Skip to main content
Log in

Experimental and numerical investigation of ultrasonic vibration-assisted warm incremental forming of magnesium alloy sheet

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Herein, the ultrasonic vibration (UV) technology is introduced to assist the warm incremental forming of magnesium alloy AZ31B sheet. The corresponding experimental setups for UV-assisted warm tensile test and incremental forming are established. The effects of the forming temperature and UV on the forming force, formability, and geometry are analyzed. A fully thermal–mechanical coupling-based finite elemental model is established to simulate the forming process. The model takes into account the temperature distribution and the material behaviors affected by UV. The results indicate that the formability of the magnesium alloy can be significantly improved under conditions of UV at appropriate temperatures. The effect depends on the coupling effect of the temperature and the UV amplitude. The simulation and experimental results are compared. The merits of this new forming technology are further analyzed following simulation and experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Availability of data and material

This study is based only on data obtained using the methods described in this paper.

References

  1. Yang DY, Bambach M, Cao J, Duflou JR, Groche P, Kuboki T, Sterzing A, Tekkaya AE, Lee CW (2018) Flexibility in metal forming. CIRP Ann Manuf Technol 67(2):743–765. https://doi.org/10.1016/j.cirp.2018.05.004

    Article  Google Scholar 

  2. Li XQ, Han K, Song X, Wang HB, Li DS, Li YL, Li Q (2020) Experimental and numerical investigation on surface quality for two-point incremental sheet forming with interpolator. Chinese J Aeronaut 33(10):2794–2806. https://doi.org/10.1016/j.cja.2019.11.011

    Article  Google Scholar 

  3. Murugesan M, Jung DW (2021) Formability and failure evaluation of AA3003-H18 sheets in single-point incremental forming process through the design of experiments. Materials 14(4):808. https://doi.org/10.3390/ma14040808

    Article  Google Scholar 

  4. Lora FA, Fritzen D, Sousa RA, Schaffer L (2021) Studying formability limits by combining conventional and incremental sheet forming process. Chinese J Mech Eng-En 34(1):43. https://doi.org/10.1186/s10033-021-00562-7

    Article  Google Scholar 

  5. Wang L, Qiao Q, Liu Y, Song X (2013) Formability of AZ31 Mg alloy sheets within medium temperatures. J Magnes Alloys 1(4):312–317. https://doi.org/10.1016/j.jma.2014.01.001

    Article  Google Scholar 

  6. Liao J, Liu JH, Zhang LX, Xue X (2020) Influence of heating mode on orange peel patterns in warm incremental forming of magnesium alloy. Procedia Manuf 50:5–10. https://doi.org/10.1016/j.promfg.2020.08.002

    Article  Google Scholar 

  7. Naranjo J, Miguel V, Martínez A, Coello J, Manjabacas MC, Valera J (2017) Influence of temperature on alloy Ti6Al4V formability during the warm SPIF process. Procedia Eng 207:866–871. https://doi.org/10.1016/j.proeng.2017.10.843

    Article  Google Scholar 

  8. Galdos L, Argandoña ESD, Ulacia I, Arruebarrena G (2012) Warm incremental forming of magnesium alloys using hot fluid as heating media. Key Eng Mater 504–506:815–820. https://doi.org/10.4028/www.scientific.net/KEM.504-506.815

    Article  Google Scholar 

  9. Mohammadi A, Vanhove H, Bael AV, Seefeldt M, Duflou JR (2017) Effect of laser transformation hardening on the accuracy of SPIF-formed parts. J Manuf Sci Eng 139(1):011007. https://doi.org/10.1115/1.4033926

    Article  Google Scholar 

  10. Al-Obaidi A, Kräusel V, Landgrebe D (2017) Induction heating validation of dieless single-point incremental forming of AHSS. J Manuf Mater Process 1(1):5. https://doi.org/10.3390/jmmp1010005

    Article  Google Scholar 

  11. Zhang H, Chu X, Bao W, Gao J, Chen L (2021) Microstructure evolution of AZ31B sheet deformed by electric hot temperature-controlled single point incremental forming. Mater Sci Eng A 823:141732. https://doi.org/10.1016/j.msea.2021.141732

    Article  Google Scholar 

  12. Khalatbari H, Lazoglu I (2021) Friction stir incremental forming of polyoxymethylene: process outputs, force and temperature. Mater Manuf Processes 1(36):94–105. https://doi.org/10.1080/10426914.2020.1819542

    Article  Google Scholar 

  13. Kim SW, Lee YS, Kang SH, Lee JH (2007) Incremental forming of Mg alloy sheet at elevated temperatures. J Mech Sci Technol 21(10):1518–1522. https://doi.org/10.1007/BF03177368

    Article  Google Scholar 

  14. Ambrogio G, Filice L, Gagliardi F (2012) Formability of lightweight alloys by hot incremental sheet forming. Mater Des 34:501–508. https://doi.org/10.1016/j.matdes.2011.08.024

    Article  Google Scholar 

  15. Göttmann A, Diettrich J, Bergweiler G, Bambach M, Hirt G, Loosen P, Poprawe R (2011) Laser-assisted asymmetric incremental sheet forming of titanium sheet metal parts. Prod Eng 5(3):263–271. https://doi.org/10.1007/s11740-011-0299-9

