Skip to main content
Log in

Research progress on transition behavior control of welding droplets

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The development of advanced welding processes is of great significance, which is in order to adapt to the development of new materials and new welding environments. The discrepancies in the molten droplets, expressed by the characteristic parameters, are a reflection of the final welding quality. In recent years, more fundamental theories have been established, which have directed the optimization of the methods, through observation or numerical simulation. Innovations in methodology are made through thermal, mechanical, or hybrid effects. Based on the existing innovative methods, this paper predicts the future development directions for welding droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this manuscript.

Code availability

The software is used in the trial state.

References

  1. Kam DH, Lee TH, Kim DY, Kim J, Kang M (2021) Weld quality improvement and porosity reduction mechanism of zinc coated steel using tandem gas metal arc welding (GMAW). J Mater Process Technol 294:117127. https://doi.org/10.1016/j.jmatprotec.2021.117127

    Article  Google Scholar 

  2. Ma C, Chen B, Tan C, Song X (2021) Characteristics of droplets transfer, molten pool formation, and weld bead formation of oscillating laser hot-wire tungsten inert gas hybrid welding. J Laser Appl 33(1):012027. https://doi.org/10.2351/7.0000189

    Article  Google Scholar 

  3. Wu D, An Q, Matsuda K, Zhang Y (2020) Characteristics of bypass coupling twin-wire indirect arc welding with high-speed welding mode. J Mater Process Technol 291:116995. https://doi.org/10.1016/j.jmatprotec.2020.116995

    Article  Google Scholar 

  4. Gou N, Zhang L, Zhang J (2018) Increased quality and welding efficiency of laser butt welding of 2205/X65 bimetallic sheets with a lagging MIG arc. J Mater Process Technol 251:83–92. https://doi.org/10.1016/j.jmatprotec.2017.08.002

    Article  Google Scholar 

  5. Li K, Gao H, Li H (2016) Formation mechanism of droplets repulsive transfer in hyperbaric GMAW. Trans China Weld Inst 37(7):35–38

    Google Scholar 

  6. Guo N, Du Y, Maksimov S, Feng J, Yin Z, Krazhanovskyi D, Fu Y (2018) Study of metal transfer control in underwater wet FCAW using pulsed wire feed method. Weld World 62:87–94. https://doi.org/10.1007/s40194-017-0497-y

    Article  Google Scholar 

  7. Guo N, Huang L, Du Y, Cheng Q, Fu Y, Feng J (2019) Control of droplets transition in underwater welding using pulsation wire feeding. Materials 12(10):1715. https://doi.org/10.3390/ma12101715

    Article  Google Scholar 

  8. Luna LER, Bracarense AQ, Pessoa ECP, Costa PS, Reyes AES (2021) Effect of the welding angle on the porosity of underwater wet welds performed in overhead position at different simulated depths. J Mater Process Technol 294:117114. https://doi.org/10.1016/j.jmatprotec.2021.117114

    Article  Google Scholar 

  9. Sun DC, Xie H, Gao HM (2016) The drop transfer characteristic of DCEN hyperbaric underwater welding. J Shanghai Jiao Tong Univ 50:117–120

    Google Scholar 

  10. Mamat SB, Tashiro S, Tanaka M, Yusoff M (2018) Study on factors affecting the droplets temperature in plasma MIG welding process. J Phys D-Appl Phys 51(13):135206. https://doi.org/10.1088/1361-6463/aab128

    Article  Google Scholar 

  11. Jorge VL, Scotti FM, Reis RP, Scotti A (2020) The effect of pulsed cold-wire feeding on the performance of spray GMAW. Int J Adv Manuf Technol 107(9):1–14. https://doi.org/10.1007/s00170-020-05247-4

    Article  Google Scholar 

  12. Meng XX, Wang CM, Hu XY (2010) High-speed photograph and the analysis of the welding pool and keyhole in fiber laser welding. Electric Weld Mach 40(11):78–81

    Google Scholar 

  13. Poopat B, Warinsiriruk E (2006) Acoustic signal analysis for classification of transfer mode in GMAW by noncontact sensing technique. Songklanakrin J Sci Technol 28(4):829–840

    Google Scholar 

  14. Pal K, Bhattacharya S, Pal SK (2010) Investigation on arc sound and metal transfer modes for on-line monitoring in pulsed gas metal arc welding. J Mater Process Technol 210:1397–1410. https://doi.org/10.1016/j.jmatprotec.2010.03.029

