Skip to main content
Log in

Topological feature vectors for chatter detection in turning processes

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Machining processes are most accurately described using complex dynamical systems that include nonlinearities, time delays and stochastic effects. Due to the nature of these models as well as the practical challenges which include time-varying parameters, the transition from numerical/analytical modeling of machining to the analysis of real cutting signals remains challenging. Some studies have focused on studying the signals of cutting processes using machine learning algorithms with the goal of identifying and predicting undesirable vibrations during machining referred to as chatter. These tools typically decompose the signal using Wavelet Packet Transforms (WPT) or Ensemble Empirical Mode Decomposition (EEMD). However, these methods require a significant overhead in identifying the feature vectors before a classifier can be trained. In this study, we present an alternative approach based on featurizing the time series of the cutting process using its topological features. We first embed the time series as a point cloud using Takens embedding. We then utilize Support Vector Machine, Logistic Regression, Random Forest and Gradient Boosting classifier combined with feature vectors derived from persistence diagrams, a tool from persistent homology, to encode chatter’s distinguishing characteristics. We present the results for several choices of the topological feature vectors, and we compare our results to the WPT and EEMD methods using experimental turning data. Our results show that in two out of four cutting configurations the Topological Data Analysis (TDA)-based features yield accuracies as high as 97%. We also show that combining Bézier curve approximation method and parallel computing can reduce runtime for persistence diagram computation of a single time series to less than a second thus making our approach suitable for online chatter detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and material

Experimental data set is available in a Mendeley repository [51].

Code availability

Source codes for TDA-based approach is available in machine learning module of a Python package called teaspoon.

References

  1. Thaler T, Potočnik P, Bric I, Govekar E (2014) Chatter detection in band sawing based on discriminant analysis of sound features. Appl Acoust 77:114–121

    Article  Google Scholar 

  2. Yesilli MC, Khasawneh F (2020) On transfer learning of traditional frequency and time domain features in turning, arXiv:preprint:2008.12691, cs.LG, pp 1–12

  3. Chen GS, Zheng QZ (2017) Online chatter detection of the end milling based on wavelet packet transform and support vector machine recursive feature elimination. Int J Adv Manuf Technol 95(1-4):775–784

    Article  Google Scholar 

  4. Ji Y, Wang X, Liu Z, Wang H, Jiao L, Wang D, Leng S (2018) Early milling chatter identification by improved empirical mode decomposition and multi-indicator synthetic evaluation. J Sound Vib 433:138–159

    Article  Google Scholar 

  5. Li X, Ouyang G, Liang Z (2080) Complexity measure of motor current signals for tool flute breakage detection in end milling. Int J Mach Tools Manuf 48(3-4):371–379

    Article  Google Scholar 

  6. Liu H, Chen Q, Li B, Mao X, Mao K, Peng F (2011) On-line chatter detection using servo motor current signal in turning. Sci China Technol Sci 54(12):3119–3129

    Article  Google Scholar 

  7. Ding L, Sun Y, Xiong Z (2017) Early chatter detection based on logistic regression with time and frequency domain features. In: 2017 IEEE International conference on advanced intelligent mechatronics (AIM). IEEE

  8. Fu Y, Zhang Y, Qiao H, Li D, Zhou H, Leopold J (2015) Analysis of feature extracting ability for cutting state monitoring using deep belief networks. Procedia CIRP 31:29–34

    Article  Google Scholar 

  9. Lamraoui M, Barakat M, Thomas M, Badaoui ME (2013) Chatter detection in milling machines by neural network classification and feature selection. J Vib Control 21(7):1251–1266

    Article  Google Scholar 

  10. Cheng C, Li J, Liu Y, Nie M, Wang W (2019) Deep convolutional neural network-based in-process tool condition monitoring in abrasive belt grinding. Comput Ind 106:1–13

    Article  Google Scholar 

  11. Han Z, Jin H, Han D, Fu H (2016) ESPRIT- And HMM-based real-time monitoring and suppression of machining chatter in smart CNC milling system. Int J Adv Manuf Technol 89(9-12):2731–2746

