Skip to main content
Log in

Gradient structure and mechanical behavior induced by multiple laser peening in 304 austenitic stainless steel

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Austenitic stainless steel was subjected to multiple laser peening (LP) with high coverages and the gradient structures and corresponding mechanical behaviors were investigated in detail. Body-centered cubic α′ phase and hexagonal-close packed ε phase martensite induced by peening deformation accumulate in multiple LPed 304 austenitic stainless steel surface layer with the increasing coverage. In samples with 240 layers multiple LP, high density martensite in block and twins can be observed. The EBSD results show that the γ → ε → α′ martensitic transformation can be noticed to occur in grain boundaries and twins. Martensitic transformation volume fraction, twin volume fraction and hardness of multiple LPed 304 SS exhibit gradient characteristic from the top surface to substrate. The hardness of the specimens increased with the peening coverage near the top layers, and the influence of laser peening on hardness gradually vanished until 2 mm in depth, the tensile strength increased while the tensile elongation decreased, resulting from a peak power density of 8.19 GW/cm2. Multiple laser peening can be utilized as a solution to modify the mechanical performances by tailoring the gradient structure. Among the investigating range, the optimal multiple LP layers is suggested as 80 where both a relative high strength and ductility can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

The data generated or analyzed during this study are included in the present paper.

References

  1. Byun TS (2003) On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels. Acta Mater 51:3063–3071. https://doi.org/10.1016/S1359-6454(03)00117-4

    Article  Google Scholar 

  2. Chen XH, Lu J, Lu L, Lu K (2005) Tensile properties of a nanocrystalline 316L austenitic stainless steel. Scr Mater 52:1039–1044. https://doi.org/10.1016/j.scriptamat.2005.01.023

    Article  Google Scholar 

  3. Xiong L, You ZS, Lu L (2017) Fracture behavior of an austenitic stainless steel with nanoscale deformation twins. Scr Mater 127:173–177. https://doi.org/10.1016/j.scriptamat.2016.09.012

    Article  Google Scholar 

  4. Yi HY, Yan FK, Tao NR, Lu K (2016) Work hardening behavior of nanotwinned austenitic grains in a metastable austenitic stainless steel. Scr Mater 114:133–136. https://doi.org/10.1016/j.scriptamat.2015.12.021

    Article  Google Scholar 

  5. Hedayati A, Najafizadeh A, Kermanpur A, Forouzan F (2010) The effect of cold rolling regime on microstructure and mechanical properties of AISI 304L stainless steel. J Mater Process Technol 210:1017–1022. https://doi.org/10.1016/j.jmatprotec.2010.02.010

    Article  Google Scholar 

  6. Ueno H, Kakihata K, Kaneko Y, Hashimoto S, Vinogradov A (2011) Enhanced fatigue properties of nanostructured austenitic SUS 316L stainless steel. Acta Mater 59:7060–7069. https://doi.org/10.1016/j.actamat.2011.07.061

    Article  Google Scholar 

  7. Mine Y, Horita Z, Murakami Y (2009) Effect of hydrogen on martensite formation in austenitic stainless steels in high-pressure torsion. Acta Mater 57:2993–3002. https://doi.org/10.1016/j.actamat.2009.03.006

    Article  Google Scholar 

  8. Ebrahimi M, Amini S, Mahdavi SM (2017) The investigation of laser shock peening effects on corrosion and hardness properties of ANSI 316L stainless steel. Int J Adv Manuf Technol 88:1557–1565. https://doi.org/10.1007/s00170-016-8873-0

    Article  Google Scholar 

  9. Jiao Y, He W, Shen X (2019) Enhanced high cycle fatigue resistance of Ti-17 titanium alloy after multiple laser peening without coating. Int J Adv Manuf Technol 104:1333–1343. https://doi.org/10.1007/s00170-019-03993-8

    Article  Google Scholar 

  10. Zhu Y, Fu J, Zheng C, Ji Z (2016) Structural and mechanical modifications induced on Zr-based bulk metallic glass by laser shock peening. Opt Laser Technol 86:54–60. https://doi.org/10.1016/j.optlastec.2016.07.003

    Article  Google Scholar 

  11. Hu Y, Yao Z, Hu J (2006) 3-D FEM simulation of laser shock processing. Surf Coat Technol 201:1426–1435. https://doi.org/10.1016/j.surfcoat.2006.02.018