    Article  Google Scholar 

  15. Huang LR, Gao YF, Wang QS, Gong YF (2020) Arc sound loudness analysis of MIG welding in different droplets transfer state. Hot Work Technol 49(11):132–135

    Google Scholar 

  16. Li JY, Song YL (1994) Spectral information of arc and welding automation. Weld World 9:317–324

    Google Scholar 

  17. Xiao B (2011) Welding arc signal acquisition and analysis system based on VC++ and MATLAB mixed programming. Int Conf Meas Technol Mechatron Autom 1150–1153. https://doi.org/10.1109/ICMTMA.2011.856

    Article  Google Scholar 

  18. Simpson SW, Zhu PY (1995) Formation of molten droplets at a consumable anode in an electric welding arc. J Phys D-Appl Phys 28:1594. https://doi.org/10.1088/0022-3727/28/8/008

    Article  Google Scholar 

  19. Nemchinsky VA (1997) Heat transfer in a liquid droplets hanging at the tip of an electrode during arc welding. J Phys D-Appl Phys 30:1120. https://doi.org/10.1088/0022-3727/30/7/009

    Article  Google Scholar 

  20. Lowke JJ (2009) Physical basis for the transition from globular to spray modes in gas metal arc welding. J Phys D-Appl Phys 42:135204. https://doi.org/10.1088/0022-3727/42/13/135204

    Article  Google Scholar 

  21. Arif N, Lee JH, Yoo CD (2009) Force-displacement model for analysis of pulsed-GMAW. J Phys D-Appl Phys 42:035504. https://doi.org/10.1088/0022-3727/42/3/035504

    Article  Google Scholar 

  22. Wang F, Hou WK, Hu SJ, Kannatey-Asibu E, Schultz WW, Wang PC (2003) Modelling and analysis of metal transfer in gas metal arc welding. J Phys D-Appl Phys 36:1143. https://doi.org/10.1088/0022-3727/36/9/313

    Article  Google Scholar 

  23. Zhao YY, Chung H (2017) Numerical simulation of droplets transfer behavior in variable polarity gas metal arc welding. Int J Heat Mass Tran 111:1129–1141. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.090

    Article  Google Scholar 

  24. Komen H, Shigeta M, Tanaka M (2018) Numerical simulation of molten metal droplets transfer and weld pool convection during gas metal arc welding using incompressible smoothed particle hydrodynamics method. Int J Heat Mass Tran 121:978–985. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.059

    Article  Google Scholar 

  25. Wu CS, Chen MA, Li SK (2004) Analysis of excited droplets oscillation and detachment in active control of metal transfer. Comp Mater Sci 31(1–2):147–154. https://doi.org/10.1016/j.commatsci.2004.02.002

    Article  Google Scholar 

  26. Yang S, Xing YF, Yang FY, Cao JY (2020) Complex behavior of droplets transfer and spreading in cold metal transfer. Shock Vib 6650155. https://doi.org/10.1155/2020/6650155

    Article  Google Scholar 

  27. Norrish J, Cuiuri D (2014) The controlled short circuit GMAW process: a tutorial. J Manuf Process 16(1):86–92. https://doi.org/10.1016/j.jmapro.2013.08.006

    Article  Google Scholar 

  28. Norrish J (2017) Recent gas metal arc welding (GMAW) process developments: the implications related to international fabrication standards. Weld World 61:755–767. https://doi.org/10.1007/s40194-017-0463-8

    Article  Google Scholar 

  29. Pandzic A, Ismar H, Tasic P (2016) Advantages of MAG-STT welding process for root pass welding in the oil and gas industry. TEM J 5(1):76–79. https://doi.org/10.18421/TEM51-12

  30. DeRuntz BD (2003) Assessing the benefits of surface tension transfer® welding to industry. J Ind Technol 19(4):1–8

    Google Scholar 

  31. Dunder M, Samardžić I, Klarić Š (2005) Monitoring of main welding parameters at STT welding process. Int Res/Exp Conf Trends Dev Mach Assoc Technol 219–222

  32. Das S, Vora JJ, Patel V (2019) Regulated metal deposition (RMD™) technique for welding applications: an advanced gas metal arc welding process. Adv Weld Technol Process Dev 23–32

    Article  Google Scholar 

  33. Prajapati V, Dinbadhu VJJ, Das S, Abhishek K (2020) Study of parametric influence and welding performance optimization during regulated metal deposition (RMD™) using grey integrated with fuzzy Taguchi approach. J Manuf Process 54:286–300. https://doi.org/10.1016/j.jmapro.2020.03.017

