Skip to main content
Log in

Similarity-based prediction method for machinery remaining useful life: A review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Determining the remaining useful life (RUL) of increasingly complex machines provides the decision basis for the predictive maintenance process, which effectively ensures equipment safety, improves the utilization rate, and reduces the maintenance cost. Similarity-based prediction (SBP) methods are one type of RUL prediction technique, generally divided into four steps: condition monitoring data collection, degradation information fusion, similarity evaluation, and model prediction aggregation. SBP methods have advantages which include strong interpretability and a simple implementation process. Intensive studies and wide applications based on the SBP methods exist in both academia and industry. SBP methods have been included in numerous reviews, but they mainly focus on the first two steps or just one of the steps. Existing reviews lack recent advances of SBP methods and discussions of the four steps in detail. To fill the above gaps, this paper reviewed the whole procedure of SBP methods. Firstly, the prognostics industrial scenarios with limited failure data and sufficient failure data are introduced. Then, the degradation indicators (DIs) of the machines are constructed through a fusion of degradation information. Later, similarity calculation and similarity matching rule are utilized to evaluate the similarity of the DIs segments. After that, point estimation and uncertainty management are acquired by integrating the referential DIs segments. Finally, the effectiveness of the SBP methods in different industrial scenarios, the limitations, and future challenges are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Xu LD, He W, Li SC (2014) Internet of Things in Industries: A Survey. IEEE Transactions on Industrial Informatics 10(4):2233–2243. https://doi.org/10.1109/TII.2014.2300753

    Article  Google Scholar 

  2. Lee J, Lapira E, Bagheri B, Kao HA (2013) Recent advances and trends in predictive manufacturing systems in big data environment. Manufacturing Letters 1:38–41. https://doi.org/10.1016/j.mfglet.2013.09.005

    Article  Google Scholar 

  3. Lee J, Wu FJ, Zhao WY, Ghaffari M, Liao LX, Siegel D (2014) Prognostics and health management design for rotary machinery systems-Reviews, methodology and applications. Mech Syst Signal Pr 42:314–334. https://doi.org/10.1016/j.ymssp.2013.06.004

    Article  Google Scholar 

  4. Cubillo A, Perinpanayagam S, Esperon-Miguez M (2016) A review of physics-based models in prognostics: Application to gears and bearings of rotating machinery. Adv Mech Eng 8(8). https://doi.org/10.1177/1687814016664660

  5. Atamuradov V, Medjaher K, Dersin P, Lamoureux B, Zerhouni N, Management H (2017) Prognostics and health management for maintenance practitioners - Review, implementation and tools evaluation. International Journal of Prognostics & Health Management 8(Special Issue on Railways & Mass Transportation) 31. https://www.phmsociety.org/node/2246

  6. Jardine AKS, Lin DM, Banjevic D (2006) A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech Syst Signal Pr 20:1483–1510. https://doi.org/10.1016/j.ymssp.2005.09.012

    Article  Google Scholar 

  7. Sikorska JZ, Hodkiewicz M, Ma L (2011) Prognostic modelling options for remaining useful life estimation by industry. Mech Syst Signal Pr 25:1803–1836. https://doi.org/10.1016/j.ymssp.2010.11.018

    Article  Google Scholar 

  8. Kan MS, Tan ACC, Mathew J (2015) A review on prognostic techniques for non-stationary and non-linear rotating systems. Mech Syst Signal Pr 62-63(oct.) 1-20. https://doi.org/10.1016/j.ymssp.2015.02.016

  9. Elattar H, Elminir HK, Riad AM (2019) Conception and implementation of a data-driven prognostics algorithm for safety-critical systems. Soft Computing. https://doi.org/10.1007/s00500-017-2995-7

    Article  Google Scholar 

  10. Lei YG, Li NP, Lin J, Li NB (2016) Machine remaining useful life prediction using a Monte Carlo simulation method. The 29th International Congress on Condition Monitoring and Diagnostic Engineering Management (COMADEM 2016)

  11. Khelif R, Chebel-Morello B, Malinowski S, Laajili E, Fnaiech F, Zerhouni N (2017) Direct Remaining Useful Life Estimation Based on Support Vector Regression. IEEE T Ind Electron 64:2276–2285. https://doi.org/10.1109/TIE.2016.2623260

    Article  Google Scholar 

  12. Yang JY, Zhang YY, Zhu YS (2007) Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension. Mech Syst Signal Pr 21:2012–2024. https://doi.org/10.1016/j.ymssp.2006.10.005

    Article  Google Scholar 

  13. Babu G, Zhao P, Li X (2016) Deep Convolutional Neural Network Based Regression Approach for Estimation of Remaining Useful Life. International Conference on Database Systems for Advanced Applications (DASFAA 2016). https://doi.org/10.1007/978-3-319-32025-0_14

  14. Li X, Ding Q, Sun JQ (2018) Remaining useful life estimation in prognostics using deep convolution neural networks. Reliab Eng Syst Safe 172:1–11. https://doi.org/10.1016/j.ress.2017.11.021

    Article  Google Scholar 

  15. Xue B, Xu ZB, Huang X, Nie PC (2021) Data-driven prognostics method for turbofan engine degradation using hybrid deep neural network. J Mech Sci Technol 35(12):5371–5387. https://doi.org/10.1007/s12206-021-04-y

    Article  Google Scholar 

  16. Li Y, Kurfess TR, Liang SY (2000) Stochastic prognostics for rolling element bearings. Mech Syst Signal Pr 14:747–762. https://doi.org/10.1006/mssp.2000.1301

    Article  Google Scholar 

  17. Wang S, Bao ZF, Culpepper JS, Cong G (2021) A Survey on Trajectory Data Management, Analytics, and Learning. Acm Comput Surv 54. https://arxiv.org/abs/2003.11547

