237. https://doi.org/10.1109/TR.2017.2759231

    Article  Google Scholar 

  84. Ribas M, Sarkar S (2017) Effect of voids on thermo‐mechanical reliability of solder joints. Proceedings of SMTA International 667–673

  85. Depiver J, Mallik S, Harmanto D (2021) Solder joint failures under thermo-mechanical loading conditions–a review. Adv Mater Process Technol 7:1–26. https://doi.org/10.1080/2374068X.2020.1751514

    Article  Google Scholar 

  86. Tang XQ, Zhao SJ, Huang CY, Lu LK (2018) Thermal stress-strain simulation analysis of BGA solder joint reflow soldering process. 2018 19th Int Conf Electron Pack Technol (ICEPT) 981–986. https://doi.org/10.1109/ICEPT.2018.8480615

  87. Sharon G, Tulkoff C (2015) Temperature cycling and fatigue in electronics. Adv Microelectron 42:18–24

    Google Scholar 

  88. Hu X, Li Y, Min Z (2014) Interfacial reaction and IMC growth between Bi-containing Sn0.7Cu solders and Cu substrate during soldering and aging. J Alloys Compd 582:341–347. https://doi.org/10.1016/j.jallcom.2013.08.018

    Article  Google Scholar 

  89. Tian R, Hang C, Tian Y, Zhao L (2018) Growth behavior of intermetallic compounds and early formation of cracks in Sn-3Ag-0.5Cu solder joints under extreme temperature thermal shock. Mater Sci Eng A 709:125–133. https://doi.org/10.1016/j.msea.2017.10.007

    Article  Google Scholar 

  90. An T, Qin F (2016) Relationship between the intermetallic compounds growth and the microcracking behavior of lead-free solder joints. J Electron Packag Trans ASME 138:1–10. https://doi.org/10.1115/1.4032349

    Article  Google Scholar 

  91. Shen J, Zhai DJ, Cao ZM, Zhao M, Pu YY (2014) Fracture behaviors of Sn-Cu intermetallic compound layer in ball grid array induced by thermal shock. J Electron Mater 43:567–578. https://doi.org/10.1007/s11664-013-2845-z

    Article  Google Scholar 

  92. Rafique MMA (2015) Chapter 9 modeling and simulation of heat transfer phenomena. In: Kazi MSN (ed) Heat Transfer Studies and Applications. IntechOpen, pp 226–250

  93. Leu MC, Elmaraghy HA, Nee AYC, Ong SK, Lanzetta M, Putz M, Zhu WJ, Bernard A (2013) CAD model based virtual assembly simulation, planning and training. CIRP Ann - Manuf Technol 62:799–822. https://doi.org/10.1016/j.cirp.2013.05.005

    Article  Google Scholar 

  94. Anderson A (2017) Computational fluid dynamic modeling of a secondary lead reverberatory furnace. Dissertation, Trustees of the Colorado School of Mines

  95. Tavárez A, González JE (2003) Modeling the thermal behavior of solder paste inside reflow ovens. J Electron Packag Trans ASME 125:335–346. https://doi.org/10.1115/1.1569955

    Article  Google Scholar 

  96. Whalley DC, Hyslop SM (2002) A simplified model of the reflow soldering process. Solder Surf Mt Technol 14:30–37. https://doi.org/10.1108/09540910210416440

    Article  Google Scholar 

  97. Whalley DC (2004) A simplified reflow soldering process model. J Mater Process Technol 150:134–144. https://doi.org/10.1016/j.jmatprotec.2004.01.029

    Article  Google Scholar 

  98. Shen L, Wang MX, He YH, Lam TF (2005) Reflow profile simulation by finite element method for a BGA package. 2005 6th Int Conf Electron Pack Technol 419–422. https://doi.org/10.1109/ICEPT.2005.1564717

  99. Shen L, Wang MX, He YH, Lam TF, Jiang YQ (2006) A comprehensive finite element model for simulating reflow profile of a BGA package. Conference on High Density Microsystem Design and Packaging and Component Failure Analysis, 2006. HDP'06. 269–271. https://doi.org/10.1109/HDP.2006.1707605

  100. Inoue M, Koyanagawa T (2005) Thermal simulation for predicting substrate temperature during reflow soldering process. Proceed Electron Compo Technol ECTC '05. 1:1021–1026. https://doi.org/10.1109/ECTC.2005.1441396

