Skip to main content
Log in

A computational model of melt pool morphology for selective laser melting process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Selective laser melting (SLM) is a promising metal additive manufacturing technology, which holds widespread applications in numerous fields. Unfortunately, it is arduous to predict the real geometry of SLM part, which impedes its further development, while the morphology of melt pool, influenced and determined by process parameters, poses a crucial influence on the overall part geometry. Nonetheless, the association between process parameters and melt pool morphology is still unclear. Hence, it is indispensable to explore relevant solution to address this issue. For this purpose, this paper proposes a new model to directly establish the mathematical relationship between process parameters and melt pool structure for SLM process. In this model, the status of melt pool is first qualitatively analyzed via the defined synthetic process index, and three types of melting states are differentiated including low melting, intermediate melting, and high melting, which could cover different melt pool modes. Then, the computational model involving more physical mechanisms integrating mass conversion, heat exchange, and temperature field is constructed. Melt pool critical geometries including the height, width, depth, and length could be computed through the model. In order to validate the correctness of the proposed model, published experimental observations and existing models are compared. Calculation results from the proposed model show high consistency with the experimental samples and better accuracy than existing empirical models. Its applicability in melt pool classification and prediction is also verified, laying foundation for geometric simulation of SLM object which is successively shaped melt-pool by melt-pool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

(adapted from Scime and Beuth [9]) of IN718. a Severe keyhole defect. b Normal morphology (all graphs are presented at the same size scale)

Fig. 11

(adapted from Yang et al. [28]) of TC4. a Severe keyhole defect. b Normal morphology. c Balling defect (all graphs are presented at the same size scale)

Fig. 12

(adapted from Kamath et al. [30]) of 316L. a Normal morphology. b Slightly balling (all graphs are presented at the same size scale)

Similar content being viewed by others

Abbreviations

\(a\) :

Thermal diffusivity (m2/s)

\(A\) :

Maximum cross-sectional area of melt pool (m2)

\({A}_{g}\) :

Contact area between melt pool and gas interface (m2)

\({A}_{s}\) :

Contact area between melt pool and solid interface (m2)

\(C\) :

Material specific heat capacity (J/(kgK))

\({C}_{l}\) :

Liquid specific heat capacity (J/(kgK))

\({C}_{s}\) :

Solid specific heat capacity (J/(kgK))

\({C}_{lackfusion}\) :

Critical normalized enthalpy of lack of fusion

\(d\) :

Melt pool depth (m)

\(D\) :

Laser beam diameter (m)

\({E}_{i}\) :

Specific internal energy of melt pool (J/kg)

\({E}_{s}\) :

Specific internal energy of solidification melt pool (J/kg)

\(h\) :

Melt pool height (m)

\({H}_{\mathrm{sl}}\) :

Melting enthalpy (J/m3)

\(\Delta H/{H}_{\mathrm{sl}}\) :

Normalized enthalpy

\(k\) :

Thermal conductivity (W/(mK))

\(K\) :

Temperature gradient (K/m)

\(l\) :

Melt pool length (m)

\({L}_{t}\) :

Layer thickness (m)

\(P\) :

Laser beam power (W)

\({Q}_{gc}\) :

Convection energy between melt pool and gas environment (J)

\({Q}_{gr}\) :

Radiation energy between melt pool and environment (J)

\({Q}_{sc}\) :

Conduction energy between melt pool and solid environment (J)

\(t\) :

Time (s)

\(T\) :

Transient melt pool temperature (K)

\({T}_{b}\) :

Material boiling temperature (K)

\({T}_{m}\) :

Material melting temperature (K)

\({T}_{o}\) :

Initial temperature (K)

\({T}_{ms}\) :

Steady-state melt pool temperature (K)

\(v\) :

Scanning speed (m/s)

\(V\) :

Melt pool volume (m3)

\(w\) :

Melt pool width (m)

\({\alpha }_{g}\) :

Thermal convection coefficient (W/(m2K))

\({\alpha }_{s}\) :

Equivalent thermal convection coefficient (W/(m2K))

\({\beta }_{h/d}\) :

Melt pool shape ratio of height to depth

\({\beta }_{l/w}\) :

Melt pool shape ratio of length to width

\({\beta }_{w/d}\) :

Melt pool shape ratio of width to depth

\(\varepsilon\) :

Thermal radiation coefficient

\(\eta\) :

Absorptivity of solid material

\({\eta }^{*}\) :

Absorptivity of powder material

\(\lambda\) :

Steady-state melt pool temperature coefficient

\({\lambda }_{melting}\) :

Melting degree index

\({\mu }_{HM}\) :

Critical coefficient of high melting state

\({\mu }_{IM}\) :