    Article  Google Scholar 

  12. Xie F-Y, Hu Y-M, Wu B, Wang Y (2016) A generalized hidden markov model and its applications in recognition of cutting states. Int J Precis Eng Manuf 17(11):1471–1482

    Article  Google Scholar 

  13. Zuo L, Zhang L, Zhang Z. -H., Luo X. -L., Liu Y (2020) A spiking neural network-based approach to bearing fault diagnosis. Journal of Manufacturing Systems

  14. Yesilli MC, Khasawneh F, Otto A (2020) On transfer learning for chatter detection in turning using wavelet packet transform and ensemble empirical mode decomposition. CIRP J Manuf Sci Technol 28:118–135

    Article  Google Scholar 

  15. Ghrist R (2008) Barcodes: The persistent topology of data. Builletin Amer Math Soc 45:61–75 survey

  16. Carlsson G (2009) Topology and data. Bullet Amer Math Soc 46(2):255–308, survey. [Online]. Available: http://www.ams.org/journal-getitem?pii=S0273-0979-09-01249-X

  17. Edelsbrunner H, Harer J (2009) Computational topology: an introduction. American Mathematical Society

  18. Oudot S (2015) Persistence theory: from quiver representations to data analysis. ser. AMS Mathematical Surveys and Monographs, American Mathematical Society, pp 209

  19. Robinson M (2014) Topological Signal Processing, 1st ed. Springer, Berlin

  20. Khasawneh F, Munch E (2014) Stability of a stochastic turning model using persistent homology. in submission

  21. Khasawneh F (2016) Chatter detection in turning using persistent homology. Mech Syst Signal Process 70-71:527–541. [Online] Available: http://www.sciencedirect.com/science/article/pii/S0888327015004598

  22. Khasawneh F, Munch E, Perea JA (2018) Chatter classification in turning using machine learning and topological data analysis. IFAC-PapersOnLine 51(14):195–200

    Article  Google Scholar 

  23. Khasawneh F, Munch E (2014) Stability determination in turning using persistent homology and time series analysis. In: Proceedings of the ASME 2014 International Mechanical Engineering Congress & Exposition, Montreal, paper no. IMECE2014-40221

  24. Adcock A, Carlsson E, Carlsson G (2016) The ring of algebraic functions on persistence bar codes. Homol Homotopy Appl 18(1):381–402

    Article  MathSciNet  Google Scholar 

  25. Perea JA, Munch E, Khasawneh F (2019) Approximating continuous functions on persistence diagrams using template functions, arXiv:1902.07190v1, cs.CG, pp 1–51

  26. Yesilli MC, Tymochko S, Khasawneh F, Munch E (2019) Chatter diagnosis in milling using supervised learning and topological features vector. In: 2019 18Th IEEE international conference on machine learning and applications (ICMLA). IEEE

  27. Bubenik P Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16:77–102 (2015). [Online]. Available: http://jmlr.org/papers/v16/bubenik15a.html

  28. Adams H, Emerson T, Kirby M, Neville R, Peterson C, Shipman P, Chepushtanova S, Hanson E, Motta F, Ziegelmeier L (2017) Persistence images: A stable vector representation of persistent homology. J Mach Learn Res 18(1):218–252. [Online]. Available: http://dl.acm.org/citation.cfm?id=3122009.3122017

  29. Reininghaus J, Huber S, Bauer U, Kwitt R (2015) A stable multi-scale kernel for topological machine learning. In: The IEEE conference on computer vision and pattern recognition (CVPR)

  30. Chevyrev I, Nanda V, Oberhauser H (2018) Persistence paths and signature features in topological data analysis. IEEE Trans Pattern Anal Mach Intell 42:1–1

    Google Scholar 

  31. Tsuji S, Aihara K (2019) A fast method of computing persistent homology of time series data. In: ICASSP 2019 - 2019 IEEE International conference on acoustics, speech and signal processing (ICASSP). IEEE