  18. Liu JB, Djurdjanovic D, Ni J, Casoetto N, Lee J (2007) Similarity based method for manufacturing process performance prediction and diagnosis. Comput Ind 58:558–566. https://doi.org/10.1016/j.compind.2006.12.004

    Article  Google Scholar 

  19. Xu CW, Chen HL, Liu Z (2008) State recognition technology and application on milling tool wear. Appl Mech Mater 10–12:869–873. https://doi.org/10.4028/www.scientific.net/AMM.10-12.869

    Article  Google Scholar 

  20. Xue F, Bonissone P, Varma A, Yan W, Eklund N, Goebel K (2008) An Instance-Based Method for Remaining Useful Life Estimation for Aircraft Engines. J Fail Anal Prev 8:199–206. https://doi.org/10.1007/s11668-008-9118-9

    Article  Google Scholar 

  21. Wang TY, Yu JB, Siegel D, Lee J (2008) A Similarity-Based Prognostics Approach for Remaining Useful Life Estimation of Engineered Systems. 2008 International Conference on Prognostics and Health Management (PHM) pp 1-6. https://doi.org/10.1109/PHM.2008.4711421

  22. Wang TY (2010) Trajectory Similarity Based Prediction for Remaining Useful Life Estimation. Dissertation, University of Cincinnati

  23. Ding H, Takigawa I, Mamitsuka H, Zhu SF (2014) Similarity-based machine learning methods for predicting drug-target interactions: a brief review. Brief Bioinform 15:734–747. https://doi.org/10.1093/bib/bbt056

    Article  Google Scholar 

  24. Soualhi A, Razik H, Clerc G (2019) Data Driven Methods for the Prediction of Failures. Proceedings of the 2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines. Power Electronics and Drives (SDEMPD) 474-480. https://doi.org/10.1109/DEMPED.2019.8864877

  25. Ramasso E, Saxena A (2014) Performance Benchmarking and Analysis of Prognostic Methods for CMAPSS Datasets. Int J Progn Health M 5:1–15. https://doi.org/10.36001/ijphm.2014.v5i2.2236

    Article  Google Scholar 

  26. Li XC, Duan F, Mba D, Bennett I (2018) Rotating Machine Prognostics Using System-Level Models. In: Zuo M., Ma L., Mathew J., Huang HZ. (eds) Engineering Asset Management 2016. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-62274-3_11

  27. Li XC, Duan F, Mba D, Bennett I (2017) Multidimensional prognostics for rotating machinery: A review. Adv Mech Eng 9(2). https://doi.org/10.1177/1687814016685004

  28. Lei YG, Li NP, Guo L, Li NB, Yan T, Lin J (2018) Machinery health prognostics: A systematic review from data acquisition to RUL prediction. Mech Syst Signal Pr 104:799–834. https://doi.org/10.1016/j.ymssp.2017.11.016

    Article  Google Scholar 

  29. Bektas O, Marshall J, Jones JA (2020) Comparison of Computational Prognostic Methods for Complex Systems Under Dynamic Regimes: A Review of Perspectives. Archives of Computational Methods in Engineering 27:999–1011. https://doi.org/10.1007/s11831-019-09339-7

    Article  MathSciNet  Google Scholar 

  30. Baur M, Albertelli P, Monno M (2020) A review of prognostics and health management of machine tools. Int J Adv Manuf Tech 107:2843–2863. https://doi.org/10.1007/s00170-020-05202-3

    Article  Google Scholar 

  31. Coble J (2010) Merging Data Sources to Predict Remaining Useful Life–An Automated Method to Identify Prognostic Parameters. Dissertation, University of Tennessee

  32. Bektas O (2018) An Adaptive Data Filtering Model for Remaining Useful Life Estimation. Dissertation, University of Warwick

  33. Saxena A, Goebel K, Simon D, Eklund N (2008) Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation. 2008 International Conference on Prognostics and Health Management (PHM) pp 1-9. https://doi.org/10.1109/PHM.2008.4711414

  34. Liu KB, Chehade A, Song CY (2017) Optimize the Signal Quality of the Composite Health Index via Data Fusion for Degradation Modeling and Prognostic Analysis. IEEE T Autom Sci Eng 14:1504–1514. https://doi.org/10.1109/TASE.2015.2446752

    Article  Google Scholar 

  35. Agogino A, Goebel K (2007) Milling Data Set. BEST Lab, UC Berkeley, NASA Ames Prognostics Data Repository

    Google Scholar 

  36. Li JB, Lu J, Chen CY, Ma JY, Liao XP (2021) Tool wear state prediction based on feature-based transfer learning. Int J Adv Manuf Tech 113:3283–3301. https://doi.org/10.1007/s00170-021-06780-6

    Article  Google Scholar 

  37. Yu WN, Kim IY, Mechefske C (2019) Remaining useful life estimation using a bidirectional recurrent neural network based autoencoder scheme. Mech Syst Signal Pr 129:764–780. https://doi.org/10.1016/j.ymssp.2019.05.005

    Article  Google Scholar 

  38. Huang CG, Yin XH, Huang HZ, Li YF (2020) An Enhanced Deep Learning-Based Fusion Prognostic Method for RUL Prediction. IEEE T Reliab 69:1097–1109. https://doi.org/10.1016/j.ymssp.2019.05.005

    Article  Google Scholar 

  39. Saha B, Goebel K (2007) Battery Data Set, NASA Ames Prognostics Data Repository

  40. Goodenough JB (2018) How we made the Li-ion rechargeable battery. Nat Electron 1:204–204. https://doi.org/10.1038/s41928-018-0048-6