    Article  Google Scholar 

  12. Ye C, Suslov S, Lin D, Cheng GJ (2012) Deformation-induced martensite and nanotwins by cryogenic laser shock peening of AISI 304 stainless steel and the effects on mechanical properties. Philos Mag 92:1369–1389. https://doi.org/10.1080/14786435.2011.645899

    Article  Google Scholar 

  13. Murr LE, Staudhammer KP, Hecker SS (1982) Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: Part II Microstructural study. Metall Trans A 13:627–635. https://doi.org/10.1007/BF02644428

    Article  Google Scholar 

  14. Hecker SS, Stout MG, Staudhammer KP, Smith JL (1982) Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: Part I. Magnetic measurements and mechanical behavior. Metall Trans A 13:619–626. https://doi.org/10.1007/BF02644427

    Article  Google Scholar 

  15. Gussev MN, Busby JT, Byun TS, Parish CM (2013) Twinning and martensitic transformations in nickel-enriched 304 austenitic steel during tensile and indentation deformations. Mater Sci Eng A 588:299–307. https://doi.org/10.1016/j.msea.2013.08.072

    Article  Google Scholar 

  16. Lu JZ, Luo KY, Zhang YK, Sun GF, Gu YY, Zhou JZ, Ren XD, Zhang XC, Zhang LF, Chen KM, Cui CY, Jiang YF, Feng AX, Zhang L (2010) Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel. Acta Mater 58:5354–5362. https://doi.org/10.1016/j.actamat.2010.06.010

    Article  Google Scholar 

  17. Zhou L, He W, Luo S, Long C, Wang C, Nie X, He G, Shen X, Li Y (2016) Laser shock peening induced surface nanocrystallization and martensite transformation in austenitic stainless steel. J Alloys Compd 655:66–70. https://doi.org/10.1016/j.jallcom.2015.06.268

    Article  Google Scholar 

  18. Mao B, Liao Y, Li B (2018) Gradient twinning microstructure generated by laser shock peening in an AZ31B magnesium alloy. Appl Surf Sci 457:342–351. https://doi.org/10.1016/j.apsusc.2018.06.176

    Article  Google Scholar 

  19. Lu HF, Luo KY, Wu LJ, Cui CY, Lu JZ (2019) Effects of service temperature on tensile properties and microstructural evolution of CP titanium subjected to laser shock peening. J Alloys Compd 770:732–741. https://doi.org/10.1016/j.jallcom.2018.08.161

    Article  Google Scholar 

  20. Lu Y, Sun GF, Wang ZD, Su BY, Zhang YK, Ni ZH (2020) The effects of laser peening on laser additive manufactured 316L steel. Int J Adv Manuf Technol 107:2239–2249. https://doi.org/10.1007/s00170-020-05167-3

    Article  Google Scholar 

  21. Wang H, Huang Y, Zhang W, Ostendorf A (2018) Investigation of multiple laser shock peening on the mechanical property and corrosion resistance of shipbuilding 5083Al alloy under a simulated seawater environment. Appl Opt 57:6300–6308. https://doi.org/10.1364/AO.57.006300

    Article  Google Scholar 

  22. Rai AK, Biswal R, Gupta RK, Singh R, Rai SK, Ranganathan K, Ganesh P, Kaul R, Bindra KS (2019) Study on the effect of multiple laser shock peening on residual stress and microstructural changes in modified 9Cr-1Mo (P91) steel. Surf Coat Technol 358:125–135. https://doi.org/10.1016/j.surfcoat.2018.11.027

    Article  Google Scholar 

  23. Zhu Y, Ameyama K, Anderson PM, Beyerlein IJ, Gao H, Kim HS, Lavernia E, Mathaudhu S, Mughrabi H, Ritchie RO, Tsuji N, Zhang X, Wu X (2021) Heterostructured materials: superior properties from hetero-zone interaction. Mater Res Lett 9:1–31. https://doi.org/10.1080/21663831.2020.1796836

    Article  Google Scholar 

  24. Wu XL, Jiang P, Chen L, Zhang JF, Yuan FP, Zhu YT (2014) Synergetic strengthening by gradient structure. Mater Res Lett 2:185–191. https://doi.org/10.1080/21663831.2014.935821

    Article  Google Scholar 

  25. Wang YF, Huang CX, Wang MS, Li YS, Zhu YT (2018) Quantifying the synergetic strengthening in gradient material. Scr Mater 150:22–25. https://doi.org/10.1016/j.scriptamat.2018.02.039

