Skip to main content
Log in

Study on liquid nano-atomization systems for minimum quantity lubrication—a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The purpose of this review is to present an up-to-date description of our knowledge of the technology in the production of nano-sized aerosols (NAs). In this review, the methods and mechanisms of each atomization systems will be discussed. The elements which will be discussed include operational factors, system improvements, pros and cons of the atomization systems. This review paper will provide readers on the application of NAs an alternative of nanofluid applications for sustainable manufacturing. NAs have the potential to be the next objective of research in the improvement of MQL machining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Upon request.

References

  1. Global Machine Tools Market Size, Share & Industry Trends Analysis Report By Type, By Technology, By Sales Channel, By End-use, By Regional Outlook and Forecast, 2021–2027. ReportLinker 2022

  2. Khan MMA, Dhar NR (2006) Performance evaluation of minimum quantity lubrication by vegetable oil in terms of cutting force, cutting zone temperature, tool wear, job dimension and surface finish in turning AISI-1060 steel. J Zhejiang Univ SCIENCE A 7(11):1790–1799

    Article  Google Scholar 

  3. Klocke F, Eisenblaetter G (1997) Dry cutting. Annals of the CIRP 46(2)

  4. Wang X, Li C, Zhang Y, Ding W, Yang M, Gao T, Cao H, Xu X, Wang D, Said Z, Debnath S, Jamil M, Ali HM (2020) Vegetable oil-based nanofluid minimum quantity lubrication turning: academic review and perspectives. J Manuf Process 59:76–97

    Article  Google Scholar 

  5. Zakaria MF, Suhaimi MA, Sharif S, Yang D, Shaharum MS, Kamal MMK, Zakaria K (2019) The application of cold air and nano-MQL as cooling strategy in high speed milling of titanium alloy Ti-6Al-4V: A review. AIP Conf Proc 2129

  6. Gupta A, Kumar R, Kumar H, Garg H (2019) Sustainable machining using hybrid nanofluids under minimum quantity lubrication (MQL). In: Advances in Industrial and Production Engineering, Lecture Notes in Mechanical Engineering, Springer Singapore, pp. 573–584

  7. Pervaiz S, Anwar S, Qureshi I, Ahmed N (2019) Recent advances in the machining of titanium alloys using minimum quantity lubrication (MQL) based techniques. Int J Precis Eng Manuf - Green Technol

  8. Nor Hamran NN, Ghani JA, Ramli R, Che Haron CH (2020) A review on recent development of minimum quantity lubrication for sustainable machining. J Clean Product 268:122165

  9. Bhattacharyya D, Singh S, Satnalika N, Khandelwal A, Jeon SH (2009) Nanotechnology, big things from a tiny world: a review. Int J u- and e- Serv, Sci Technol 2(3)

  10. Srikant R, Prasad M, Amrita M, Sitaramaraju A, Krishna PV (2013) Nanofluids as a potential solution for minimum quantity lubrication: a review. J Eng Manuf 228(1):3–20

    Article  Google Scholar 

  11. Sayuti M, Sarhan AAD, Hamdi M (2013) An investigation of optimum SiO2 nanolubrication parameters in end milling of aerospace Al6061-T6 alloy. Int J Adv Manuf Technol 67:833–849

    Article  Google Scholar 

  12. Dambatta YS, Sayuti M, Sarhan AAD, Hamdi M (2018) Comparative study on the performance of the MQL nanolubricant and conventional flood lubrication techniques during grinding of Si3N4 ceramic. Int J Adv Manuf Technol 96:3959–3976

    Article  Google Scholar 

  13. Lee K, Hwang Y, Cheong S, Choi Y, Kwon L, Lee J, Kim S (2009) Understanding the role of nanoparticles in nano-oil lubrication. Tribol Lett 35:127–131