    Article  Google Scholar 

  41. Liao LX, Kottig F (2014) Review of Hybrid Prognostics Approaches for Remaining Useful Life Prediction of Engineered Systems, and an Application to Battery Life Prediction. IEEE T Reliab 63:191–207. https://doi.org/10.1109/TR.2014.2299152

    Article  Google Scholar 

  42. Zhang SJ, Kang R, Lin YH (2021) Remaining useful life prediction for degradation with recovery phenomenon based on uncertain process. Reliab Eng Syst Safe. https://doi.org/10.1016/j.ress.2021.107440

    Article  Google Scholar 

  43. Virkler D, Hillberry B, Goel P (1979) The Statistical Nature of Fatigue Crack Propagation. J Eng Mater-T Asme 101(2):241. https://doi.org/10.1115/1.3443666

    Article  Google Scholar 

  44. Guepie BK, Lecoeuche S (2015) Similarity-based Residual Useful Life Prediction for Partially Unknown Cycle Varying Degradation. 2015 IEEE Conference on Prognostics and Health Management (PHM). https://doi.org/10.1109/ICPHM.2015.7245054

  45. Wang B, Lei YG, Li NP, Li NB (2020) A Hybrid Prognostics Approach for Estimating Remaining Useful Life of Rolling Element Bearings. IEEE T Reliab 69:401–412. https://doi.org/10.1109/TR.2018.2882682

    Article  Google Scholar 

  46. Nectoux P, Gouriveau R, Medjaher K, Ramasso E, Chebel-Morello B, Zerhouni N, Varnier C (2012) PRONOSTIA : An experimental platform for bearings accelerated degradation tests. IEEE International Conference on Prognostics and Health Management IEEE pp 1-8. https://hal.archives-ouvertes.fr/hal-00719503

  47. Lee J, Qiu H, Yu G, Lin J, Services RT (2007) IMS, University of Cincinnati. Bearing Data Set. NASA Ames Prognostics Data Repository, NASA Ames Research Center, Moffett Field, CA

  48. Wang TZ, Dong JJ, Xie T (2019) Diallo, D., Benbouzid, M., A Self-Learning Fault Diagnosis Strategy Based on Multi-Model Fusion. Information 10(3):116-116. https://doi.org/10.3390/info10030116

  49. Liu ZL, Zuo MJ, Qin Y (2016) Remaining useful life prediction of rolling element bearings based on health state assessment. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science 230:314–320. https://doi.org/10.1177/0954406215590167

    Article  Google Scholar 

  50. Baraldi P, Di Maio F, Mangili F, Zio E (2013) A Belief Function Theory Method for Prognostics in Clogging Filters. Chem Engineer Trans 33:847–852. https://doi.org/10.3303/CET1333142

    Article  Google Scholar 

  51. Baraldi P, Mangili F, Zio E (2015) A belief function theory based approach to combining different representation of uncertainty in prognostics. Inform Sciences 303:134–149. https://doi.org/10.1016/j.ins.2014.12.051

    Article  MATH  Google Scholar 

  52. Baraldi P, Di Maio F, Al-Dahidi S, Zio E, Mangili F (2017) Prediction of industrial equipment Remaining Useful Life by fuzzy similarity and belief function theory. Expert Syst Appl 83:226–241. https://doi.org/10.1016/j.eswa.2017.04.035

    Article  Google Scholar 

  53. McGhee MJ, Catterson VM, Brown B (2018) Prognostic Modeling Utilizing a High-Fidelity Pressurized Water Reactor Simulator. IEEE T Syst Man Cy-S 48:727–732. https://doi.org/10.1109/TSMC.2017.2662478

    Article  Google Scholar 

  54. Zio E, Di Maio F (2010) A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear nuclear power plant. Reliab Eng Syst Safe 95:49–57. https://doi.org/10.1016/j.ress.2009.08.001

    Article  Google Scholar 

  55. Liu Z, Wang Q, Song CL, Cheng YH (2017) Similarity-Based Difference Analysis Approach for Remaining Useful Life Prediction of GaAs-Based Semiconductor Lasers. IEEE Access 5:21508–21523. https://doi.org/10.1109/ACCESS.2017.2759325

    Article  Google Scholar 

  56. Liu YC, Hu XF, Zhang WJ (2019) Remaining useful life prediction based on health index similarity. Reliab Eng Syst Safe 185:502–510. https://doi.org/10.1016/j.ress.2019.02.002

    Article  Google Scholar 

  57. Gu MY, Chen YL (2016) A Framework of Multi-Index Modeling for Similarity-Based Remaining Useful Life Estimation. 2016 3rd International Conference on Information Science and Control Engineering (ICISCE) 31-37. https://doi.org/10.1109/ICISCE.2016.18

  58. Gu MY, Chen YL (2018) A multi-indicator modeling method for similarity-based residual useful life estimation with two selection processes. Int J Syst Assur Eng 9:987–998. https://doi.org/10.1007/s13198-018-0708-y

    Article  Google Scholar 

  59. Lei CY, Xia LH, Wu B, Liu G (2013) A Similarity-Based Remaining Useful Life Prognostic Approach of Equipment Components. Int Conf Quality Rel pp 1874-1877. https://doi.org/10.1109/QR2MSE.2013.6625944

  60. Gu MY, Chen YL (2019) Two improvements of similarity-based residual life prediction methods. J Intell Manuf 30:303–315. https://doi.org/10.1007/s10845-016-1249-3

    Article  Google Scholar 

  61. Mitchell TM (1997) Machine Learning, 1st edn. McGraw-Hill Inc, New York

    MATH  Google Scholar 

  62. Coble J, Hines J (2009) Identifying optimal prognostic parameters from data: A genetic algorithms approach. Annual Conference of the Prognostics and Health Management Society. http://papers.phmsociety.org/index.php/phmconf/article/view/1404

