Skip to main content
Log in

Multi-parameter optimization of PLA/Coconut wood compound for Fused Filament Fabrication using Robust Design

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This study investigates the effects of four variables during fused filament fabrication of organic biocompatible composite material, PLA with coconut flour, at the ultimate tensile strength (UTS), and elasticity module (E) of the printed parts. The parameter optimization uses Taguchi L18 design and regression models. The examined deposition variables are the layer thickness, the nozzle temperature, the raster deposition angle, and filament printing speed. The effects of the above variables on the strength of the parts are essential to enhance the mechanical response of the printed parts. The experimental outcomes are investigated using the ANOM and ANOVA and modeled utilizing linear regression models. In addition, an independent experiment was repeated three times at optimum parameters’ levels to evaluate the methodology, giving predictions errors less than 3%. The observed results showed that the raster deposition angle dominates among the other variables in the studied experimental area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material (data transparency)

All data generated or analyzed during this study are included in this published article.

References

  1. Wong KV, Hernandez A (2012) A Review of Additive Manufacturing. ISRN Mech Eng 2012:1–10. https://doi.org/10.5402/2012/208760

    Article  Google Scholar 

  2. Oliveira JP, Santos TG, Miranda RM (2020) Revisiting fundamental welding concepts to improve additive manufacturing: From theory to practice. Prog Mater Sci 107:100590. https://doi.org/10.1016/j.pmatsci.2019.100590

    Article  Google Scholar 

  3. Oliveira JP, LaLonde AD, Ma J (2020) Processing parameters in laser powder bed fusion metal additive manufacturing. Mater Des 193:108762. https://doi.org/10.1016/j.matdes.2020.108762

    Article  Google Scholar 

  4. Pringle AM, Rudnicki M, Pearce JM (2018) Wood Furniture Waste–Based Recycled 3-D Printing Filament. For Prod J 68:86–95. https://doi.org/10.13073/FPJ-D-17-00042

  5. Yap YL, Yeong WY (2014) Additive manufacture of fashion and jewellery products: a mini review. Virtual Phys Prototyp 9:195–201. https://doi.org/10.1080/17452759.2014.938993

    Article  Google Scholar 

  6. Goh GD, Yap YL, Tan HKJ et al (2020) Process–structure–properties in polymer additive manufacturing via material extrusion: A review. Crit Rev Solid State Mater Sci 45:113–133. https://doi.org/10.1080/10408436.2018.1549977

    Article  Google Scholar 

  7. Aida HJ, Nadlene R, Mastura MT et al (2021) Natural fibre filament for Fused Deposition Modelling (FDM): a review. Int J Sustain Eng. https://doi.org/10.1080/19397038.2021.1962426

    Article  Google Scholar 

  8. Vidakis N, Petousis M, Savvakis K et al (2019) A comprehensive investigation of the mechanical behavior and the dielectrics of pure polylactic acid (PLA) and PLA with graphene (GnP) in fused deposition modeling (FDM). Int J Plast Technol 23:195–206. https://doi.org/10.1007/s12588-019-09248-1

    Article  Google Scholar 

  9. Vidakis N, Petousis M, Velidakis E et al (2020) Three-dimensional printed antimicrobial objects of polylactic acid (PLA)-Silver nanoparticle nanocomposite filaments produced by an in-situ reduction reactive melt mixing process. Biomimetics 5:42. https://doi.org/10.3390/biomimetics5030042

    Article  Google Scholar 

  10. Chaidas D, Kechagias JD (2021) An investigation of PLA/W parts quality fabricated by FFF. Mater Manuf Process. https://doi.org/10.1080/10426914.2021.1944193

    Article  Google Scholar 

  11. Vidakis N, Petousis M, Maniadi A et al (2020) Sustainable additive manufacturing: mechanical response of acrylonitrile-butadiene-styrene over multiple recycling processes. Sustainability 12:3568. https://doi.org/10.3390/su12093568

    Article  Google Scholar 

  12. Faludi G, Dora G, Renner K et al (2013) Improving interfacial adhesion in pla/wood biocomposites. Compos Sci Technol 89:77–82. https://doi.org/10.1016/j.compscitech.2013.09.009

    Article  Google Scholar 

  13. Ćwikła G, Grabowik C, Kalinowski K et al (2017) The influence of printing parameters on selected mechanical properties of FDM/FFF 3D-printed parts. IOP Conf Ser: Mater Sci Eng 227:012033. https://doi.org/10.1088/1757-899X/227/1/012033

    Article  Google Scholar 

  14. Mohan N, Senthil P, Vinodh S, Jayanth N (2017) A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual Phys Prototyp 12:47–59. https://doi.org/10.1080/17452759.2016.1274490