  101. Wang J, He P, Xiao F (2004) The effect of residual stress on the flexing strength of PCB assembly. Proceedings of the Sixth IEEE CPMT Conf High Dens Microsys Des Pack Compo Fail Analys (HDP ’04). 146–150. https://doi.org/10.1109/HPD.2004.1346688

  102. Xu HB, Li MY, Fu YG, Wang L, Kim JM (2009) Local melt process of solder bumping by induction heating reflow. Solder Surf Mt Technol 21:45–54. https://doi.org/10.1108/09540910910989439

    Article  Google Scholar 

  103. Lu GQ, Liu XS, Wen SH, Calata JN, Bai JG (2004) Strategies for improving the reliability of solder joints on power semiconductor devices. Solder Surf Mt Technol 16.https://doi.org/10.1108/09540910410537309

  104. Lau CS, Abdullah MZ, Mujeebu Ma, Yusop NM (2014) Finite element analysis on the effect of solder joint geometry or the reliability of ball grid array assembly with flexible and rigid PCBS. J Eng Sci Technol 9:47–63

    Google Scholar 

  105. Addagarla A, Prasad NS (2012) Finite element analysis of flip-chip on board (FCOB) assembly during reflow soldering process. Solder Surf Mt Technol 24:92–99. https://doi.org/10.1108/09540911211214668

    Article  Google Scholar 

  106. Xia WS, Xiao M, Chen YH, Wu FS, Liu Z, Fu HZ (2014) Thermal warpage analysis of PBGA mounted on PCB during reflow process by FEM and experimental measurement. Solder Surf Mt Technol 26:162–171. https://doi.org/10.1108/SSMT-11-2013-0034

    Article  Google Scholar 

  107. Tian Y, Ren N, Jian XX, Geng T, Wu YP (2018) Interfacial compounds characteristic and its reliability effects on SAC305 microjoints in flip chip assemblies. J Electron Packag Trans ASME 140:1–5. https://doi.org/10.1115/1.4040298

    Article  Google Scholar 

  108. Shih MK, Hong PC (2016) Structural design guideline for Cu pillar bump reliability in system in packages module. 2015 IEEE 17th Electron Pack Technol Conf (EPTC) 1–4. https://doi.org/10.1109/EPTC.2015.7412345

  109. Sun H, Gao B, Zhao J (2020) Thermal-mechanical reliability analysis of WLP with fine-pitch copper post bumps. Solder Surf Mt Technol 33:178–186. https://doi.org/10.1108/SSMT-06-2020-0027

    Article  Google Scholar 

  110. Chen KM, Wu CY, Wang CH, Cheng HC, Huang NC (2014) An RDL UBM structural design for solving ultralow-K delamination problem of Cu pillar bump flip chip BGA packaging. J Electron Mater 43:4229–4240. https://doi.org/10.1007/s11664-014-3332-x

    Article  Google Scholar 

  111. Che FX, Lin JK, Au KY, Hsiao HY, Zhang XW (2015) Stress analysis and design optimization for low-k chip with Cu pillar interconnection. IEEE Trans Components, Packag Manuf Technol 5:1273–1283. https://doi.org/10.1109/TCPMT.2015.2461020

    Article  Google Scholar 

  112. Shi L, Chen L, Zhang DW, Liu E, Liu Q, Chen CI (2018) Improvement of thermo-mechanical reliability of wafer-level chip scale packaging. J Electron Packag Trans ASME 140.https://doi.org/10.1115/1.4038245

  113. Son YS, Shin JY (2005) Thermal response of electronic assemblies during forced convection-infrared reflow soldering in an oven with air injection. JSME Int Journal, Ser B Fluids Therm Eng 48:865–873. https://doi.org/10.1299/jsmeb.48.865

    Article  Google Scholar 

  114. Belov I, Lindgren M, Leisner P, Bergner F, Bornoff R (2007) CFD aided reflow oven profiling for PCB preheating in a soldering process. 2007 International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems. EuroSime 2007 1–8. https://doi.org/10.1109/ESIME.2007.359951

  115. Ahmad MI, Abdul Aziz MS, Abdullah MZ, Mohd Salleh MAA, Ishak MHH, Rahiman W, Nabialek M (2021) Investigations of infrared desktop reflow oven with FPCB substrate during reflow soldering process. Metals 11:1155. https://doi.org/10.3390/met11081155