    Article  Google Scholar 

  26. Ding J, Li Q, Li J, Xue S, Fan Z, Wang H, Zhang X (2018) Mechanical behavior of structurally gradient nickel alloy. Acta Mater 149:57–67. https://doi.org/10.1016/j.actamat.2018.02.021

    Article  Google Scholar 

  27. Zhu L, Ruan H, Chen A, Guo X, Lu J (2017) Microstructures-based constitutive analysis for mechanical properties of gradient-nanostructured 304 stainless steels. Acta Mater 128:375–390. https://doi.org/10.1016/j.actamat.2017.02.035

    Article  Google Scholar 

  28. Montross CS, Wei T, Ye L, Clark G, Mai Y-W (2002) Laser shock processing and its effects on microstructure and properties of metal alloys: a review. Int J Fatigue 24:1021–1036. https://doi.org/10.1016/S0142-1123(02)00022-1

    Article  Google Scholar 

  29. Kisko A, Misra RDK, Talonen J, Karjalainen LP (2013) The influence of grain size on the strain-induced martensite formation in tensile straining of an austenitic 15Cr–9Mn–Ni–Cu stainless steel. Mater Sci Eng A 578:408–416. https://doi.org/10.1016/j.msea.2013.04.107

    Article  Google Scholar 

  30. Sohrabi MJ, Naghizadeh M, Mirzadeh H (2020) Deformation-induced martensite in austenitic stainless steels: a review. Arch Civ Mech Eng 20:124. https://doi.org/10.1007/s43452-020-00130-1

    Article  Google Scholar 

  31. Peyre P, Fabbro R, Merrien P, Lieurade HP (1996) Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour. Mater Sci Eng A 210:102–113. https://doi.org/10.1016/0921-5093(95)10084-9

    Article  Google Scholar 

  32. Wu XL, Yang MX, Yuan FP, Chen L, Zhu YT (2016) Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility. Acta Mater 112:337–346. https://doi.org/10.1016/j.actamat.2016.04.045

    Article  Google Scholar 

  33. Heinrich H, Karnthaler HP, Waitz T, Kostorz G (1999) Transformation dislocations in Co–Fe. Mater Sci Eng A 272:238–243. https://doi.org/10.1016/S0921-5093(99)00474-8

    Article  Google Scholar 

  34. Guo N, Sun C, Fu M, Han M (2017) Misorientation-dependent twinning induced hardening and texture evolution of TWIP steel sheet in plastic deformation process. Metals 7:348. https://doi.org/10.3390/met7090348

    Article  Google Scholar 

  35. Yang X-S, Sun S, Ruan H-H, Shi S-Q, Zhang T-Y (2017) Shear and shuffling accomplishing polymorphic fcc γ → hcp ε → bct α martensitic phase transformation. Acta Mater 136:347–354. https://doi.org/10.1016/j.actamat.2017.07.016

    Article  Google Scholar 

  36. Wang J, Li N, Anderoglu O, Zhang X, Misra A, Huang JY, Hirth JP (2010) Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater 58:2262–2270. https://doi.org/10.1016/j.actamat.2009.12.013

    Article  Google Scholar 

  37. Naghizadeh M, Mirzadeh H (2018) Microstructural evolutions during reversion annealing of cold-rolled AISI 316 austenitic stainless steel. Metall Mater Trans A 49:2248–2256. https://doi.org/10.1007/s11661-018-4583-6

    Article  Google Scholar 

  38. Soleimani M, Kalhor A, Mirzadeh H (2020) Transformation-induced plasticity (TRIP) in advanced steels: A review. Mater Sci Eng A 795:140023. https://doi.org/10.1016/j.msea.2020.140023

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the support from the National Natural Science Foundation of China under the Grant Nos. U20A20284 and 52075323.

Author information

Authors and Affiliations

Authors

Contributions

Yaofei Sun: Conceptualization, Investigation, Data curation, Writing—original draft. Zhibao Hou: Visualization, Analysis, Writing—review & editing. Zhenqiang Yao: Analysis, Writing—review & editing, Funding acquisition, Supervision. Yongxiang Hu: Conceptualization, Methodology.

Corresponding author

Correspondence to Zhenqiang Yao.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Hou, Z., Yao, Z. et al. Gradient structure and mechanical behavior induced by multiple laser peening in 304 austenitic stainless steel. Int J Adv Manuf Technol 120, 3383–3392 (2022). https://doi.org/10.1007/s00170-022-08984-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-08984-w

Keywords

Navigation