    Article  Google Scholar 

  34. Dinbandhu PV, Vora JJ, Das S, Abhishek K (2020) Experimental studies of regulated metal deposition (RMD™) on ASTM A387(11) steel: study of parametric influence and welding performance optimization. J Braz Soc Mech Sci 42:78. https://doi.org/10.1007/s40430-019-2155-3

    Article  Google Scholar 

  35. Zhu Q, Xue JX, Xu M, Yao P (2016) Study on droplets transfer of pulsed MIG welding and current waveform control. Hot Work Technol 45(7):214–217

    Google Scholar 

  36. Zhu JH, Ding GJ, Song SZ, Dai LY (2011) Development of innovative MIG welding technology. Appl Mech Mater 58–60:743–748. https://doi.org/10.4028/www.scientific.net/AMM.58-60.743

    Article  Google Scholar 

  37. Kah P, Suoranta R, Martikaninen J (2013) Advanced gas metal arc welding process. Int J Adv Manuf Technol 67:655–674. https://doi.org/10.1007/s00170-012-4513-5

    Article  Google Scholar 

  38. Tanaka M, Tashiro S, Ushio M, Mita T, Lowke JJ (2006) CO2-shielded arc as a high-intensity heat source. Vacuum 80:1195–1198. https://doi.org/10.1016/j.vacuum.2006.01.047

    Article  Google Scholar 

  39. Tanaka M, Tamaki T, Tashiro S, Nakata K, Ohnawa T, Ueyama T (2008) Characteristics of ionized gas metal arc processing. Surf Coat Technol 202:5251–5254. https://doi.org/10.1016/j.surfcoat.2008.06.022

    Article  Google Scholar 

  40. Soderstorom EJ, Mendez PF (2008) Metal transfer during GMAW with thin electrodes and Ar-CO2 shielding gas mixtures. Weld J 87:124–133

    Google Scholar 

  41. Lebedev V, Reisgen U, Lendiel I (2016) Study of technological opportunities of GMA welding and surfacing with pulse electrode wire feed. Weld World 60:525–533. https://doi.org/10.1007/s40194-016-0321-0

    Article  Google Scholar 

  42. Wu Y, Kovacevic R (2002) Mechanically assisted droplets transfer process in gas metal arc welding. P I Mech Eeg B-J Eng 216(4):555–564. https://doi.org/10.1243/0954405021520247

    Article  Google Scholar 

  43. Jorge VL, Scotti FM, Reis RP, Scotti A (2020) The potential of wire feed pulsation to influence factors that govern weld penetration in GMA welding. Int J Adv Manuf Technol 110:2685–2701. https://doi.org/10.1007/s00170-020-06037-8

    Article  Google Scholar 

  44. Tian YB, Shen JQ, Hu SS, Gou J, Cui Y (2020) Effect of cold metal transfer mode on the reaction layer of wire and arc additive-manufactured Ti-6Al-4V/Al-6.25Cu dissimilar alloys. J Mater Sci Technol 74:35–45. https://doi.org/10.1016/j.jmst.2020.09.014

    Article  Google Scholar 

  45. Han LJ, Lin PY, Zhang GW, Zhong LH, Liu CH (2020) Study on relationship between arc behavior and joint forming in cold metal transfer welding technology with polarity-exchanging. J Harbin Inst Technol 27:81–86

    Google Scholar 

  46. Combon C, Rouquette S, Bendaoud I, Bordreuil C, Wimpory R, Soulie F (2020) Thermo-mechanical simulation of overlaid layers made with wire+arc additive manufacturing and GMAW-cold metal transfer. Weld World 64:1427–1435. https://doi.org/10.1007/s40194-020-00951-x

    Article  Google Scholar 

  47. Funderburk S (2015) SpinArc™ welding system explained. Weld J 34–38

    Google Scholar 

  48. Parthiban K, Shanmugam NS, Sankaranarayanasamy K, Vendan SA (2019) Studies on spin arc welding process on the behavior of C1018 plates-an insight into mechanical and metallurgical transformation. Mater Res Express 6:106540. https://doi.org/10.1088/2053-1591/ab135d

    Article  Google Scholar 

  49. Yang CL, Guo N, Lin SB, Fan CL, Zhang YQ (2009) Application of rotating arc system to horizontal narrow gap welding. Sci Technol Weld Join 14(2):172–177. https://doi.org/10.1179/136217108X388651