  32. Cavanna NJ, Jahanseir M, Sheehy DR (2015) A geometric perspective on sparse filtrations, arXiv:1506.03797v1, cs.CG, pp 1–18

  33. Li C, Ovsjanikov M, Chazal F (2014) Persistence-based structural recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1995–2002

  34. Mileyko Y, Mukherjee S, Harer J (2011) Probability measures on the space of persistence diagrams. Inverse Probl 27(12):124007. [Online]. Available: http://stacks.iop.org/0266-5611/27/i=12/a=124007

  35. Turner K, Mileyko Y, Mukherjee S, Harer J (2014) Fréchet means for distributions of persistence diagrams. Discret Comput Geom 52(1):44–70. [Online]. Available: https://doi.org/10.1007/s00454-014-9604-7https://doi.org/10.1007/s00454-014-9604-7

  36. Munch E, Turner K, Bendich P, Mukherjee S, Mattingly J, Harer J (2015) Probabilistic fréchet means for time varying persistence diagrams. Electron J Statist 9:1173–1204. [Online]. Available: https://doi.org/10.1214/15-EJS1030

  37. Berry E, Chen Y-C, Cisewski-Kehe J, Fasy BT (2018) Functional summaries of persistence diagrams. J Appl Comput Topol 4:211–262

    Article  MathSciNet  Google Scholar 

  38. Chazal F, Fasy BT, Lecci F, Rinaldo A, Wasserman L (2014) Stochastic convergence of persistence landscapes and silhouettes. In: Proceedings of the Thirtieth Annual Symposium on Computational Geometry, ser. SOCG’14. ACM, New York, pp 474:474–474:483. [Online]. Available: https://doi.org/10.1145/2582112.2582128https://doi.org/10.1145/2582112.2582128

  39. Chepushtanova S, Emerson T, Hanson E, Kirby M, Motta F, Neville R, Peterson C, Shipman P, Ziegelmeier L (2015) Persistence images: An alternative persistent homology representation, arXiv:1507.06217, cs.CG, pp 1–10

  40. Chen Y-C, Wang D, Rinaldo A, Wasserman L (2015) Statistical analysis of persistence intensity functions, arXiv:1510.02502, stat.ME, pp 1–10

  41. Donatini P, Frosini P, Lovato A (1998) Size functions for signature recognition. In: Vision geometry VII. In: Melter RA, Wu AY, Latecki LG (eds) SPIE

  42. Ferri M, Frosini P, Lovato A, Zambelli C (1998) Point selection: a new comparison scheme for size functions (with an application to monogram recognition). In: ACCV

  43. Chevyrev I, Kormilitzin A (2016) A primer on the signature method in machine learning, arXiv:1603.03788v1, stat.ML, pp 1–45

  44. Fox L, Parker IB (1968) CHebyshev Polynomials in Numerical Analysis. Oxford Univ Press, London

  45. Kwitt R, Huber S, Niethammer M, Lin W, Bauer U (2015) Statistical topological data analysis - a kernel perspective. In: Advances in neural information processing systems. In: Cortes C, Lawrence N, Lee D, Sugiyama M, Garnett R, Garnett R (eds) Curran Associates, Inc., vol 28, pp 3052–3060

  46. Zhao Q, Wang Y (2019) Learning metrics for persistence-based summaries and applications for graph classification, arXiv:1904.12189v1, cs.CG, pp 1–21

  47. Kusano G, Hiraoka Y, Fukumizu K (2016) Persistence weighted gaussian kernel for topological data analysis. In: International conference on machine learning, pp 2004–2013

  48. Kusano G, Fukumizu K, Hiraoka Y (2017) Kernel method for persistence diagrams via kernel embedding and weight factor. J Mach Learn Res 18(1):6947–6987

    MathSciNet  MATH  Google Scholar 

  49. Carrière M, Cuturi M, Oudot S (2017) Sliced wasserstein kernel for persistence diagrams, arXiv:1706.03358 cs.CG

  50. Kusano G (2018) Persistence weighted gaussian kernel for probability distributions on the space of persistence diagrams, arXiv:1803.08269v1 math.AT