    Article  Google Scholar 

  15. Bikas H, Stavropoulos P, Chryssolouris G (2016) Additive manufacturing methods and modelling approaches: a critical review. Int J Adv Manuf Technol 83:389–405. https://doi.org/10.1007/s00170-015-7576-2

    Article  Google Scholar 

  16. Vidakis N, Petousis M, Velidakis E et al (2020) On the strain rate sensitivity of fused filament fabrication (FFF) processed PLA, ABS, PETG, PA6, and PP thermoplastic polymers. Polymers 12:2924. https://doi.org/10.3390/polym12122924

    Article  Google Scholar 

  17. Durgun I, Ertan R (2014) Experimental investigation of FDM process for improvement of mechanical properties and production cost. Rapid Prototyp J 20:228–235. https://doi.org/10.1108/RPJ-10-2012-0091

    Article  Google Scholar 

  18. Kechagias JD, Vidakis N, Petousis M (2021) Parameter effects and process modeling of FFF-TPU mechanical response. Mater Manuf Process. https://doi.org/10.1080/10426914.2021.2001523

    Article  Google Scholar 

  19. Kain S, Ecker JV, Haider A et al (2020) Effects of the infill pattern on mechanical properties of fused layer modeling (FLM) 3D printed wood/polylactic acid (PLA) composites. Eur J Wood Wood Prod 78:65–74. https://doi.org/10.1007/s00107-019-01473-0

    Article  Google Scholar 

  20. Fountas NA, Kechagias JD, Manolakos DE, Vaxevanidis NM (2020) Single and multi-objective optimization of FDM-based additive manufacturing using metaheuristic algorithms. Procedia Manuf 51:740–747. https://doi.org/10.1016/j.promfg.2020.10.104

    Article  Google Scholar 

  21. Fountas NA, Kitsakis K, Aslani K-E et al (2021) An experimental investigation of surface roughness in 3D-printed PLA items using design of experiments. Proc Inst Mech Eng J: J Eng Tribol. https://doi.org/10.1177/13506501211059306

    Article  Google Scholar 

  22. Kechagias J, Kitsakis K, Zacharias A et al (2021) Direct 3D Printing of a hand splint using Reverse Engineering. IOP Conf Ser: Mater Sci Eng 1037:012019. https://doi.org/10.1088/1757-899X/1037/1/012019

    Article  Google Scholar 

  23. Chaidas D, Kitsakis K, Kechagias J, Maropoulos S (2016) The impact of temperature changing on surface roughness of FFF process. IOP Conf Ser: Mater Sci Eng 161:012033. https://doi.org/10.1088/1757-899X/161/1/012033

    Article  Google Scholar 

  24. Aslani K-E, Chaidas D, Kechagias J et al (2020) Quality performance evaluation of thin walled PLA 3D printed parts using the taguchi method and grey relational analysis. J Manuf Mater Process. https://doi.org/10.3390/jmmp4020047

    Article  Google Scholar 

  25. Afrose MF, Masood SH, Iovenitti P et al (2016) Effects of part build orientations on fatigue behaviour of FDM-processed PLA material. Prog Addit Manuf 1:21–28. https://doi.org/10.1007/s40964-015-0002-3

    Article  Google Scholar 

  26. Vidakis N, Vairis A, Petousis M et al (2016) Fused deposition modelling parts tensile strength characterisation. Academic J Manuf Eng 14

  27. Gurrala PK, Regalla SP (2014) Multi-objective optimisation of strength and volumetric shrinkage of FDM parts. Virtual Phys Prototyp 9:127–138. https://doi.org/10.1080/17452759.2014.898851

    Article  Google Scholar 

  28. Srivastava M, Rathee S (2018) Optimisation of FDM process parameters by Taguchi method for imparting customised properties to components. Virtual Phys Prototyp 13:203–210. https://doi.org/10.1080/17452759.2018.1440722

    Article  Google Scholar 

  29. Coogan TJ, Kazmer DO (2017) Bond and part strength in fused deposition modeling. Rapid Prototyp J 23:414–422. https://doi.org/10.1108/RPJ-03-2016-0050

    Article  Google Scholar 

  30. Vanaei HR, Shirinbayan M, Deligant M et al (2021) In-Process Monitoring of Temperature Evolution during Fused Filament Fabrication: A Journey from Numerical to Experimental Approaches. Thermo 1:332–360. https://doi.org/10.3390/thermo1030021