  63. Zhang B, Zhang LJ, Xu JW (2016) Degradation Feature Selection for Remaining Useful Life Prediction of Rolling Element Bearings. Qual Reliab Eng Int 32:547–554. https://doi.org/10.1002/qre.1771

    Article  Google Scholar 

  64. Zhou SH, Xu XX, Xiao YY, Chang WB, Qian SL, Pan X (2019) Remaining Useful Life Prediction with Similarity Fusion of Multi-Parameter and Multi-Sample Based on the Vibration Signals of Diesel Generator Gearbox. Entropy-Switz. https://doi.org/10.3390/e21090861

    Article  Google Scholar 

  65. Liu W, Tan JP, Sang YW (2021) An evidential similarity-based regression method for the prediction of equipment remaining useful life under complex conditions. IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE) 2021:362–366. https://doi.org/10.1109/ICCECE51280.2021.9342372

    Article  Google Scholar 

  66. Nguyen KTP, Medjaher K (2021) An automated health indicator construction methodology for prognostics based on multi-criteria optimization. Isa T 113:81–96. https://doi.org/10.1016/j.isatra.2020.03.017

    Article  Google Scholar 

  67. Liao LX, Jin WJ, Pavel R (2016) Enhanced Restricted Boltzmann Machine With Prognosability Regularization for Prognostics and Health Assessment. IEEE T Ind Electron 63:7076–7083. https://doi.org/10.1109/TIE.2016.2586442

    Article  Google Scholar 

  68. Camci F, Medjaher K, Zerhouni N, Nectoux P (2013) Feature Evaluation for Effective Bearing Prognostics. Qual Reliab Eng Int 29:477–486. https://doi.org/10.1002/qre.1396

    Article  Google Scholar 

  69. Cai HS, Jia XD, Feng JS, Li WZ, Pahren L, Lee J (2020) A similarity based methodology for machine prognostics by using kernel two sample test. Isa T 103:112–121. https://doi.org/10.1016/j.isatra.2020.03.007

    Article  Google Scholar 

  70. Cai HS, Feng JS, Li WZ, Hsu YM, Lee J (2020) Similarity-based Particle Filter for Remaining Useful Life prediction with enhanced performance. Appl Soft Comput 94:106474. https://doi.org/10.1016/j.asoc.2020.106474

  71. Liang ZM, Gao JM, Jiang HQ, Gao X, Gao ZY, Wang RX (2019) A Degradation Degree Considered Method for Remaining Useful Life Prediction Based on Similarity. Comput Sci Eng 21:50–64. https://doi.org/10.1109/MCSE.2018.110145829

    Article  Google Scholar 

  72. Lei YG, Li NP, Gontarz S, Lin J, Radkowski S, Dybala J (2016) A Model-Based Method for Remaining Useful Life Prediction of Machinery. IEEE T Reliab 65:1314–1326. https://doi.org/10.1109/TR.2016.2570568

    Article  Google Scholar 

  73. Zhang B, Wang H, Tang Y, Pang BT, Gao XH (2018) Residual Useful Life Prediction for Slewing Bearing Based on Similarity under Different Working Conditions. Exp Techniques 42:279–289. https://doi.org/10.1007/s40799-018-0235-4

    Article  Google Scholar 

  74. Ding P, Qian QR, Wang H, Yao JY (2019) A Symbolic Regression Based Residual Useful Life Model for Slewing Bearings. IEEE Access 7:72076–72089. https://doi.org/10.1109/ACCESS.2019.2919663

    Article  Google Scholar 

  75. Niu G, Qian F, Choi BK (2016) Bearing life prognosis based on monotonic feature selection and similarity modeling. P I Mech Eng C-J Mec 230:3183–3193. https://doi.org/10.1177/0954406215608892

    Article  Google Scholar 

  76. Mosallam A, Medjaher K, Zerhouni N (2016) Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction. J Intell Manuf 27:1037–1048. https://doi.org/10.1007/s10845-014-0933-4

    Article  Google Scholar 

  77. Zhang JL, Lee J (2011) A review on prognostics and health monitoring of Li-ion battery. J Power Sources 196:6007–6014. https://doi.org/10.1016/j.jpowsour.2011.03.101

    Article  Google Scholar 

  78. Thoppil NM, Vasu V, Rao CSP (2021) Health indicator construction and remaining useful life estimation for mechanical systems using vibration signal prognostics. Int J Syst Assur Eng 12:1001–1010. https://doi.org/10.1007/s13198-021-01190-z

    Article  Google Scholar 

  79. Wen PF, Zhao S, Chen SW, Li Y (2016) A generalized remaining useful life prediction method for complex systems based on composite health indicator. Reliab Eng Syst Safe 205:107241. https://doi.org/10.1016/j.ress.2020.107241

  80. Zhao X, Xiao MQ, Xie WWL, Huang HQ, Cao W (2016) A Method for Predicting Aviation Equipment Failures based on Degradation-Track Similarity. 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC) 1472–1477. https://doi.org/10.1109/CGNCC.2016.7829006

  81. Tran VT, Hong J (2020) A Multi-Sensor Prognostics Framework Based on Data Fusion and Time Series Similarity Search. IEEE Ind Elec 2593–2599. https://doi.org/10.1109/IECON43393.2020.9255346

  82. Xiong XX, Cheng N, Li Q, Yang H (2015) Remaining Useful Life Prognostics of Aircraft Engines Based on Damage Propagation Modeling and Data Analysis. Int Sym Comput Intel 143–147. https://doi.org/10.1109/ISCID.2015.206