Critical coefficient of intermediate melting state

\({\mu }_{defect}^{keyhole}\) :

Critical coefficient of over-melting state

\({\mu }_{defect}^{lackfusion}\) :

Critical coefficient of under-melting state

\(\rho\) :

Material density (kg/m3)

\({\rho }_{p}\) :

Material density of powder state (kg/m3)

\({\rho }_{s}\) :

Material density of solid state (kg/m3)

\(\sigma\) :

Stefan-Boltzmann constant (W/(m2K4))

\(\tau\) :

Ratio of laser exposure time to thermal diffusion time

References

  1. King WE, Barth HD, Castillo VM, Gallegos GF, Gibbs JW, Hahn DE, Kamath C, Rubenchik AM (2014) Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J Mater Process Tech 214(12):2915–2925. https://doi.org/10.1016/j.jmatprotec.2014.06.005

    Article  Google Scholar 

  2. Liu B, Fang G, Lei L (2021) An analytical model for rapid predicting molten pool geometry of selective laser melting (SLM). Appl Math Model 92:505–524. https://doi.org/10.1016/j.apm.2020.11.027

    Article  Google Scholar 

  3. Han X, Zhu H, Nie X, Wang G, Zeng X (2018) Investigation on selective laser melting AlSi10Mg cellular lattice strut: molten pool morphology, surface roughness and dimensional accuracy. Materials 11(3):392. https://doi.org/10.3390/ma11030392

    Article  Google Scholar 

  4. Gu D, Shi X, Poprawe R, Bourell DL, Setchi R, Zhu J (2021) Material-structure-performance integrated laser-metal additive manufacturing. Science 372(6545). https://doi.org/10.1126/science.abg1487

    Article  Google Scholar 

  5. Seede R, Shoukr D, Zhang B, Whitt A, Gibbons S, Flater P, Elwany A, Arroyave R, Karaman I (2020) An ultra-high strength martensitic steel fabricated using selective laser melting additive manufacturing: densification, microstructure, and mechanical properties. Acta Mater 186:199–214. https://doi.org/10.1016/j.actamat.2019.12.037

    Article  Google Scholar 

  6. Wang Q, Michaleris PP, Nassar AR, Irwin JE, Ren Y, Stutzman CB (2020) Model-based feedforward control of laser powder bed fusion additive manufacturing. Addit Manuf 31:100985. https://doi.org/10.1016/j.addma.2019.100985

    Article  Google Scholar 

  7. Doumanidis C, Kwak YM (2001) Geometry modeling and control by infrared and laser sensing in thermal manufacturing with material deposition. J Manuf Sci Eng 123(1):45–52. https://doi.org/10.1115/1.1344898

    Article  Google Scholar 

  8. Wang Q (2019) A control-oriented model for melt-pool volume in laser powder bed fusion additive manufacturing. Dyn Syst Control Conf Am Soc Mech Eng 59148:V001T10A002. https://asmedigitalcollection.asme.org/DSCC/proceedings/DSCC2019/59148/V001T10A002/1070481

  9. Scime L, Beuth J (2019) Melt pool geometry and morphology variability for the Inconel 718 alloy in a laser powder bed fusion additive manufacturing process. Addit Manuf 29:100830. https://doi.org/10.1016/j.addma.2019.100830

    Article  Google Scholar 

  10. Scime L, Beuth J (2019) Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process. Addit Manuf 25:151–165. https://doi.org/10.1016/j.addma.2018.11.010

    Article  Google Scholar 

  11. Papadakis L, Loizou A, Risse J, Bremen S, Schrage J (2014) A computational reduction model for appraising structural effects in selective laser melting manufacturing: a methodical model reduction proposed for time-efficient finite element analysis of larger components in Selective Laser Melting. Virtual Phys Prototyp 9(1):17–25. https://doi.org/10.1080/17452759.2013.868005

    Article  Google Scholar 

  12. Francis ZR (2017) The effects of laser and electron beam spot size in additive manufacturing processes. Dissertation, Carnegie Mellon University

  13. Bertoli US, Wolfer AJ, Matthews MJ, Delplanque JPR, Schoenung JM (2017) On the limitations of volumetric energy density as a design parameter for selective laser melting. Mater Design 113:331–340. https://doi.org/10.1016/j.matdes.2016.10.037

    Article  Google Scholar 

  14. Rubenchik AM, King WE, Wu SS (2018) Scaling laws for the additive manufacturing. J Mater Process Tech 257:234–243. https://doi.org/10.1016/j.jmatprotec.2018.02.034