    Article  Google Scholar 

  50. Zhang H, Chang Q, Liu J, Lu H, Wu H, Feng J (2014) A novel rotating wire GMAW process to change fusion zone shape and microstructure of mild steel. Mater Lett 123:101–103. https://doi.org/10.1016/j.matlet.2014.03.018

    Article  Google Scholar 

  51. Ding M, Tang XH, Lu FG, Yao S (2011) Welding of quenched and tempered steels with high-spin arc narrow gap MAG system. Int J Adv Manuf Technol 55:527–533. https://doi.org/10.1007/s00170-010-3052-1

    Article  Google Scholar 

  52. Shen QK, Kong XD, Chen XZ (2021) Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): microstructure and mechanical properties. J Mater Sci Technol 74:136–142. https://doi.org/10.1016/j.jmst.2020.10.037

    Article  Google Scholar 

  53. Hu QX, Zhang L, Pu J, Zhu CC (2020) Effect of shielding gas flow rate on arc behaviors in GMAW with single cable-typed wire. Int J Mod Phys B 34:2040059. https://doi.org/10.1142/S0217979220400597

    Article  Google Scholar 

  54. Chen Y, Fang CF, Li QT, Zhang T, Li JX, Gao F (2020) Droplet formation and motion characteristics in seven-wire rotating arc electrogas welding. Int J Adv Manuf Technol 107:3363–3369. https://doi.org/10.1007/s00170-020-05291-0

    Article  Google Scholar 

  55. Lee HK, Park SH, Kang CY (2015) Effect of plasma current on surface defects of plasma-MIG welding in cryogenic aluminum alloys. J Mater Process Technol 223:203–215. https://doi.org/10.1016/j.jmatprotec.2015.04.008

    Article  Google Scholar 

  56. Mamat S, Afandi AAM, Bakar MBA, Masri MN, Mohamed M, Razab MKAA, Yuji T, Tashiro S, Tanaka M (2020) Effect of plasma flow in plasma MIG welding process to the microstructure refinement at heat affected zone of as-welded carbon steel. Mater Sci Forum 1010:15–20

    Article  Google Scholar 

  57. Kazuya I, Tashiro S, Mizutani M, Manabu T (2020) Study on the weld bead formation on square-groove butt joint using plasma-MIG hybrid welding process. Quart J Japan Weld Soc 38(2):135–138. https://doi.org/10.2207/qjjws.38.135s

    Article  Google Scholar 

  58. Zhou J, Tsai HL (2008) Modeling of transport phenomena in hybrid laser-MIG keyhole welding. Int J Heat Mass Tran 51:4353–4366. https://doi.org/10.1016/j.ijheatmasstransfer.2008.02.011

    Article  MATH  Google Scholar 

  59. Liu YQ, Zhu ZT, Wang W (2020) Deep-penetration welding-brazing of aluminum/steel dissimilar metal using laser-MIG arc hybrid heat source. Sci Sin-Phys Mech As 50:034207. https://doi.org/10.1360/SSPMA-2019-0204

    Article  Google Scholar 

  60. Liu SY, Zhang FL, Dong SN, Zhang H, Liu FD (2018) Characteristics analysis of droplets transfer in laser-MAG hybrid welding process. Int J Heat Mass Trans 121:805–811. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.047

    Article  Google Scholar 

  61. Wang QY, Qiu PX, Chen H (2020) Research on the effect of laser joining on droplets transfer in Laser-MIG hybrid welding. Electric Weld Mach 50(3):126–130

    Google Scholar 

  62. Li FK, Tao W, Peng GC, Qu JY, Li LQ (2020) Behavior and stability of droplets transfer under laser-MIG hybrid welding with synchronized pulse modulations. J Manuf Process 54:70–79. https://doi.org/10.1016/j.jmapro.2020.02.017

    Article  Google Scholar 

  63. Nomura K, Ogino Y, Hirata Y (2011) Shape control of TIG arc plasma by cusp-type magnetic field with permanent magnet. Weld Int 26(10):759–764. https://doi.org/10.1080/09507116.2011.592691

    Article  Google Scholar 

  64. Chang BH, Bai SJ, Du D, Zhang H, Zhou Y (2010) Studies on the micro-laser spot welding of an NdFeB permanent magnet with a low carbon steel. J Mater Process Technol 210:885–891. https://doi.org/10.1016/j.jmatprotec.2010.01.021