  83. Eker OF, Camci F, Jennions IK (2014) A Similarity-Based Prognostics Approach for Remaining Useful Life Prediction. 2nd European Conference of the Prognostics and Health Management Society. https://doi.org/10.36001/phme.2014.v2i1.1479

  84. Ma B, Yan SF, Wang X, Chen JH, Zheng CS (2020) Similarity-Based Failure Threshold Determination for System Residual Life Prediction. Eksploat Niezawodn 22:520–529. https://doi.org/10.17531/ein.2020.3.15

    Article  Google Scholar 

  85. Jia XD (2018) Data Suitability Assessment and Enhancement for Machine Prognostics and Health Management Using Maximum Mean Discrepancy. Dissertation, University of Cincinnati

  86. Yang J, Du CY, Liu W, Xie J (2020) State-of-health estimation for satellite batteries based on the actual operating parameters - Health indicator extraction from the discharge curves and state estimation. J Energy Storage 31:101490. https://doi.org/10.1016/j.est.2020.101490

  87. Feng HL, Song DD (2021) A health indicator extraction based on surface temperature for lithium-ion batteries remaining useful life prediction. J Energy Storage 34:102118. https://doi.org/10.1016/j.est.2020.102118

  88. Liu DT, Zhou JB, Liao HT, Peng Y, Peng XY (2015) A Health Indicator Extraction and Optimization Framework for Lithium-Ion Battery Degradation Modeling and Prognostics. IEEE Trans Syst Man Cybern Syst Hum 45(6):915–928. https://doi.org/10.1109/TSMC.2015.2389757

    Article  Google Scholar 

  89. Sun YQ, Hao XL, Pecht M, Zhou YP (2018) Remaining useful life prediction for lithium-ion batteries based on an integrated health indicator. Microelectron Reliab 88-90(SEP.) 1189-1194. https://doi.org/10.1016/j.microrel.2018.07.047

  90. Liu W, Xu Y (2020) Data-Driven Online Health Estimation of Li-Ion Batteries Using A Novel Energy-Based Health Indicator. IEEE Trans Energy Convers 35(3):1715–1718. https://doi.org/10.1109/TEC.2020.2995112

    Article  MathSciNet  Google Scholar 

  91. Huang ZY, Xu ZG, Ke XJ, Wang WH (2017) Remaining useful life prediction for an adaptive skew-Wiener process model. Mech Syst Signal Pr 87:294–306. https://doi.org/10.1016/j.ymssp.2016.10.027

    Article  Google Scholar 

  92. Huang ZY, Xu ZG, Wang WH, Sun YX (2015) Remaining Useful Life Prediction for a Nonlinear Heterogeneous Wiener Process Model With an Adaptive Drift. IEEE T Reliab 64:687–700. https://doi.org/10.1109/TR.2015.2403433

    Article  Google Scholar 

  93. Soualhi M, Khanh N, Soualhi A, Medjaher K, Hemsas KE (2019) Remaining Useful Life Prediction for a Nonlinear Heterogeneous Wiener Process Model With an Adaptive Drift. Measurement 141:37–51. https://doi.org/10.1016/j.measurement.2019.03.065

    Article  Google Scholar 

  94. Antoni J, Randall RB (2006) The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines. Mech Syst Signal Pr 20:308–331. https://doi.org/10.1016/j.ymssp.2004.09.002

    Article  Google Scholar 

  95. Gasperin M, Juricic D, Boskoski P, Vizintin J (2011) Model-based prognostics of gear health using stochastic dynamical models. Mech Syst Signal Pr 25:537–548. https://doi.org/10.1016/j.ymssp.2010.07.003

    Article  Google Scholar 

  96. Miao Q, Tang C, Liang W, Pecht M (2013) Health Assessment of Cooling Fan Bearings Using Wavelet-Based Filtering. Sensors-Basel 13:274–291. https://doi.org/10.3390/s130100274

    Article  Google Scholar 

  97. Duong BP, Khan SA, Shon D, Im K, Park J, Lim DS, Jang B, Kim JM (2018) A Reliable Health Indicator for Fault Prognosis of Bearings. Sensors-Basel 18(11):3740. https://doi.org/10.3390/s18113740

    Article  Google Scholar 

  98. Wei H, Qiang M, Azarian M, Pecht M (2015) Health monitoring of cooling fan bearings based on wavelet filter. Mech Syst Signal Pr 64(dec) 149-161. https://doi.org/10.1016/j.ymssp.2015.04.002

  99. Zhang Y, Tang BP, Han Y, Deng L (2017) Bearing performance degradation assessment based on time-frequency code features and SOM network. Meas Sci Technol 28(4):045601. https://doi.org/10.1088/1361-6501/aa56c9

  100. Prudhom A, Antonino-Daviu J, Razik H, Climente-Alarcon V (2017) Time-frequency vibration analysis for the detection of motor damages caused by bearing currents. Mech Syst Signal Pr 84:747–762. https://doi.org/10.1016/j.ymssp.2015.12.008

    Article  Google Scholar 

  101. Nguyen H (2017) A data-driven framework for remaining useful life estimation. Vietnam Journal of Science and Technology 55:557. https://doi.org/10.15625/2525-2518/55/5/8582

  102. Ochella S, Shafiee M, Sansom C (2021) Adopting machine learning and condition monitoring P-F curves in determining and prioritizing high-value assets for life extension. Expert Syst Appl 176(15):114897. https://doi.org/10.1016/j.eswa.2021.114897

  103. Jia XD, Jin C, Buzza M, Wang W, Lee J (2016) Wind turbine performance degradation assessment based on a novel similarity metric for machine performance curves. Renew Energ 99:1191–1201. https://doi.org/10.1016/j.renene.2016.08.018