    Article  Google Scholar 

  16. Fan GQ, Gao L, Hussain G, Wu ZL (2008) Electric hot incremental forming: a novel technique. Int J Mach Tools Manuf 48(15):1688–1692. https://doi.org/10.1016/j.ijmachtools.2008.07.010

    Article  Google Scholar 

  17. Vahdati M, Mahdavinejad R, Amini S (2017) Investigation of the ultrasonic vibration effect in incremental sheet metal forming process. Proc Inst Mech Eng B J Eng Manuf 231(6):971–982. https://doi.org/10.1177/0954405415578579

    Article  Google Scholar 

  18. Bai L, Li Y, Yang MS, Yao ZM, Yao ZY (2018) Influences of process parameters and vibration parameters on the forming force in the ultrasonic-assisted incremental forming process. Adv Mater Sci Eng 2:1–12. https://doi.org/10.1155/2018/5726845

    Article  Google Scholar 

  19. Cheng ZN, Li YL, Li JH, Li FY, Meehan PA (2021) Ultrasonic assisted incremental sheet forming: constitutive modeling and deformation analysis. J Mater Process Technol 299:117365. https://doi.org/10.1016/j.jmatprotec.2021.117365

    Article  Google Scholar 

  20. Zhai WD, Li YL, Cheng ZN, Sun LL, Li FY, Li JF (2020) Investigation on the forming force and surface quality during ultrasonic-assisted incremental sheet forming process. Int J Adv Manuf Technol 106:2703–2719. https://doi.org/10.1007/s00170-019-04870-08

    Article  Google Scholar 

  21. Yang MS, Bai L, Lin YB, Li Y, Yuan QL, Zhao RF (2019) Research on the radial accuracy of ultrasonic vibration-assisted single point incremental forming parts. Int J Aerosp Eng 1:1–9. https://doi.org/10.1155/2019/9809815

    Article  Google Scholar 

  22. Fan GQ, Gao L (2014) Numerical simulation and experimental investigation to improve the dimensional accuracy in electric hot incremental forming of Ti-6Al-4V titanium sheet. Int J Adv Manuf Technol 72(5–8):1133–1141. https://doi.org/10.1007/s00170-014-5769-8

    Article  Google Scholar 

  23. Mohammadi A, Vanhove H, Bael AV, Duflou JR (2016) Towards accuracy improvement in single point incremental forming of shallow parts formed under laser assisted conditions. Int J Mater Form 9(3):339–351. https://doi.org/10.1007/s12289-014-1203-x

    Article  Google Scholar 

  24. Al-Obaidi A, Kräusel V, Landgrebe D (2018) Experimental and simulation stress strain comparison of hot single point incremental forming. Int J Mech Mater Eng 12(4):363–369

    Google Scholar 

  25. Su CJ, Xu TT, Zhang K, Lou SM, Wang Q (2018) Plastic deformation of magnesium alloy with different forming parameters during ultrasonic vibration-assisted single-point incremental forming. Rare Met 1–9. https://doi.org/10.1007/s12598-018-1080-4

  26. Hu J, Shimizu T, Yoshino T, Shiratori T, Yang M (2020) Evolution of acoustic softening effect on ultrasonic-assisted micro/meso-compression behavior and microstructure. Ultrasonics 107:106107. https://doi.org/10.1016/j.ultras.2020.106107

    Article  Google Scholar 

  27. Kang J, Liu X, Xu MJ (2020) Plastic deformation of pure copper in ultrasonic assisted micro-tensile test. Mater Sci Eng A 785:139364. https://doi.org/10.1016/j.msea.2020.139364

    Article  Google Scholar 

  28. Liao J, Zhang LX, Xiang HL, Xue X (2021) Mechanical behavior and microstructure evolution of AZ31 magnesium alloy sheet in an ultrasonic vibration-assisted hot tensile test. J Alloy Compd 895:162575. https://doi.org/10.1016/j.jallcom.2021.162575

    Article  Google Scholar 

  29. Liao J, Zeng XS, Xue X (2021) Surface quality analysis of AZ31B Mg alloy sheet in ultrasonic-assisted warm single-point incremental forming. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-021-08045-8

    Article  Google Scholar 

  30. Wang YL, Zhu YL, Cai ZH (2020) Gradient layer of ultrafine equiaxed grains produced by ultrasonic energy accelerated dynamic recrystallization. Mater Sci Eng A 795:139958. https://doi.org/10.1016/j.msea.2020.139958

    Article  Google Scholar 

  31. Yang C, Wu CS, Shi L (2020) Effect of ultrasonic vibration on dynamic recrystallization in friction stir welding. J Manuf Process 56(A):87–95. https://doi.org/10.1016/j.jmapro.2020.04.064

Download references

Funding

This work received financial support from the National Natural Science Foundation of China (No. 51805087).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the generation and analysis of experimental data, and the development of the manuscript.

Corresponding author

Correspondence to Xin Xue.

Ethics declarations

Ethics approval

All authors declare that his article does not have any academic ethics issues and strictly follows the journal submission rules.

Consent to participate

All authors agree to participate in this research work.

Consent for publication

All authors agree to publish this work.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, J., Zhang, N., Chen, Y. et al. Experimental and numerical investigation of ultrasonic vibration-assisted warm incremental forming of magnesium alloy sheet. Int J Adv Manuf Technol 119, 4559–4571 (2022). https://doi.org/10.1007/s00170-022-08689-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-08689-0

Keywords

Navigation