Skip to main content
Log in

Influence of clamping errors on the machining deformation of diesel body under multi-stress field coupling condition

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Geometrical errors induced by clamping errors hinder the machining accuracy of diesel engines. However, the existing researches are mostly focus on cutting-induced errors, and not much attention was given to clamping. This paper presents a method for analysing the clamping geometrical errors of a diesel engine body under multi-stress field coupling. First, the force on the diesel engine body is analysed for the preloading condition, according to the deformation of the bearing bush. Second, the clamping errors during the machining of the key holes of the diesel engine body are calculated for two clamping states. Finally, according to the angular errors and states of the contact area, the locating error components are discussed, and the effect of the locating error is analysed. The results show that (1) the larger the angular error, the stronger the effect on the body deformation; (2) angular errors weakly affect the body deformation for the same contact state of the diagonal area; and (3) the larger the contact area, the smaller the impact on the body deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Vishnupriyan S, Majumder MC, Ramachandran KP (2011) Optimal fixture parameters considering locator errors. Int J Prod Res 49:6343–6361. https://doi.org/10.1080/00207543.2010.532167

    Article  Google Scholar 

  2. Yang SH, Lee HH, Lee KI (2019) Identification of inherent position-independent geometric errors for three-axis machine tools using a double ballbar with an extension fixture. Int J Adv Manuf Technol 102:2967–2976. https://doi.org/10.1007/s00170-019-03409-7

    Article  Google Scholar 

  3. Qin G, Zhang W, Wu Z, Wan M (2007) Systematic modeling of workpiece-fixture geometric default and compliance for the prediction of workpiece machining error. J Manuf Sci Eng Trans ASME 129:789–801. https://doi.org/10.1115/1.2336260

    Article  Google Scholar 

  4. Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools — a review. Part I: geometric, cutting-force induced and fixture-dependent errors. Int J Mach Tools Manuf 40:1235–1256. https://doi.org/10.1016/S0890-6955(00)00009-2

    Article  Google Scholar 

  5. Yang F, Xing Y, Li X (2020) A comprehensive error compensation strategy for machining process with general fixture layouts. Int J Adv Manuf Technol 107:2707–2717. https://doi.org/10.1007/s00170-020-05148-6

    Article  Google Scholar 

  6. Wang Y, Chen X, Gindy N (2007) Surface error decomposition for fixture development. Int J Adv Manuf Technol 31:948–956. https://doi.org/10.1007/s00170-005-0270-z

    Article  Google Scholar 

  7. Liao YG, Hu SJ (2001) An integrated model of a fixture-workpiece system for surface quality prediction. Int J Adv Manuf Technol 17:810–818. https://doi.org/10.1007/s001700170108

    Article  Google Scholar 

  8. Cheng H, Li Y, Zhang KF, Su JB (2011) Efficient method of positioning error analysis for aeronautical thin-walled structures multi-state riveting. Int J Adv Manuf Technol 55:217–233. https://doi.org/10.1007/s00170-010-3020-9

    Article  Google Scholar 

  9. Qin GH, Zhang WH, Wan M (2006) A mathematical approach to analysis and optimal design of a fixture locating scheme. Int J Adv Manuf Technol 29:349–359. https://doi.org/10.1007/s00170-005-2509-0

    Article  Google Scholar 

  10. Fallah M, Arezoo B (2013) Modelling and compensation of fixture locators error in CNC milling. Int J Prod Res 51:4539–4555. https://doi.org/10.1080/00207543.2013.774498

    Article  Google Scholar 

  11. Lee DM, Yang SH (2010) Mathematical approach and general formulation for error synthesis modeling of multi-axis system. Int J Mod Phys B 24:2737–2742. https://doi.org/10.1142/S0217979210065556

    Article  MATH  Google Scholar 

  12. He G, Yang B, Ding B, Jia H (2012) Modeling and compensation technology for the comprehensive errors of fixture system. Chinese J Mech Eng (English Ed) 25:385–391. https://doi.org/10.3901/CJME.2012.02.385

  13. Fallah M, Arezoo B (2012) Compensation of reference surface errors in the machining of free form features. Proc Inst Mech Eng Part B J Eng Manuf 226:824–836. https://doi.org/10.1177/0954405411431402

    Article  Google Scholar 

  14. Tan EYT, Kumar AS, Fuh JYH, Nee AYC (2004) Modeling, analysis, and verification of optimal fixturing design. IEEE Trans Autom Sci Eng 1:121–132. https://doi.org/10.1109/TASE.2004.835601

    Article  Google Scholar 

  15. Marin RA, Ferreira PM (2003) Analysis of the influence of fixture locator errors on the compliance of work part features to geometric tolerance specifications. J Manuf Sci Eng Trans ASME 125:609–616. https://doi.org/10.1115/1.1578669