    Article  Google Scholar 

  104. Liao HT, Sun J (2011) Nonparametric and Semi-Parametric Sensor Recovery in Multichannel Condition Monitoring Systems. IEEE T Autom Sci Eng 8:744–753. https://doi.org/10.1109/TASE.2011.2159265

    Article  Google Scholar 

  105. Chen ZZ, Cao SC, Mao ZJ (2018) Remaining Useful Life Estimation of Aircraft Engines Using a Modified Similarity and Supporting Vector Machine (SVM) Approach. Energies. https://doi.org/10.3390/en11010028

    Article  Google Scholar 

  106. Li XC, Mba D, Lin TR (2019) A Similarity-based and Model-based Fusion Prognostics Framework for Remaining Useful Life Prediction. Prognost Syst Healt. https://doi.org/10.1109/PHM-Qingdao46334.2019.8943006

    Article  Google Scholar 

  107. Zhang Q, Tse WT, Wan X, Xu GH (2015) Remaining useful life estimation for mechanical systems based on similarity of phase space trajectory. Expert Syst Appl 42:2353–2360. https://doi.org/10.1016/j.eswa.2014.10.041

    Article  Google Scholar 

  108. Wu XJ, Xu LF, Wang JH, Yang DA, Li FS, Li X (2020) A prognostic-based dynamic optimization strategy for a degraded solid oxide fuel cell. Sustain Energy Techn 39(3):100682. https://doi.org/10.1016/j.seta.2020.100682

  109. Huang CG, Huang HZ, Peng WW, Huang TD (2019) Improved trajectory similarity-based approach for turbofan engine prognostics. J Mech Sci Technol 33:4877–4890. https://doi.org/10.1007/s12206-019-0928-3

    Article  Google Scholar 

  110. Yang XY, Fang ZG, Li XC, Yang YJ, Mba D (2021) Similarity-based information fusion grey model for remaining useful life prediction of aircraft engines. Grey Syst 11:463–483. https://doi.org/10.1108/GS-05-2020-0066

    Article  Google Scholar 

  111. Khelif R, Malinowski S, Chebel-Morello B, Zerhouni N (2014) RUL prediction based on a new similarity-instance based approach. Proc IEEE Int Symp 2463–2468. https://doi.org/10.1109/ISIE.2014.6865006

  112. Khan F (2019) Online Subspace Tracking for Damage Propagation Modeling and Predictive Analytics: Big Data Perspective. https://doi.org/10.20944/preprints201910.0212.v1

  113. Wang MN, Li YX, Zhao HH, Zhang YX (2020) Combining Autoencoder with Similarity Measurement for Aircraft Engine Remaining Useful Life Estimation. Springer, Singapore pp 197-208. https://doi.org/10.1007/978-981-15-1773-0_14

  114. Gugulothu N, Vishnu TV, Malhotra P, Vig L, Agarwal P, Shroff G (2018) Predicting Remaining Useful Life using Time Series Embeddings based on Recurrent Neural Networks. Int J Progn Health M 9. https://doi.org/10.36001/ijphm.2018.v9i1.2689

  115. Yu WN, Kim IY, Mechefske C (2020) An improved similarity-based prognostic algorithm for RUL estimation using an RNN autoencoder scheme. Reliab Eng Syst Safe 199:106929. https://doi.org/10.1016/j.ress.2020.106926

  116. Yu WN, Kim IY, Mechefske C (2021) Analysis of different RNN autoencoder variants for time series classification and machine prognostics. Mech Syst Signal Pr 149:107322. https://doi.org/10.1016/j.ymssp.2020.107322

  117. Duan YH, Li HH, He MQ, Zhao DD (2021) A BiGRU Autoencoder Remaining Useful Life Prediction Scheme With Attention Mechanism and Skip Connection. IEEE Sens J 21(9):10905–10914. https://doi.org/10.1109/JSEN.2021.3060395

    Article  Google Scholar 

  118. Xue B, Xu FM, Huang X, Xu ZB, Zhang X (2021) Improved similarity based prognostics method for turbine engine degradation with degradation consistency test. Appl Intell. https://doi.org/10.1007/s10489-021-03034-6

  119. Hou MR, Pi DC, Li BR (2020) Similarity-based deep learning approach for remaining useful life prediction. Measurement 159(15):107788. https://doi.org/10.1016/j.measurement.2020.107788

  120. Bektas O, Jones JA, Sankararaman S, Roychoudhury I, Goebel K (2019) A neural network filtering approach for similarity-based remaining useful life estimation. Int J Adv Manuf Tech 101:87–103. https://doi.org/10.1007/s00170-018-2874-0

    Article  Google Scholar 

  121. Elattar HM, Elminir HK, Riad AM (2018) Towards online data-driven prognostics system. Complex Intell Syst 4:271–282. https://doi.org/10.1007/s40747-018-0082-z

    Article  Google Scholar 

  122. Wang PF, Youn BD, Hu C (2012) A generic probabilistic framework for structural health prognostics and uncertainty management. Mech Syst Signal Pr 28:622–637. https://doi.org/10.1016/j.ymssp.2011.10.019

    Article  Google Scholar 

  123. Coble J, Hines J (2011) Applying the General Path Model to Estimation of Remaining Useful Life. Int J Progn Health M 2:2153–2648. https://doi.org/10.36001/ijphm.2011.v2i1.1352

    Article  Google Scholar 

  124. Chang MH, Kang M, Pecht M (2017) Prognostics-Based LED Qualification Using Similarity-Based Statistical Measure With RVM Regression Model. IEEE T Ind Electron 64:5667–5677. https://doi.org/10.1109/TIE.2017.2677301