    Article  Google Scholar 

  31. Chen K, Yu L, Cui Y et al (2021) Optimization of printing parameters of 3D-printed continuous glass fiber reinforced polylactic acid composites. Thin-Walled Struct 164:107717. https://doi.org/10.1016/j.tws.2021.107717

    Article  Google Scholar 

  32. Motas JG, Gorji NE, Nedelcu D et al (2021) XPS, SEM, DSC and Nanoindentation Characterization of Silver Nanoparticle-Coated Biopolymer Pellets. Appl Sci 11:7706. https://doi.org/10.3390/app11167706

    Article  Google Scholar 

  33. Bhagia S, Lowden RR, Erdman D et al (2020) Tensile properties of 3D-printed wood-filled PLA materials using poplar trees. Appl Mater Today 21:100832. https://doi.org/10.1016/j.apmt.2020.100832

    Article  Google Scholar 

  34. Bulanda K, Oleksy M, Oliwa R et al (2020) Biodegradable polymer composites based on polylactide used in selected 3D technologies. Polimery 65:557–562. https://doi.org/10.14314/polimery.2020.7.8

  35. Chansoda K, Suwanjamrat C, Chookaew W (2020) Study on processability and mechanical properties of parawood-powder filled PLA for 3D printing material. IOP Conf Ser: Mater Sci Eng 773:012053. https://doi.org/10.1088/1757-899X/773/1/012053

    Article  Google Scholar 

  36. Yang T-C, Yeh C-H (2020) Morphology and Mechanical Properties of 3D Printed Wood Fiber/Polylactic Acid Composite Parts Using Fused Deposition Modeling (FDM): The Effects of Printing Speed. Polymers 12:1334. https://doi.org/10.3390/polym12061334

    Article  Google Scholar 

  37. Ayrilmis N, Kariz M, Kwon JH, Kitek Kuzman M (2019) Effect of printing layer thickness on water absorption and mechanical properties of 3D-printed wood/PLA composite materials. Int J Adv Manuf Technol 102:2195–2200. https://doi.org/10.1007/s00170-019-03299-9

    Article  Google Scholar 

  38. Zandi MD, Jerez-Mesa R, Lluma-Fuentes J et al (2020) Experimental analysis of manufacturing parameters’ effect on the flexural properties of wood-PLA composite parts built through FFF. Int J Adv Manuf Technol 106:3985–3998. https://doi.org/10.1007/s00170-019-04907-4

    Article  Google Scholar 

  39. Guessasma S, Belhabib S, Nouri H (2019) Microstructure and mechanical performance of 3D printed wood-PLA/PHA using fused deposition modelling: Effect of printing temperature. Polymers 11:1778. https://doi.org/10.3390/polym11111778

    Article  Google Scholar 

  40. Tsiolikas A, Mikrou T, Vakouftsi F et al (2019) Robust design application for optimizing ABS fused filament fabrication process: A case study. IOP Conf Ser: Mater Sci Eng 564:012021. https://doi.org/10.1088/1757-899X/564/1/012021

    Article  Google Scholar 

  41. Kechagias J, Petropoulos G, Vaxevanidis N (2012) Application of Taguchi design for quality characterization of abrasive water jet machining of TRIP sheet steels. Int J Adv Manuf Technol 62:635–643. https://doi.org/10.1007/s00170-011-3815-3

    Article  Google Scholar 

  42. Zhang JZ, Chen JC, Kirby ED (2007) Surface roughness optimization in an end-milling operation using the Taguchi design method. J Mater Process Technol 184:233–239. https://doi.org/10.1016/j.jmatprotec.2006.11.029

    Article  Google Scholar 

  43. Kechagias JD, Aslani K-E, Fountas NA et al (2020) A comparative investigation of Taguchi and full factorial design for machinability prediction in turning of a titanium alloy. Measurement 151:107213. https://doi.org/10.1016/j.measurement.2019.107213

    Article  Google Scholar 

  44. Phadke MS (1989) Quality engineering using robust design. Prentice Hall, Englewood Cliffs, New Jersey, p 07632

    Google Scholar 

  45. Gopinath C, Lakshmanan P, Palani S (2021) Fiber laser microcutting on duplex steel: parameter optimization by TOPSIS. Mater Manuf Process. https://doi.org/10.1080/10426914.2021.1981939

    Article  Google Scholar 

  46. Saxena P, Stavropoulos P, Kechagias J, Salonitis K (2020) Sustainability assessment for manufacturing operations. Energies. https://doi.org/10.3390/en13112730

    Article  Google Scholar 

  47. Harris M, Potgieter J, Archer R, Arif KM (2019) In-process thermal treatment of polylactic acid in fused deposition modelling. Mater Manuf Process 34:701–713. https://doi.org/10.1080/10426914.2019.1566611