    Article  Google Scholar 

  116. Najib AM, Abdullah MZ, Khor CY, Saad AA (2015) Experimental and Numerical investigation of 3D gas flow temperature field in infrared heating reflow oven with circulating fan. Int J Heat Mass Transf 87:49–58. https://doi.org/10.1016/j.ijheatmasstransfer.2015.03.075

    Article  Google Scholar 

  117. Perumal DA, Dass AK (2015) A review on the development of lattice Boltzmann computation of macro fluid flows and heat transfer. Alexandria Eng J 54:955–971. https://doi.org/10.1016/j.aej.2015.07.015

    Article  Google Scholar 

  118. Zhou P (1993) Chapter 3 finite difference method. In: Numerical Analysis of Electromagnetic Fields. Electric Energy Systems and Engineering Series, 1st edn. Springer, pp 623–631

  119. Wang L, Wong NH (2008) Coupled simulations for naturally ventilated residential buildings. Autom Constr 17:386–398. https://doi.org/10.1016/j.autcon.2007.06.004

    Article  Google Scholar 

  120. Therdthai N, Zhou W, Adamczak T (2004) Three-dimensional CFD modelling and simulation of the temperature profiles and airflow patterns during a continuous industrial baking process. J Food Eng 65:599–608. https://doi.org/10.1016/j.jfoodeng.2004.02.026

    Article  Google Scholar 

  121. Flick D, Rocca R, Doursat C, Vasseur J (2007) Modelling heat transfer and fluid flow inside a pressure cooker. In: Plesu V, Agachi P (eds) 17th Eur Symp Comput Aided Process Eng – ESCAPE17, 1st edn. Elsevier 1–6

  122. Sargolzaeia J, Abarzania M, Aminzadeha R (2011) Modeling and simulation of hamburger cooking process using finite difference and CFD methods. Int J Ind Chem 2:52–62

    Google Scholar 

  123. Hussain S, Hamidon R (2011) 2-Dimensional CFD simulation of the air flow inside a lemang oven. Int J Eng Sci Technol 3:7103–7107

    Article  Google Scholar 

  124. Rek Z, Rudolf M, Zun I (2012) Application of CFD simulation in the development of a new generation heating oven. Stroj Vestnik-Journal Mech Eng 58:134–144. https://doi.org/10.5545/sv-jme.2011.163

    Article  Google Scholar 

  125. Abdul Aziz MS, Abdullah MZ, Khor CY, Jalar A, Ani FC, Yan N, Cheok C (2016) Finite volume-based simulation of the wave soldering process: influence of the conveyor angle on pin-through-hole capillary flow. Numer Heat Transf Part A Appl 69:295–310. https://doi.org/10.1080/10407782.2015.1069675

    Article  Google Scholar 

  126. Abdul Aziz MS, Abdullah MZ, Khor CY, Ani FC, Adam NH (2016) Effects of temperature on the wave soldering of printed circuit boards: CFD modeling approach. J Appl Fluid Mech 9:2053–2062. https://doi.org/10.18869/acadpub.jafm.68.235.23709

  127. Lau CS, Abdullah MZ, Ani FC (2012) Three-dimensional thermal investigations at board level in a reflow oven using thermal-coupling method. Solder Surf Mt Technol 24:167–182. https://doi.org/10.1108/09540911211240038

    Article  Google Scholar 

  128. Lau CS, Abdullah MZ, Ani FC (2012) Computational fluid dynamic and thermal analysis for BGA assembly during forced convection reflow soldering process. Solder Surf Mt Technol 24:77–91. https://doi.org/10.1108/09540911211214659

    Article  Google Scholar 

  129. Lau CS, Abdullah MZ, Che Ani F (2012) Optimization modeling of the cooling stage of reflow soldering process for ball grid array package using the gray-based Taguchi method. Microelectron Reliab 52:1143–1152. https://doi.org/10.1016/j.microrel.2012.01.006

    Article  Google Scholar 

  130. Abdul Aziz MS, Abdullah MZ, Khor CY, Jalar A, Ani FC (2014) CFD Modeling of pin shape effects on capillary flow during wave soldering. Int J Heat Mass Transf 72:400–410. https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.037

    Article  Google Scholar 

  131. Abdul Aziz MS, Abdullah MZ, Khor CY, Fairuz ZM, Iqbal AM, Mazlan M, Mat Razat MS (2014) Thermal fluid-structure interaction in the effects of pin-through-hole diameter during wave soldering. Adv Mech Eng 2014:1–13. https://doi.org/10.1155/2014/275735