    Article  Google Scholar 

  14. Sharma AK, Tiwari AK, Dixit AR (2015) Mechanism of nanoparticles functioning and effects in machining processes: a review. Mater Today: Proc 2:3539–3544

    Google Scholar 

  15. Li L, Wong HC, Lee RB (2020) Evaluation of a novel nanodroplet cutting fluid for diamond turning of optical polymers. Polymers 12:2213

    Article  Google Scholar 

  16. Aitken RJ, Creely KS, Tran CL (2004) Nanoparticles: an occupational hygiene review. HSE Books, London

    Google Scholar 

  17. Pilacinski W, Pan MJ, Szewczyk KW, Lehtimaki M, Willeke K (1990) Aerosol release from aerated broths. Biotechnol Bioeng 36:970–973

    Article  Google Scholar 

  18. Radomski A, Jurasz P, Alonso-Escolano D, Drews M, Morandi M (2005) Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol 146(6):882–893

    Article  Google Scholar 

  19. Mandal A (2019) Safety of nanoparticles. News Med Life Sci

  20. Gomez A, Deng W (2011) Fundamentals of cone-jet electrospray in Aerosol Measurement: Principles, Techniques, and Applications, Third Edition pp. 435–448

  21. Rayleigh L (1882) On the equilibrium of liquid conducting masses charged with electricity. Phil Mag 14(87):184–186

    Article  Google Scholar 

  22. Ganan-Calvo AM, Lasheras JC, Davila J, Barrero A (1994) The electrostatic spray emitted from an electrified conical meniscus. Aerosol Sci 25(6):1121–1142

    Article  Google Scholar 

  23. Wang Q, Suo Z, Zhao X (2012) Bursting drops in solid dielectrics caused by high voltages. Nat Commun 3:1157

    Article  Google Scholar 

  24. Fernandez de la Mora J (2007) The fluid dynamics of Taylor cones. Annu Rev Fluid Mech 39:217–243

    Article  MathSciNet  MATH  Google Scholar 

  25. Burayev TK, Vereshchagin IP (1972) Fluid Mech. Sov Res 1:56–66

    Google Scholar 

  26. Cloupeau M, Prunet-Foch B (1989) Electrostatic spraying of liquids in cone-jet mode. J Electrostat 22:135–159

    Article  Google Scholar 

  27. Ganan-Calvo AM, Rebollo-Munoz N, Montanero JM (2013) The minimum or natural rate of flow and droplet size ejected by Taylor cone-jets: physical symmetries and scaling laws. New Journ Phys 15

  28. Chen D-R, Pui DYH, Kaufman SL (1995) Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8 µm diameter range. J Aerosol Sci 26(6):963–977

    Article  Google Scholar 

  29. Schmoll LH, Elzey S, Grassian VH, O’Shaughnessy PT (2009) Nanoparticle aerosol generation methods from bulk powders for inhalation exposure studies. Nanotoxicology 3(4):265–275

    Article  Google Scholar 

  30. Leifer I, de Leeuw G (2006) Bubbles generated from wind-steepened breaking waves: 1. Bubble plume bubbles. Geophys Res 111

  31. Feng J, Roche M, Vigolo D, Arnaudov LN, Stoyanov SD (2014) Nanoemulsions obtained via bubble-bursting at a compound interface. Nature Phys 10

  32. Spiel DE (1998) On the births of film drops from bubbles bursting on seawater surfaces. J Geophys R 103(C11):24907–24918

    Article  Google Scholar 

  33. O’Dowd CD, Leeuw G (2007) Marine aerosol production: a review of the current knowledge. Phil Trans R Soc A 365:1753–1774

    Article  Google Scholar 

  34. Paterson MP, Spillane KT (1969) Surface films and the production of sea-salt aerosol. Quart J R Met Soc 95:526–534

    Article  Google Scholar 

  35. Fitzgerald JW (1991) Marine aerosols: a review. Atmos Environ 25A(3/4):533–545

    Article  Google Scholar 

  36. Blanchard DC (1989) The ejection of drops from the sea and their enrichment with bacteria and other materials: a review. Estuaries 12(3):127–137