    Article  Google Scholar 

  15. Mirkoohi E, Sievers DE, Garmestani H, Chiang K, Liang SY (2019) Three-dimensional semi-elliptical modeling of melt pool geometry considering hatch spacing and time spacing in metal additive manufacturing. J Manuf Process 45:532–543. https://doi.org/10.1016/j.jmapro.2019.07.028

    Article  Google Scholar 

  16. Tang M, Pistorius PC, Beuth JL (2017) Prediction of lack-of-fusion porosity for powder bed fusion. Addit Manuf 14:39–48. https://doi.org/10.1016/j.addma.2016.12.001

    Article  Google Scholar 

  17. Promoppatum P, Yao SC, Pistorius PC, Rollett AD (2017) A comprehensive comparison of the analytical and numerical prediction of the thermal history and solidification microstructure of Inconel 718 products made by laser powder-bed fusion. Engineering 3(5):685–694. https://doi.org/10.1016/J.ENG.2017.05.023

    Article  Google Scholar 

  18. Eagar TW, Tsai NS (1983) Temperature fields produced by traveling distributed heat sources. Weld J 62(12):346–355. http://files.aws.org/wj/supplement/WJ_1983_12_s346.pdf

  19. Mukherjee T, Zuback JS, De A, DebRoy T (2016) Printability of alloys for additive manufacturing. Sci Rep 6(1):1–8. https://doi.org/10.1038/srep19717

    Article  Google Scholar 

  20. Shrestha S, Chou K (2021) An investigation into melting modes in selective laser melting of Inconel 625 powder: single track geometry and porosity. Int J Adv Manuf Tech 114:3255–3267. https://doi.org/10.1007/s00170-021-07105-3

    Article  Google Scholar 

  21. Yap CY, Chua CK, Dong ZL (2016) An effective analytical model of selective laser melting. Virtual Phys Prototy 11(1):21–26. https://doi.org/10.1080/17452759.2015.1133217

    Article  Google Scholar 

  22. Foroozmehr A, Badrossamay M, Foroozmehr E, Golabi SI (2016) Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed. Mater Design 89:255–263. https://doi.org/10.1016/j.matdes.2015.10.002

    Article  Google Scholar 

  23. Cannon JR (1984) The one-dimensional heat equation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  24. Gladush GG, Smurov I (2011) Physics of laser materials processing: theory and experiment. Springer Science & Business Media

  25. Andreotta R, Ladani L, Brindley W (2017) Finite element simulation of laser additive melting and solidification of Inconel 718 with experimentally tested thermal properties. Finite Elem Anal Des 135:36–43. https://doi.org/10.1016/j.finel.2017.07.002

    Article  Google Scholar 

  26. Cheng B, Lydon J, Cooper K, Cole V, Northrop P, Chou K (2018) Melt pool sensing and size analysis in laser powder-bed metal additive manufacturing. J Manuf Process 32:744–753. https://doi.org/10.1016/j.jmapro.2018.04.002

    Article  Google Scholar 

  27. Le TN, Lo YL, Lin ZH (2020) Numerical simulation and experimental validation of melting and solidification process in selective laser melting of IN718 alloy. Addit Manuf 36:101519. https://doi.org/10.1016/j.addma.2020.101519

    Article  Google Scholar 

  28. Yang J, Han J, Yu H, Yin J, Gao M, Wang Z, Zeng X (2016) Role of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti-6Al-4V alloy. Mater Design 110:558–570. https://doi.org/10.1016/j.matdes.2016.08.036

    Article  Google Scholar 

  29. Yadroitsev I, Krakhmalev P, Yadroitsava I (2014) Selective laser melting of Ti6Al4V alloy for biomedical applications: temperature monitoring and microstructural evolution. J Alloys Compd 583:404–409. https://doi.org/10.1016/j.jallcom.2013.08.183

    Article  Google Scholar 

  30. Kamath C, El-Dasher B, Gallegos GF, King WE, Sisto A (2014) Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W. Int J Adv Manuf Tech 74(1):65–78. https://doi.org/10.1007/s00170-014-5954-9

    Article  Google Scholar 

  31. Gusarov AV, Yadroitsev I, Bertrand P, Smurov I (2009) Model of radiation and heat transfer in laser-powder interaction zone at selective laser melting. J Heat Transfer 131(7):072101. https://doi.org/10.1115/1.3109245

    Article  Google Scholar 

  32. Balbaa MA, Ghasemi A, Fereiduni E, Elbestawi MA, Jadhav SD, Kruth JP (2021) Role of powder particle size on laser powder bed fusion processability of AlSi10Mg alloy. Addit Manuf 37:101630. https://doi.org/10.1016/j.addma.2020.101630