    Article  Google Scholar 

  132. Abdul Aziz MS, Abdullah MZ, Khor CY (2014) Influence of PTH offset angle in wave soldering with thermal-coupling method. Solder Surf Mt Technol 26:97–109. https://doi.org/10.1108/SSMT-08-2013-0021

    Article  Google Scholar 

  133. Aziz MSA, Abdullah MZ, Khor CY, Azid IA, Jalar A, Ani FC (2017) Influence of printed circuit board thickness in wave soldering. Sci Iran 24:2963–2976. https://doi.org/10.24200/sci.2017.4311

  134. Abdul Aziz MS, Abdullah MZ, Khor CY (2015) Thermal fluid-structure interaction of PCB configurations during the wave soldering process. Solder Surf Mt Technol 27:31–44. https://doi.org/10.1108/SSMT-07-2014-0013

    Article  Google Scholar 

  135. Khor CY, Abdullah MZ, Lau CS, Leong WC, Abdul Aziz MS (2014) Influence of solder bump arrangements on molded IC encapsulation. Microelectron Reliab 54:796–807. https://doi.org/10.1016/j.microrel.2013.12.010

    Article  Google Scholar 

  136. Khor CY, Abdullah MZ, Leong WC (2012) Fluid/structure interaction analysis of the effects of solder bump shapes and input/output counts on moulded packaging. IEEE Trans Components, Packag Manuf Technol 2:604–616. https://doi.org/10.1109/TCPMT.2011.2174237

    Article  Google Scholar 

  137. Lim CH, Abdullah MZ, Azid IA, Abdul Aziz MS (2017) Experimental and numerical investigation of flow and thermal effects on flexible printed circuit board. Microelectron Reliab 72:5–17. https://doi.org/10.1016/j.microrel.2017.03.022

    Article  Google Scholar 

  138. Lim CH, Abdullah MZ, Azid IA, Khor CY (2017) The effect of freestream flow velocities on the flexible printed circuit board with different BGA package arrangements. Arab J Sci Eng 42:2075–2086. https://doi.org/10.1007/s13369-017-2491-5

    Article  Google Scholar 

  139. Ishak MHH, Abdullah MZ, Abdul Aziz MS, Abas A, Loh WK, Ooi RC, Ooi CK (2017) Effects of aspect ratio in moulded packaging considering fluid/structure interaction: a CFD modelling approach. J Appl Fluid Mech 10:1799–1811. https://doi.org/10.29252/jafm.73.245.27083

  140. Gao JG, Wu YP, Ding H, Wan NH (2008) Thermal profiling: a reflow process based on the heating factor. Solder Surf Mt Technol 20:20–27. https://doi.org/10.1108/09540910810902679

    Article  Google Scholar 

  141. Whalley DC (2019) Reflow soldering process simulation: a simplified model. J Mater Process Technol 6. https://doi.org/10.1016/j.jmatprotec.2004.01.029

  142. Selmi M, Al-Khawaja MJ, Marafia A (2008) Validation of CFD simulation for flat plate solar energy collector. Renew Energy 33:383–387. https://doi.org/10.1016/j.renene.2007.02.003

    Article  Google Scholar 

  143. Bellecci C, Gaudio P, Lupelli I, Malizia A, Porfiri MT, Quaranta R, Richetta M (2011) Loss of Vacuum Accident (LOVA): Comparison of computational fluid dynamics (CFD) flow velocities against experimental data for the model validation. Fusion Eng Des 86:330–340. https://doi.org/10.1016/j.fusengdes.2011.02.057

    Article  Google Scholar 

  144. Yawei C, Dingyou LEI (2016) Analysis and numerical simulation research of the heating process in the oven. J Therm Sci 25:454–459. https://doi.org/10.1007/s116

    Article  Google Scholar 

  145. Lee N-C (2002) Reflow soldering processes and troubleshooting: SMT, BGA, CSP and flip chip technologies. BH Newnes

  146. Powell RE (2006) Development of convective solder reflow and projection Moiré system and FEA Model for PWBA Warpage Prediction. Dissertation, Georgia Institute of Technology

  147. Boulet M, Marcos B, Dostie M, Moresoli C (2010) CFD modeling of heat transfer and flow field in a bakery pilot oven. J Food Eng 97:393–402. https://doi.org/10.1016/j.jfoodeng.2009.10.034