    Article  Google Scholar 

  37. Blanchard DC, Woodcock AH (1957) Bubble formation and modification in the sea and its meteorological significance. Tellus 9(2):145–158

    Article  Google Scholar 

  38. Andreas EL, Edson JB, Monahan EC, Rouault MP, Smith SD (1995) The spray contribution to net evaporation from the sea: a review of recent progress. Bound-Layer Meteorol 72:3–52

    Article  Google Scholar 

  39. Resch F, Afeti G (1992) Submicron film drop production by bubbles in seawater. J Geophys R 97(C3):3679–3683

    Article  Google Scholar 

  40. Martensson EM, Nilsson ED, Leeuw G, Cohen LH, Hansson HC (2003) Laboratory simulations and parameterization of the primary marine aerosol production. J Geophys Res 108(D9)

  41. Clarke AD, Owens SR, Zhou J (2006) An ultrafine sea-salt flux from breaking waves: Implications for cloud condensation nuclei in the remote marine atmosphere. J Geophys Res 111

  42. Keene WC, Maring H, Maben JR, Kieber DJ, Pszenny AAP, Dahl EE (2007) Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface. J Geophys Res 112

  43. Sellegri K, O'Dowd CD, Yoon YJ, Jennings SG, Leeuw G (2006) Surfactants and submicron sea spray generation. J Geophys Res: Atmos 111(D22)

  44. Tyree CA, Hellion VM, Alexandrova OA, Allen JO (2007) Foam droplets generated from natural and artificial seawaters. J Geophys Res: Atmos 112(D12)

  45. Monahan EC (1971) Oceanic whitecaps. Phys Oceanography 1(2):139–144

    Article  Google Scholar 

  46. Fuentes E, Coe H, Green D, de Leeuw G, McFiggans G (2010) Laboratory-generated primary marine aerosol via bubble-bursting and atomization. Atmos Meas Tech 3:141–162

    Article  Google Scholar 

  47. Modini RL, Russell LM, Deane GB, Stokes MD (2013) Effect of soluble surfactant on bubble persistence and bubble-produced aerosol particles. J Geophys R: Atmos 118:1388–1400

  48. May NW, Axson JL, Watson A, Pratt KA, Ault AP (2016) Lake spray aerosol generation: a method for producing representative particles from freshwater wave breaking. Atmos Meas Tech 9:4311–4325

    Article  Google Scholar 

  49. Sampath K, Afshar-Mohajer N, Chandrala LD, Heo W-S, Gilbert J (2019) Aerosolization of crude oil-dispersant slicks due to bubble bursting. J Geophys Res: Atmos 124:5555–5578

    Article  Google Scholar 

  50. Schaefer W, Rosenkranz S, Brinckmann F, Tropea C (2016) Analysis of pneumatic atomizer spray profiles. Particuology 29:80–85

    Article  Google Scholar 

  51. Tang M, Chen S-C, Pui DYH (2018) An improved atomizer with high output of nanoparticles. J Aerosol Sci 124:10–16

    Article  Google Scholar 

  52. Craig V, Henry C (2010) Inhibition of bubble coalescence by salts and sugars. In XXV International Mineral Processing Congress, Brisbane, Australia

  53. Mezhericher M, Ladizhensky I, Etlin I (2017) Atomization of liquids by disintegrating thin liquid films using gas jets. Int J Multiph Flow 88:99–115

    Article  MathSciNet  Google Scholar 

  54. Loscertales IG, Barrero A, Guerrero I, Cortijo R, Marquez M (2002) Micro/nano encapsulation via electrified coaxial liquid jets. Science 295:5560

    Article  Google Scholar 

  55. Weinert K, Inasaki I, Sutherland JW, Wakabayashi T (2004) Dry machining and minimum quantity lubrication. CIRP Ann 53(2):511–537