    Article  Google Scholar 

  48. Tamburrino F, Graziosi S, Bordegoni M (2019) The influence of slicing parameters on the multi-material adhesion mechanisms of FDM printed parts: an exploratory study. Virtual Phys Prototyp 14:316–332. https://doi.org/10.1080/17452759.2019.1607758

    Article  Google Scholar 

  49. Hashemi Sanatgar R, Campagne C, Nierstrasz V (2017) Investigation of the adhesion properties of direct 3D printing of polymers and nanocomposites on textiles: Effect of FDM printing process parameters. Appl Surf Sci 403:551–563. https://doi.org/10.1016/j.apsusc.2017.01.112

    Article  Google Scholar 

  50. Deisenroth DC, Moradi R, Shooshtari AH et al (2018) Review of heat exchangers enabled by polymer and polymer composite additive manufacturing. Heat Transf Eng 39:1648–1664. https://doi.org/10.1080/01457632.2017.1384280

    Article  Google Scholar 

  51. Melenka GW, Schofield JS, Dawson MR, Carey JP (2015) Evaluation of dimensional accuracy and material properties of the MakerBot 3D desktop printer. Rapid Prototyp J 21:618–627. https://doi.org/10.1108/RPJ-09-2013-0093

    Article  Google Scholar 

  52. Vyavahare S, Kumar S, Panghal D (2020) Experimental study of surface roughness, dimensional accuracy and time of fabrication of parts produced by fused deposition modelling. Rapid Prototyp J 26:1535–1554. https://doi.org/10.1108/RPJ-12-2019-0315

    Article  Google Scholar 

  53. Fountas NA, Papantoniou I, Kechagias JD et al (2021) Experimental investigation on flexural properties of FDM-processed PET-G specimen using response surface methodology. MATEC Web Conf 349:01008. https://doi.org/10.1051/matecconf/202134901008

    Article  Google Scholar 

  54. Vinoth Babu N, Venkateshwaran N, Rajini N et al (2021) Influence of slicing parameters on surface quality and mechanical properties of 3D-printed CF/PLA composites fabricated by FDM technique. Mater Technol. https://doi.org/10.1080/10667857.2021.1915056

    Article  Google Scholar 

  55. Kechagias JD, Ninikas K, Petousis M et al (2021) An investigation of surface quality characteristics of 3D printed PLA plates cut by CO2 laser using experimental design. Mater Manuf Process 36:1544–1553. https://doi.org/10.1080/10426914.2021.1906892

    Article  Google Scholar 

  56. Kechagias JD, Fountas NA, Ninikas K et al (2021) Surface characteristics investigation of 3D-printed PET-G plates during CO2 laser cutting. Mater Manuf Process. https://doi.org/10.1080/10426914.2021.1981933

    Article  Google Scholar 

  57. Kechagias J, Ninikas K, Petousis M, Vidakis N (2021) Laser cutting of 3D printed acrylonitrile butadiene styrene plates for dimensional and surface roughness optimization. Int J Adv Manuf Technol

  58. Savvakis K, Petousis M, Vairis A et al (2014) Experimental determination of the tensile strength of fused deposition modeling parts. In: IMECE2014. ASME, Montreal, Quebec, Canada

  59. Christiyan KGJ, Chandrasekhar U, Venkateswarlu K (2016) A study on the influence of process parameters on the Mechanical Properties of 3D printed ABS composite. IOP Conf Ser: Mater Sci Eng 114:012109. https://doi.org/10.1088/1757-899X/114/1/012109

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was contributed by JK; Methodology was contributed by JK, SZ and DC; Formal analysis and investigation were contributed by JK, SZ, DC and NV; Writing—original draft preparation, was contributed by JK; Writing—review and editing, was contributed by JK, SZ; and NV; Resources were contributed by JK and SZ; Supervision was contributed by JK; All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to John D. Kechagias.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Authors declaration

The submitted work is original and has not been published elsewhere in any form or language.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Article Highlights

• Organic PLA wood material for eco-friendly additive manufacturing

• Robust design with applying the L18 Taguchi orthogonal array

• Mechanical response optimized considerably after Taguchi methodology

• Three evaluation experiments at optimum conditions with errors less than 3%

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kechagias, J.D., Zaoutsos, S.P., Chaidas, D. et al. Multi-parameter optimization of PLA/Coconut wood compound for Fused Filament Fabrication using Robust Design. Int J Adv Manuf Technol 119, 4317–4328 (2022). https://doi.org/10.1007/s00170-022-08679-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-08679-2

Keywords

Navigation