    Article  Google Scholar 

  16. Kang J, Chunzheng D, Jinxing K et al (2020) Prediction of clamping deformation in vacuum fixture–workpiece system for low-rigidity thin-walled precision parts using finite element method. Int J Adv Manuf Technol 109:1895–1916. https://doi.org/10.1007/s00170-020-05745-5

    Article  Google Scholar 

  17. Rong Y, Hu W, Kang Y et al (2001) Locating error analysis and tolerance assignment for computer-aided fixture design. Int J Prod Res 39:3529–3545. https://doi.org/10.1080/00207540110056243

    Article  Google Scholar 

  18. Kang Y, Rong Y, Yang J, Ma W (2002) Computer-aided fixture design verification. Assem Autom 22:350–359. https://doi.org/10.1108/01445150210446229

    Article  Google Scholar 

  19. Zhu S, Ding G, Qin S et al (2012) Integrated geometric error modeling, identification and compensation of CNC machine tools. Int J Mach Tools Manuf 52:24–29. https://doi.org/10.1016/j.ijmachtools.2011.08.011

    Article  Google Scholar 

  20. Kaya N (2006) Machining fixture locating and clamping position optimization using genetic algorithms. Comput Ind 57:112–120. https://doi.org/10.1016/j.compind.2005.05.001

    Article  Google Scholar 

  21. Tang W, Li Y, Yu J et al (2016) Locating error analysis for workpieces with general fixture layouts and parameterized tolerances. Proc Inst Mech Eng Part B J Eng Manuf 230:416–427. https://doi.org/10.1177/0954405414551075

    Article  Google Scholar 

  22. Liu Z, Wang MY, Wang K, Mei X (2013) Multi-objective optimization design of a fixture layout considering locator displacement and force-deformation. Int J Adv Manuf Technol 67:1267–1279. https://doi.org/10.1007/s00170-012-4564-7

    Article  Google Scholar 

  23. Vishnupriyan S, Majumder M, Ramachandran K (2010) Optimization of machining fixture layout for tolerance requirements under the influence of locating errors. Int J Eng Sci Technol 2:152–162. https://doi.org/10.4314/ijest.v2i1.59107

    Article  Google Scholar 

  24. Abedini V, Shakeri M, Siahmargouei MH, Baseri H (2014) Analysis of the influence of machining fixture layout on the workpiece’s dimensional accuracy using genetic algorithm. Proc Inst Mech Eng Part B J Eng Manuf 228:1409–1418. https://doi.org/10.1177/0954405413519605

    Article  Google Scholar 

  25. Butt SU, Antoine JF, Martin P (2012) An analytical model for repositioning of 6 D.O.F fixturing system. Mech Ind 13:205–217. https://doi.org/10.1051/meca/2012016

    Article  Google Scholar 

  26. Zhu SW, Ding GF, Ma SW et al (2013) Workpiece locating error prediction and compensation in fixtures. Int J Adv Manuf Technol 67:1423–1432. https://doi.org/10.1007/s00170-012-4578-1

    Article  Google Scholar 

  27. Chaiprapat S, Rujikietgumjorn S (2008) Modeling of positional variability of a fixtured workpiece due to locating errors. Int J Adv Manuf Technol 36:724–731. https://doi.org/10.1007/s00170-006-0889-4

    Article  Google Scholar 

  28. Padmanaban KP, Arulshri KP, Prabhakaran G (2009) Machining fixture layout design using ant colony algorithm based continuous optimization method. Int J Adv Manuf Technol 45:922–934. https://doi.org/10.1007/s00170-009-2035-6

    Article  Google Scholar 

  29. Wan XJ, Xiong CH, Zhao C, Wang XF (2008) A unified framework of error evaluation and adjustment in machining. Int J Mach Tools Manuf 48:1198–1210. https://doi.org/10.1016/j.ijmachtools.2008.03.014

    Article  Google Scholar 

  30. Zuo X, Li B, Yang J, Jiang X (2013) Application of the Jacobian-torsor theory into error propagation analysis for machining processes. Int J Adv Manuf Technol 69:1557–1568. https://doi.org/10.1007/s00170-013-5088-5

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 51605207), the Natural Science Foundation of Jiangsu Province of China (No. BK20160563), and the General Project of Natural Science Research for Institutions of Higher Education of Jiangsu Province of China (21KJB510016).

Author information

Authors and Affiliations

Authors

Contributions

Li Sun: Conceptualisation, methodology, software; ZhuHua Ai: data curation, writing — original draft preparation, editing; Honggen Zhou; Chunjin Li; Guochao Li: investigation; Zhancheng Xie; Feng Feng: supervision, software, validation; Xiaoxiang Bai: writing — reviewing.

Corresponding author

Correspondence to Li Sun.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

I gave informed consent to participate in this study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, Z., Sun, L., Zhou, H. et al. Influence of clamping errors on the machining deformation of diesel body under multi-stress field coupling condition. Int J Adv Manuf Technol 124, 4075–4097 (2023). https://doi.org/10.1007/s00170-022-08800-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-08800-5

Keywords

Navigation