    Article  Google Scholar 

  65. Li Y, Wu CS, Wang L, Gao JQ (2016) Analysis of additional electromagnetic force for mitigating the humping bead in high-speed gas metal arc welding. J Mater Process Technol 229:207–215. https://doi.org/10.1016/j.jmatprotec.2015.09.014

    Article  Google Scholar 

  66. Wang L, Chen J, Wu CS, Luan SC (2020) Numerical analysis of arc and droplets behaviors in gas metal arc welding with external compound magnetic field. J Mater Process Technol 282:116638. https://doi.org/10.1016/j.jmatprotec.2020.116638

    Article  Google Scholar 

  67. Wang L, Wu CS, Chen J, Gao JQ (2018) Influence of the external magnetic field on fluid flow, temperature profile and humping bead in high speed gas metal arc welding. J Mater Process Technol 116:1282–1291. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.130

    Article  Google Scholar 

  68. Üstündağ Ö, Avilov V, Gumenyuk A, Rethmeier M (2019) Improvement of filler wire dilution using external oscillating magnetic field at full penetration hybrid laser-arc welding of thick materials. Metals 9(5):594. https://doi.org/10.3390/met9050594

    Article  Google Scholar 

  69. Chen C, Fan CL, Lin SB, Cai XY, Zhou L, Ye SF, Yang CL (2018) Effect of ultrasonic pattern on weld appearance and droplets transfer in ultrasonic assisted MIG welding process. J Mater Process Technol 35:368–372. https://doi.org/10.1016/j.jmapro.2018.08.019

    Article  Google Scholar 

  70. Chen C, Fan CL, Cai XY, Lin SB, Yang CL (2019) Analysis of droplets transfer, weld formation and microstructure in Al-Cu alloy bead welding joint with pulsed ultrasonic-GMAW method. J Mater Process Technol 221:144–151. https://doi.org/10.1016/j.jmatprotec.2019.03.030

    Article  Google Scholar 

  71. Fan CL, Zhou L, Liu Z, Yang CL, Lin SB, Xie WF, Tong H (2018) Arc character and droplets transfer of pulsed ultrasonic wave-assisted GMAW. Int J Adv Manuf Technol 95:2219–2226. https://doi.org/10.1007/s00170-017-1414-7

    Article  Google Scholar 

  72. Wang JF, Sun QJ, Hou SJ, Zhang T, Jin P, Feng JC (2019) Dynamic control of current and voltage waveforms and droplets transfer for ultrasonic-wave-assisted underwater wet welding. Mater Des 181:108051. https://doi.org/10.1016/j.matdes.2019.108051

    Article  Google Scholar 

  73. Chen H, Guo N, Xu KX, Liu C, Wang GD (2020) Investigating the advantages of ultrasonic-assisted welding technique applied in underwater wet welding by in-situ X-ray imaging method. Materials 13(6):1442. https://doi.org/10.3390/ma13061442

    Article  Google Scholar 

  74. Chen H, Guo N, Zhang ZH, Liu C, Zhou L, Wang GD (2020) A novel strategy for metal transfer controlling in underwater wet welding using ultrasonic-assisted method. Mater Lett 270:127692. https://doi.org/10.1016/j.matlet.2020.127692

    Article  Google Scholar 

Download references

Funding

The present research work was financially supported by Key Research and Development Project of Liaoning Province(Grant No. 2019JH2/10100017), Special project for the transformation of major scientific and technological achievements in Shenyang (Grant No. 20–203-5–01), the National Natural Science Foundation of China (Grant No. 51775354), Liaoning Revitalization Talents Program (Grant No. XLYC2007072), and the Ministry of Education and Science of Russian Federation (Grant No.11.9505.2017/8.9).

Author information

Authors and Affiliations

Authors

Contributions

Yiwen Li: conceptualization, methodology, writing-original draft. Zhihai Dong: conceptualization, collecting documents, writing-original draft. Huifang Liu: collecting documents, supervision. Aleksandr Babkin: writing—review and editing, resources. Boyoung Lee: writing—review and editing, supervision. Yunlong Chang: project administration, supervision.

Corresponding author

Correspondence to Yunlong Chang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

All authors agree to participate.

Consent for publication

All authors agree to publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Dong, Z., Liu, H. et al. Research progress on transition behavior control of welding droplets. Int J Adv Manuf Technol 120, 1571–1582 (2022). https://doi.org/10.1007/s00170-022-08928-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-08928-4

Keywords

Navigation