    Article  Google Scholar 

  125. Wang H, Chen JH, Qu JM, Ni GX (2020) A new approach for safety life prediction of industrial rolling bearing based on state recognition and similarity analysis. Safety Sci 122:104530. https://doi.org/10.1016/j.ssci.2019.104530

  126. Shi JM, Li YX, Wang G, Li XZ (2016) Health Index Synthetization and Remaining Useful Life Estimation for Turbofan Engines Based on Run-To-Failure Datasets. Eksploat Niezawodn 18:621–631. https://doi.org/10.17531/ein.2016.4.18

    Article  Google Scholar 

  127. Liang ZM, Gao JM, Jiang HQ, Gao X, Gao ZY, Wang RX (2018) A similarity-based method for remaining useful life prediction based on operational reliability. Appl Intell 48:2983–2995. https://doi.org/10.1007/s10489-017-1128-4

    Article  Google Scholar 

  128. Liang ZM, Gao JM, Jiang HQ (2019) A maintenance support framework based on dynamic reliability and remaining useful life. Measurement 147:106835. https://doi.org/10.1016/j.measurement.2019.07.063

  129. Yan HS, Zuo HF, Sun JZ, Zhou D, Wang H (2021) Two-Stage Degradation Assessment and Prediction Method for Aircraft Engine Based on Data Fusion. International Journal of Aerospace Engineering 2021:5876299. https://doi.org/10.1155/2021/5876299

  130. Wan AP, Gu F, Chen JH, Zheng LJ, Hall P, Ji YJ, Gu XJ (2018) Prognostics of gas turbine: A condition-based maintenance approach based on multi-environmental time similarity. Mech Syst Signal Pr 109:150–165. https://doi.org/10.1016/j.ymssp.2018.02.027

    Article  Google Scholar 

  131. Wang ZY, Tang W, Pi DC (2017) Trajectory Similarity-Based Prediction with Information Fusion for Remaining Useful Life. Lect Notes Comput Sc 10585:270–278. https://doi.org/10.1007/978-3-319-68935-7_30

    Article  Google Scholar 

  132. Al-Dahidi S, Di Maio F, Baraldi P, Zio E (2017) A locally adaptive ensemble approach for data-driven prognostics of heterogeneous fleets. P I Mech Eng O-J Ris 231:350–363. https://doi.org/10.1177/1748006X17693519

    Article  Google Scholar 

  133. Al-Dahidi S, Di Maio F, Baraldi P, Zio E (2017) A switching ensemble approach for remaining useful life estimation of electrolytic capacitors. 26th European Safety and Reliability Conference (ESREL 2016)

  134. Li LL, Ma DJ, Li ZG (2017) Residual Useful Life Estimation by a Data-Driven Similarity-Based Approach. Qual Reliab Eng Int 33:231–239. https://doi.org/10.1002/qre.2001

    Article  Google Scholar 

  135. Maio F, Di Zio E (2013) Failure prognostics by a data-driven similarity-based approach. Int J Reliab Qual Saf Eng 20(1). https://doi.org/10.1142/S0218539313500010

  136. Wang H, Ni GX, Chen JH, Qu JM (2020) Research on rolling bearing state health monitoring and life prediction based on PCA and Internet of things with multi-sensor. Measurement 157(4):107657. https://doi.org/10.1016/j.measurement.2020.107657

  137. Que ZJ, Xu ZG (2019) A Data-Driven Health Prognostics Approach for Steam Turbines Based on Xgboost and DTW. IEEE Access 7:93131–93138. https://doi.org/10.1109/ACCESS.2019.2927488

    Article  Google Scholar 

  138. Jia XD, Cai HS, Hsu YM, Li WZ, Feng J, Lee J (2019) A Novel Similarity-based Method for Remaining Useful Life Prediction Using Kernel Two Sample Test. https://doi.org/10.36001/phmconf.2019.v11i1.788

  139. Tao LF, Lu C, Yang C (2018) Battery capacity degradation prediction using similarity recognition based on modified dynamic time warping. Struct Control Health 25(1):e2024.1-e2024.11. https://doi.org/10.1002/stc.2024

  140. Ramasso, E. (2014) Investigating computational geometry for failure prognostics. Int J Progn Health M 005(1), 1–18. https://doi.org/10.36001/ijphm.2014.v5i1.2205

  141. Malinowski S, Chebel-Morello B, Zerhouni N (2015) Remaining useful life estimation based on discriminating shapelet extraction. Reliab Eng Syst Safe 142:279–288. https://doi.org/10.1016/j.ress.2015.05.012

    Article  Google Scholar 

  142. Lyu JH, Ying RR, Lu NY, Zhang BL (2020) Remaining useful life estimation with multiple local similarities. Eng Appl Artif Intel 95:103849. https://doi.org/10.1016/j.engappai.2020.103849

  143. Niu G, Liu SY (2018) Demagnetization monitoring and life extending control for permanent magnet-driven traction systems. Mech Syst Signal Pr 103:264–279. https://doi.org/10.1016/j.ymssp.2017.10.003

    Article  Google Scholar 

  144. Gebraeel N, Lawley M, Liu R, Parmeshwaran V (2004) Residual life predictions from vibration-based degradation signals: a neural network approach. IEEE T Ind Electron 51:694–700. https://doi.org/10.1109/TIE.2004.824875

    Article  Google Scholar 

  145. You MY, Meng G (2013) Toward effective utilization of similarity based residual life prediction methods: Weight allocation, prediction robustness, and prediction uncertainty. P I Mech Eng E-J Pro 227:74–84. https://doi.org/10.1177/0954408912449947

    Article  Google Scholar 

  146. Geramifard O, Tung L (2016) Multi-Model Diagnostics for Various Machining Conditions: A Similarity-Based Approach. Conference of the IEEE Industrial Electronics Society IEEE. https://doi.org/10.1109/IECON.2015.7392121