    Article  Google Scholar 

  33. Khairallah SA, Martin AA, Lee JR, Guss G, Calta NP, Hammons JA, Nielsen MH, Chaput K, Schwalbach E, Shah MN, Chapman MG, Willey TM, Rubenchik AM, Anderson AT, Wang YM, Matthews MJ, King WE (2020) Controlling interdependent meso-nanosecond dynamics and defect generation in metal 3D printing. Science 368(6491):660–665. https://doi.org/10.1126/science.aay7830

    Article  Google Scholar 

  34. Tolochko NK, Khlopkov YV, Mozzharov SE, Ignatiev MB, Laoui T, Titov VI (2000) Absorptance of powder materials suitable for laser sintering. Rapid Prototyp J 6(3):155–160. https://doi.org/10.1108/13552540010337029

    Article  Google Scholar 

  35. Yadroitsev I, Gusarov A, Yadroitsava I, Smurov I (2010) Single track formation in selective laser melting of metal powders. J Mater Process Tech 210(12):1624–1631. https://doi.org/10.1016/j.jmatprotec.2010.05.010

    Article  Google Scholar 

  36. Plotkowski A, Kirka MM, Babu SS (2017) Verification and validation of a rapid heat transfer calculation methodology for transient melt pool solidification conditions in powder bed metal additive manufacturing. Addit Manuf 18:256–268. https://doi.org/10.1016/j.addma.2017.10.017

    Article  Google Scholar 

  37. Zhao Y, Koizumi Y, Aoyagi K, Wei D, Yamanaka K, Chiba A (2019) Molten pool behavior and effect of fluid flow on solidification conditions in selective electron beam melting (SEBM) of a biomedical Co-Cr-Mo alloy. Addit Manuf 26:202–214. https://doi.org/10.1016/j.addma.2018.12.002

    Article  Google Scholar 

  38. Ge W, Han S, Fang Y, Cheon J, Na SJ (2017) Mechanism of surface morphology in electron beam melting of Ti6Al4V based on computational flow patterns. Appl Surf Sci 419:150–158. https://doi.org/10.1016/j.apsusc.2017.05.033

    Article  Google Scholar 

  39. Wei HL, Mukherjee T, Zhang W, Zuback JS, Knapp GL, De A, DebRoy T (2021) Mechanistic models for additive manufacturing of metallic components. Prog Mater Sci 116:100703. https://doi.org/10.1016/j.pmatsci.2020.100703

    Article  Google Scholar 

  40. Dunbar AJ, Denlinger ER, Gouge MF, Michaleris P (2016) Experimental validation of finite element modeling for laser powder bed fusion deformation. Addit Manuf 12:108–120. https://doi.org/10.1016/j.addma.2016.08.003

    Article  Google Scholar 

  41. Dai D, Gu D, Ge Q, Li Y, Shi X, Sun Y, Li S (2020) Mesoscopic study of thermal behavior, fluid dynamics and surface morphology during selective laser melting of Ti-based composites. Comp Mater Sci 177:109598. https://doi.org/10.1016/j.commatsci.2020.109598

    Article  Google Scholar 

  42. Waqar S, Sun Q, Liu J, Guo K, Sun J (2021) Numerical investigation of thermal behavior and melt pool morphology in multi-track multi-layer selective laser melting of the 316L steel. Int J Adv Manuf Tech 112(3):879–895. https://doi.org/10.1007/s00170-020-06360-0

    Article  Google Scholar 

Download references

Funding

This research is funded by the National Natural Science Foundation of China (grant number 52005021).

Author information

Authors and Affiliations

Authors

Contributions

Kai Guo: conceptualization, methodology, investigation, visualization, writing–original draft. Lihong Qiao: conceptualization, methodology, writing–review and editing, supervision. Zhicheng Huang: methodology, writing–review and editing, supervision, project administration. Nabil Anwer: writing–review and editing, supervision. Yuda Cao: writing–review and editing.

Corresponding author

Correspondence to Zhicheng Huang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. Material properties for IN718, TC4, and 316L

Table 4 Material parameters of IN718, TC4, and 316L for calculation

Appendix 2. Fitting constant values for IN718, TC4, and 316L

Table 5 Fitting values of constants in melt pool ratio equations for different materials

Appendix 3. Adopted energy absorptivity under different machines and process conditions for IN718, TC4, and 316L

Table 6 Adopted energy absorptivity under different machines and process conditions for IN718
Table 7 Adopted energy absorptivity under different machines and process conditions for TC4
Table 8 Adopted energy absorptivity under different machines and process conditions for 316L

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, K., Qiao, L., Huang, Z. et al. A computational model of melt pool morphology for selective laser melting process. Int J Adv Manuf Technol 121, 1651–1673 (2022). https://doi.org/10.1007/s00170-022-09366-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09366-y

Keywords

Navigation