  51. Khasawneh F, Otto A, Yesilli M (2019) Turning dataset for chatter diagnosis using machine learning

  52. Insperger T, Mann BP, Surmann T, Stėpȧn G (2008) On the chatter frequencies of milling processes with runout. Int J Mach Tools Manuf 48(10):1081–1089

    Article  Google Scholar 

  53. Takens F (1981) Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence. In: Rand D, Young L-S (eds) Warwick 1980, ser. Lecture Notes in Mathematics. [Online]. Available: https://doi.org/10.1007/BFb0091924https://doi.org/10.1007/BFb0091924, vol 898. Springer, Berlin, pp 366–381

  54. Munkres JR (2018) Elements of algebraic topology. CRC press

  55. Munch E (2017) A user’s guide to topological data analysis. J Learn Anal 4(2):47–61

    Google Scholar 

  56. Theodoridis S, Koutroumbas K (2009) Feature selection. In: Pattern recognition. Elsevier, pp 261–322

  57. Rousseeuw PJ (1984) Least median of squares regression. J Am Stat Assoc 79(388):871–880

    Article  MathSciNet  Google Scholar 

  58. Melosik M, Marszalek W (2016) On the 0/1 test for chaos in continuous systems. Bullet Polish Acad Sci Tech Sci 64(3):521–528

    Google Scholar 

  59. Fraser AM, Swinney HL (1986) Independent coordinates for strange attractors from mutual information. Phys Rev A 33:1134–1140. [Online]. Available: https://doi.org/10.1103/PhysRevA.33.1134https://doi.org/10.1103/PhysRevA.33.1134

  60. Kennel MB, Brown R, Abarbanel HDI (1992) Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys Rev A 45(6)3403–3411

  61. Abarbanel HDI, Carroll TA, Pecora LM, Sidorowich JJ, Tsimring LS (1994) Predicting physical variables in time-delay embedding. Phys Rev E 49(3)1840–1853 mar

  62. Tharwat A, Elhoseny M, Hassanien AE, Gabel T, Kumar A (2018) Intelligent bėzier curve-based path planning model using chaotic particle swarm optimization algorithm. Cluster Comput 22(S2)4745–4766

  63. Elhoseny M, Tharwat A, Hassanien AE (2018) Bėzier curve based path planning in a dynamic field using modified genetic algorithm. J Comput Sci 25:339–350

    Article  Google Scholar 

  64. wung Choi J, Curry R, Elkaim G (2008) Path planning based on bėzier curve for autonomous ground vehicles. In: Advances in electrical and electronics engineering - IAENG special edition of the world congress on engineering and computer science. IEEE

  65. Hwang J-H, Arkin R, Kwon D-S (2003) Mobile robots at your fingertip: bėzier curve on-line trajectory generation for supervisory control. In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453). IEEE

  66. Endres SC, Sandrock C, Focke WW (2018) A simplicial homology algorithm for lipschitz optimisation. J Glob Optim 72(2):181–217

    Article  MathSciNet  Google Scholar 

  67. Kerber M, Morozov D, Nigmetov A (2016) Geometry helps to compare persistence diagrams, arXiv:1606.03357v1, cs.CG, pp 1–20

  68. Bubenik P, Dłotko P (2017) A persistence landscapes toolbox for topological statistics. J Symb Comput 78:91–114

    Article  MathSciNet  Google Scholar 

  69. Zeppelzauer M, Zieliṅski B, Juda M, Seidl M (2018) A study on topological descriptors for the analysis of 3d surface texture. Comput Vis Image Underst 167:74–88

    Article  Google Scholar 

  70. Chang C-C, Lin C-J (2011) LIBSVM: A library for support vector machines. ACM Trans Intell Syst Technol 2:27:1–27:27, software available at http://www.csie.ntu.edu.tw/cjlin/libsvm

Download references

Funding

This material is based upon work supported by the National Science Foundation under Grant Nos. CMMI-1759823 and DMS-1759824 with PI FAK.