    Article  Google Scholar 

  56. Cipriano RJ, Blanchard DC (1981) Bubble and aerosol spectra produced by a laboratory “breaking wave.” J Geophys Res 86:8085–8092

    Article  Google Scholar 

  57. Afeti GM, Resch FJ (1990) Distribution of the liquid aerosol produced from bursting bubbles in sea and distilled water. Tellus B: Chem Phys Meteorol 42(4):378–384

    Article  Google Scholar 

  58. Lhuissier H, Villermaux E (2012) Bursting bubble aerosols. J Fluid Mech 696:5–44

    Article  MATH  Google Scholar 

  59. Ehrenhauser FS, Avij P, Shu X, Dugas V, Woodson I (2014) Bubble bursting as an aerosol generation mechanism during an oil spill in the deep-sea environment: laboratory experimental demonstration of the transport pathway. Environ Sci: Processes Impacts 16:65–73

    Google Scholar 

  60. Ke WR, Kuo YM, Lin CW, Huang SH, Chen CC (2017) Characterization of aerosol emissions from single bubble bursting. J Aerosol Sci 2017

  61. Huang S-H, Kuo Y-M, Lin C-W, Chen P-C, Chen C-C (2020) Characterization of aerosol emission from single-film rupture in a tube. Aerosol Air Qua Res 20:2239–2248

    Article  Google Scholar 

  62. LLompart JR, de la Mora JF (1994) Generation of monodisperse droplets 0.3 to 4 µm in diameter from electrified cone-jets of highly conducting and viscous liquids. J Aerosol Sci 25(6):1093–1119

  63. Jayasinghe SN, Townsend-Nicholson A (2006) Stable electric-field driven cone-jetting of concentrated biosuspensions. Lab Chip 6:1086–1090

    Article  Google Scholar 

  64. Hogan CJ Jr, Yun KM, Chen DR, Lenggoro IW, Biswas P (2007) “Controleed size polymer particle production via electrohydrodynamic atomization,” Colloids and Surfaces A: Physicochem. Eng Aspects 311:67–76

    Article  Google Scholar 

  65. Bartolomeis A, Shokrani A (2020) Electrohydrodynamic atomization for minimum quantity lubrication (EHDA-MQL) in end milling Ti6Al4V titanium alloy. Manufact Mater Process 4(3)

  66. Xie J, Jiang J, Davoodi P, Srinivasan MP, Wang CH (2014) Electrohydrodynamic atomization: A two-decade effort to produce and process micro-/nanoparticulate materials. Chem Eng Sci

Download references

Acknowledgements

This work also credited to J.A. Ghani in conceptualization, supervision, project administration and funding acquisition. Also, Wan Mohd. Faizal Wan Mahmood helped in providing fruitful advice in this work.

Funding

This work is funded by the Government of Malaysia and University Kebangsaan Malaysia under FRGS/1/2019/TK03/UKM/01/2 and DIP-2018–026 Grants, respectively.

Author information

Authors and Affiliations

Authors

Contributions

Pin Han Yap: responsible for drafting, conceptualization and writing.

Jaharah A. Ghani: responsible for conceptualization, supervision, project administration and funding acquisition.

Wan Mohd. Faizal Wan Mahmood: responsible in providing opinions, suggestions and advice.

Corresponding author

Correspondence to Jaharah A. Ghani.

Ethics declarations

Ethical approval

No ethical approval was required for this research.

Consent to participate

Not applicable.

Consent for publication

All authors have read and agreed to publish the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghani, J.A., Yap, P.H. & Mahmood, W.M.F.W. Study on liquid nano-atomization systems for minimum quantity lubrication—a review. Int J Adv Manuf Technol 121, 5637–5649 (2022). https://doi.org/10.1007/s00170-022-09612-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09612-3

Keywords

Navigation