    Article  Google Scholar 

  148. ANSYS Inc (2009) Ansys Fluent 12.0 Theory Guide - 5.3 Modeling Radiation. https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node109.htm. Accessed 15 Aug 2021

  149. Park SH, Kim YH, Kim YS, Park YG, Ha MY (2018) Numerical study on the effect of different hole locations in the fan case on the thermal performance inside a gas oven range. Appl Therm Eng 137:123–133. https://doi.org/10.1016/j.applthermaleng.2018.03.087

    Article  Google Scholar 

  150. Verboven P, Datta AK, Anh NT, Scheerlinck N, Nicolaı̈ BM (2003) Computation of airflow effects on heat and mass transfer in a microwave oven. J Food Eng 59:181–190. https://doi.org/10.1016/S0260-8774(02)00456-9

    Article  Google Scholar 

  151. Chhanwal N, Anishaparvin A, Indrani D, Raghavarao KSMS, Anandharamakrishnan C (2010) Computational Fluid Dynamics (CFD) Modeling of an electrical heating oven for bread-baking process. J Food Eng 100:452–460. https://doi.org/10.1016/j.jfoodeng.2010.04.030

    Article  Google Scholar 

  152. Haslinda MS, Abas A, Ani FC, Jalar A, Saad AA, Abdullah MZ (2017) Discrete phase method particle simulation of ultra-fine package assembly with SAC305-Tio2 nano-reinforced lead free solder at different weighted percentages. Microelectron Reliab 79:336–351. https://doi.org/10.1016/j.microrel.2017.07.054

    Article  Google Scholar 

  153. Lau CS, Abdullah MZ (2013) Simulation investigations on fluid/structure interaction in the reflow soldering process of board-level BGA packaging. Int J Comput Theory Eng 5:645–649. https://doi.org/10.7763/ijcte.2013.v5.767

    Article  Google Scholar 

  154. Verboven P, Scheerlinck N, De Baerdemaeker J, Nicolaï BM (2000) Computational fluid dynamics modelling and validation of the temperature distribution in a forced convection oven. J Food Eng 43:61–73. https://doi.org/10.1016/S0260-8774(99)00133-8

    Article  Google Scholar 

  155. ANSYS Inc (2009) Ansys Fluent 12.0 Theory Guide - 4.4.2 RNG k-epsilon Model. https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node59.htm. Accessed 15 Aug 2021

  156. Aziz MSA, Abdullah MZ, Khor CY, Ani FC (2013) Influence of pin offset in PCB through-hole during wave soldering process: CFD modeling approach. Int Commun Heat Mass Transf 48:116–123. https://doi.org/10.1016/j.icheatmasstransfer.2013.08.003

    Article  Google Scholar 

  157. Yang Z, Cheng X, Zheng X, Chen H (2019) Numerical investigation on heat transfer of the supercritical fluid upward in vertical tube with constant wall temperature. Int J Heat Mass Transf 128:875–884. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.049

    Article  Google Scholar 

  158. Cow PW, Fryer PJ (2002) Heat transfer to foods : modelling and validation. J Therm Sci 11:320–330. https://doi.org/10.1007/s11630-002-0045-x

    Article  Google Scholar 

  159. Deng SS, Hwang SJ, Lee HH (2016) Temperature prediction for system in package assembly during the reflow soldering process. Int J Heat Mass Transf 98:1–9. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.008

    Article  Google Scholar 

  160. Yamane M, Orita N, Miyazaki K, Zhou W (2004) Development of new model reflow oven for lead-free soldering. Furukawa Rev 31–36

  161. Castell A, Solé C, Medrano M, Roca J, Cabeza LF, García D (2008) Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins. Appl Therm Eng 28:1676–1686. https://doi.org/10.1016/j.applthermaleng.2007.11.004

    Article  Google Scholar 

  162. Illés B (2010) Distribution of the heat transfer coefficient in convection reflow oven. Appl Therm Eng 30:1523–1530. https://doi.org/10.1016/j.applthermaleng.2010.02.016

    Article  Google Scholar 

  163. Illés B, Harsányi G (2009) Investigating direction characteristics of the heat transfer coefficient in forced convection reflow oven. Exp Therm Fluid Sci 33:642–650. https://doi.org/10.1016/j.expthermflusci.2009.01.001