    Article  Google Scholar 

  147. Xiong XX, Li Q, Cheng N (2016) Remaining Useful Life Prognostics of Aircraft Engine Based on Fusion Algorithm. 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC) 628–633. https://doi.org/10.1109/CGNCC.2016.7828859

  148. Yang YF, Guo YL, Huang ZP, Chen N, Li L, Jiang YF, He N (2019) Research on the milling tool wear and life prediction by establishing an integrated predictive model. Measurement 145:178–189. https://doi.org/10.1016/j.measurement.2019.05.009

    Article  Google Scholar 

  149. Hu C, Youn BD, Wang P, Yoon JT (2012) An Ensemble Approach for Robust Data-Driven Prognostics. Proceedings of the Asme International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 333–347. https://doi.org/10.1115/DETC2012-70529

  150. Botev ZI, Grotowski JF, Kroese DP (2010) Kernel density estimation via diffusion. 38(5):2916–2957. https://doi.org/10.1214/10-AOS799

    Article  Google Scholar 

  151. Cui L, Wang X, Wang H, Jiang H (2020) Remaining useful life prediction of rolling element bearings based on simulated performance degradation dictionary. Mech Mach Theory 153(6):103967. https://doi.org/10.1016/j.mechmachtheory.2020.103967

  152. Soons Y, Dijkman R, Jilderda M, Duivesteijn W (2020) Predicting Remaining Useful Life with Similarity-Based Priors. International Symposium on Intelligent Data Analysis pp 483-495. https://doi.org/10.1007/978-3-030-44584-3_38

  153. Ramasso E, Rombaut M, Zerhouni N (2013) Joint Prediction of Continuous and Discrete States in Time-Series Based on Belief Functions. IEEE T Cybernetics 43:37–50. https://doi.org/10.1109/TSMCB.2012.2198882

    Article  Google Scholar 

  154. Ramasso E, Rombaut M, Zerhouni N (2012) Prognostic by Classification of Predictions Combining Similarity-Based Estimation and Belief Functions. Adv Intel Soft Compu 164:61–68. https://doi.org/10.1007/978-3-642-29461-7_7

    Article  Google Scholar 

  155. Cannarile F, Baraldi P, Zio E (2019) An evidential similarity-based regression method for the prediction of equipment remaining useful life in presence of incomplete degradation trajectories. Fuzzy Set Syst 367:36–50. https://doi.org/10.1016/j.fss.2018.10.008

    Article  MathSciNet  MATH  Google Scholar 

  156. Hao Y, Liu K, Xi Z, Shi J (2016) Multiple Sensor Data Fusion for Degradation Modeling and Prognostics Under Multiple Operational Conditions. IEEE T Reliab 65(3):1416–1426. https://doi.org/10.1109/TR.2016.2575449

    Article  Google Scholar 

  157. Benkedjouh T, Medjaher K, Zerhouni N, Rechak S (2017) Remaining useful life estimation based on nonlinear feature reduction and support vector regression. IEEE T Reliab 26(7):1751–1760. https://doi.org/10.1109/TR.2017.2695119

    Article  Google Scholar 

  158. Benkedjouh T, Medjaher K, Zerhouni N, Rechak S (2013) Remaining useful life estimation based on nonlinear feature reduction and support vector regression. Eng Appl Artif Intel 26:1751–1760. https://doi.org/10.1016/j.engappai.2013.02.006

    Article  Google Scholar 

  159. Li Y, Li H, Wang B, Yu H (2019) Randomness complexity as a family feature of rolling bearings’ degradation. Journal of Vibroengineering 21:2121–2139. https://doi.org/10.21595/jve.2019.20528

  160. Liu F, He B, Liu YB, Lu SL, Zhao YL, Zhao JW (2016) Phase Space Similarity as a Signature for Rolling Bearing Fault Diagnosis and Remaining Useful Life Estimation. Shock Vib 2016(pt.4) 1-12. https://doi.org/10.1155/2016/5341970

  161. Lin KS, Chen YX, Liu YS, Zhang B (2020) Reliability Prediction of Battery Management System for Electric Vehicles Based on Accelerated Degradation Test: A Semi-Parametric Approach. IEEE Transactions on Vehicular Technology PP(99) 1-1. https://doi.org/10.1109/TVT.2020.3012197

  162. Jiao ZQ, Feng ZQ, Lv N, Liu WJ, Qin HJ (2021) Improved Particle Filter Using Clustering Similarity of the State Trajectory with Application to Nonlinear Estimation: Theory, Modeling, and Applications. J Sensors 18:1–19. https://doi.org/10.1155/2021/9916339

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the fruitful discussions with Prof. Hongshuang Li, Prof. Demetrio Cristiani, and Prof. Wennian Yu. The authors also thank the publisher for providing the publicly available datasets for benchmark problems.

Funding

This work was supported by National Natural Science Foundation of China (No. 52073247), Institute of Robotics at Zhejiang University under (Grant K12105), and Special Innovation Fund of Zhejiang University, Ningbo (No. 702002J20211109).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this review study. Material preparation, data collection and analysis were performed by Bin Xue, Huangyang Xu, and Ke Zhu. The first draft of the manuscript was written by Bin Xue and revised by Xing Huang and Hao Pei. Zhongbin Xu was responsible for the supervision and funding acquisition. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhongbin Xu.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, B., Xu, H., Huang, X. et al. Similarity-based prediction method for machinery remaining useful life: A review. Int J Adv Manuf Technol 121, 1501–1531 (2022). https://doi.org/10.1007/s00170-022-09280-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09280-3

Keywords

Navigation