Author information

Authors and Affiliations

Authors

Contributions

Melih C. Yesilli: methodology, software, validation, formal analysis, data curation, writing—original draft, visualization

Firas A. Khasawneh: conceptualization, methodology, investigation, resources, writing—review and editing, supervision, project administration, funding acquisition

Andreas Otto: investigation, resources, writing—review and editing, supervision

Corresponding author

Correspondence to Melih C. Yesilli.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Expressions for persistence paths’ signatures

Let the k th landscape functions be λk(x) = y where x and y represent coordinates along the birth time and the persistence axes. Since the persistence landscapes are piecewise linear functions, we can write them in closed form in terms of the nodes \(\{x_{i}, y_{i}\}_{i=1}^{n}\) that define the boundaries of each of their linear pieces according to

$$ \lambda_{k}(t) = \begin{cases} \frac{y_{i+1}-y_{i}}{x_{i+1}-x_{i}} t + \frac{y_{i+1}(x_{i+1}-x_{i})+x_{i+1}(y_{i}-y_{i+1})}{x_{i+1}-x_{i}}, & \text{ for }i \in \{1,2,\ldots, n\} \text{ and } t \in [x_{1}, x_{n}], \\ 0 , &\text{ otherwise }. \end{cases} $$
(9)

The corresponding path is given by

$$ \begin{array}{@{}rcl@{}} P&=&[{P_{t}^{1}},{P_{t}^{2}}] = \left[t,\frac{y_{i+1}-y_{i}}{x_{i+1}-x_{i}} t \right.\\&&\left.+ \frac{y_{i+1}(x_{i+1}-x_{i})+x_{i+1}(y_{i}-y_{i+1})}{x_{i+1}-x_{i}}\right], \end{array} $$
(10)

and its differential is

$$ dP = [d{P_{t}^{1}},d{P_{t}^{2}}] = [dt, \frac{y_{i+1}-y_{i}}{x_{i+1}-x_{i}} dt]. $$
(11)

Using the above definitions, we can derive general expressions for the first and second level signatures, respectively, according to

$$ S_{1} = {\int}_{x_{1}}^{x_{n}} d{P_{t}^{1}} = {\int}_{x_{1}}^{x_{n}} dt = x_{n} - x_{1} $$
(12a)
$$ \begin{array}{@{}rcl@{}} S_{2} \!&=&\! {\int}_{x_{1}}^{x_{n}} d{P_{t}^{2}} = {\int}_{x_{1}}^{x_{2}} \frac{y_{2} - y_{1}}{x_{2} - x_{1}} dt + {\ldots} + {\int}_{x_{i}}^{x_{i+1}} \frac{y_{i+1} - y_{i}}{x_{i+1} - x_{i}} dt \\&&+ {\ldots} +{\int}_{x_{n-1}}^{x_{n}} \frac{y_{n}-y_{n-1}}{x_{n}-x_{n-1}} \end{array} $$
(12b)

The equations for the second level signatures are provided in Table 9.

Appendix B. Classification results

Table 9 Closed-form expressions for the first and second level signature paths for landscape functions
Table 10 Persistence landscape results with support vector machine (SVM) classifier
Table 11 Persistence landscape results with logistic regression (LR) classifier
Table 12 Persistence landscape results with random forest (RF) classifier
Table 13 Persistence images results with pixel size = 0.1
Table 14 Persistence images results with pixel size = 0.05
Table 15 Template function results for H0 diagrams
Table 16 Template function results for H1 diagrams
Table 17 Carlsson coordinates results
Table 18 Kernel method results with LibSVM package
Table 19 Path signature method results obtained with SVM classifier

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yesilli, M.C., Khasawneh, F.A. & Otto, A. Topological feature vectors for chatter detection in turning processes. Int J Adv Manuf Technol 119, 5687–5713 (2022). https://doi.org/10.1007/s00170-021-08242-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08242-5

Keywords

Navigation