    Article  Google Scholar 

  164. Incropera FP, Dewitt DP, Bergman TL, Lavine AS (2007) Fundamentals of heat and mass transfer. John Wiley & Sons

    Google Scholar 

  165. Yu H, Kivilathti J (2002) CFD Modelling of the flow field inside a reflow oven. Solder Surf Mt Technol 14:38–44. https://doi.org/10.1108/09540910210416459

    Article  Google Scholar 

  166. Liu X, Lu GQ (2003) Effects of solder joint shape and height on thermal fatigue lifetime. IEEE Trans Components Packag Technol 26:455–465. https://doi.org/10.1109/TCAPT.2003.815089

    Article  Google Scholar 

  167. Yamabe M, Fukumitsu M, Fukuchi Y (2011) Effect on lead-free solder joint reliability caused by solder volume. Weld Int 25:851–856. https://doi.org/10.1080/09507116.2011.590656

    Article  Google Scholar 

  168. Qiu X, Lo JCC, Cheng YJ, Lee SWR, Tseng YJ, Chiu P (2021) Fabrication and reliability assessment of Cu pillar microbumps with printed polymer cores. J Electron Packag Trans ASME 143. https://doi.org/10.1115/1.4049129

  169. Yang C, Song F, Ricky Lee SW (2014) Impact of Ni concentration on the intermetallic compound formation and brittle fracture strength of Sn-Cu-Ni (SCN) lead-free solder joints. Microelectron Reliab 54:435–446. https://doi.org/10.1016/j.microrel.2013.10.005

    Article  Google Scholar 

  170. Faizan M (2015) Dissolution of copper and formation of IMC in bulk lead-free solders. Mater Manuf Process 30:169–174. https://doi.org/10.1080/10426914.2014.941863

    Article  Google Scholar 

  171. Wick T (2014) Flapping and contact FSI computations with the fluid-solid interface-tracking/interface-capturing technique and mesh adaptivity. Comput Mech 53:29–43. https://doi.org/10.1007/s00466-013-0890-3

    Article  MathSciNet  MATH  Google Scholar 

  172. Che FX, Wai LC, Zhang X, Chai TC (2015) Characterization and modeling of fine-pitch copper ball bonding on a Cu/Low-k chip. J Electron Mater 44:688–698. https://doi.org/10.1007/s11664-014-3532-4

    Article  Google Scholar 

  173. Abdul Aziz MS, Abdullah MZ, Khor CY, Fairuz ZM, Iqbal AM, Mazlan M, Mat Rasat MS (2014) Thermal fluid-structure interaction in the effects of pin-through-hole diameter during wave soldering. Adv Mech Eng 2014:1–13. https://doi.org/10.1155/2014/275735

    Article  Google Scholar 

  174. Lu WH, Cheng M Da, Lin CW, Chang J, Liu CS, Yu CH (2013) Cu pillar bump with electrolytic metal sidewall protection

  175. Khor CY, Abdullah MZ, Lau CS, Azid IA (2014) Recent fluid-structure interaction modeling challenges in IC encapsulation - a review. Microelectron Reliab 54:1511–1526. https://doi.org/10.1016/j.microrel.2014.03.012

    Article  Google Scholar 

  176. Tu J, Yeoh GH, Liu C (2018) Chapter 4 CFD Mesh generation: a practical guideline. In: Computational Fluid Dynamics A Practical Approach, 3rd edn. Elsevier, pp 125–154

  177. Tu J, Yeoh GH, Liu C (2018) Chapter7 Practical Guidelines for CFD Simulation and Analysis. In: Computational Fluid Dynamics: A Practical Approach, 3rd edn. Elsevier, pp 255–290

  178. Ghani Zigh JS (2013) Computational fluid dynamics best practice guidelines for dry cask applications

Download references

Acknowledgements

The authors would also like to thank Universiti Sains Malaysia for providing technical support.

Funding

The work is supported by the Ministry of Higher Education under Fundamental Research Grant Scheme (grant number FRGS/1/2020/TK0/USM/03/6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Sharizal Abdul Aziz.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

The informed consent was obtained from all individual participants included in the study.

Consent for publication

The authors consent to the content and publication of this work.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.R., Aziz, M.S.A., Ishak, M.H.H. et al. A review on numerical approach of reflow soldering process for copper pillar technology. Int J Adv Manuf Technol 121, 4325–4353 (2022). https://doi.org/10.1007/s00170-022-09724-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09724-w

Keywords

Navigation