Skip to main content
Log in

Thermal network-based compensation model for a vertical machining center subjected to ambient temperature fluctuations

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Thermal influences, on and by the machine tool are one of the main reasons for the machining error. Although both the internal and the external heat sources lead to the thermal error, their relative proportion is typically dependent on the operating conditions such as machining parameters, the duration of machining and availability of temperature-controlled space to name a few. Literature survey reveals that a significant portion of the research either addresses the effects of internal heat sources or a combination of internal and external heat sources since the de-facto standard is to commission the machine tool in a temperature-controlled space. However, in this work, only the influence of external heat sources, predominantly caused by ambient temperature variations onto the distortions observed at the Tool Center Point (TCP) is considered. Smart sensory device such as Resistance Temperature Detector (RTD) sensor data is used for the modelling of thermal distortion due to external heat sources. The model is inherently based on the development of a thermal network using a lumped system approach for the estimation of temperatures of machine tool components and then the TCP distortion using the construction relation. Further, the model is modified through the introduction of two aspects: first is the addition of thermal contact conductance as the machine tool components are practically connected; and the second is the parameterization of free convection heat coefficient from being a stationary value to a function of the ambient temperature. The proposed method is then applied to predict the thermal error on a vertical machining center subjected to environmental temperature variation. The results show that the model considering a combination of the thermal contact conductance and parameterized free convection coefficient leads to a closer agreement with the experimental data. The strategy along with a thermal compensation technique presented in this research successfully lead to the improved machining precision (approximately 70% of the original thermal error is addressed across the combinations) without a need of a conditioned environment for C-frame type vertical machining centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

α :

Thermal expansion coefficient (m/mK)

l, u :

Lower and upper bound

δ xe, δ ye, δ ze :

Measured thermal distortion in X-, Y-, Z-axes respectively (μm)

δ xp, δ yp, δ zp :

Predicted thermal distortion in X-, Y-, Z-axes respectively (μm)

δ y(error), δ z(error) :

Residual thermal distortion, i.e., error after compensation in Y-, Z-axes respectively (μm)

γ xe, γ ye :

Measured angular distortion about X- and Y-axes respectively (μrad)

ρ :

Density of component (kg/m3)

σ :

Equivalent root mean square surface roughness (m)

C p :

Specific heat of component (J/kgK)

D a, ... , D e :

Measured thermal displacement from sensors Sa, ..., Se respectively (μm)

\(E^{\prime }\) :

Equivalent elastic modulus (N/m2)

h :

Thermal convection coefficient (W/m2K)

h :

Scalar multiplier (W/m2K2)

k s :

Equivalent thermal conductivity (W/mK)

k :

Thermal conductivity (W/mK)

L c :

Characteristic length (m)

P :

Contact pressure (N/m2)

r ij, A ij :

TCC and contact area at the interface of components i and j respectively (W/m2K, m2)

T e :

Ambient temperature (°C)

T i :

Temperature of ith component (°C)

V, A s :

Volume (m3) and effective convective heat transfer area (m2) respectively

References

  1. Schwenke H, Knapp W, Haitjema H, Weckenmann A, Schmitt R, Delbressine F (2008) Geometric error measurement and compensation of machines—an update. CIRP Ann 57(2):660–675

    Article  Google Scholar 

  2. Cheng Q, Sun B, Liu Z, Feng Q, Gu P (2018) Geometric error compensation method based on floyd algorithm and product of exponential screw theory. Proc Inst Mech Eng Part B: J Eng Manuf 232(7):1156–1171

    Article  Google Scholar 

  3. Fan J, Tao H, Wu C, Pan R, Tang Y, Li Z (2018) Kinematic errors prediction for multi-axis machine tools guideways based on tolerance. Int J Adv Manuf Technol 98(5):1131–1144

    Article  Google Scholar 

  4. Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine toolsa review: part i: geometric, cutting-force induced and fixture-dependent errors. Int J Mach Tools Manuf 40(9):1235–1256

    Article  Google Scholar 

  5. Bryan J (1990) International status of thermal error research (1990). CIRP annals 39(2):645–656

    Article  Google Scholar 

  6. Mayr J, Jedrzejewski J, Uhlmann E, Donmez MA, Knapp W, Härtig F, Wendt K, Moriwaki T, Shore P, Schmitt R et al (2012) Thermal issues in machine tools. CIRP Ann 61(2):771–791

    Article  Google Scholar 

  7. ISO 230-1:2012 (2012) Test code for machine tools - Part 1: Geometric accuracy of machines operating under no-load or quasi-static conditions. Standard, Geneva, CH: International Organization for Standardization

  8. ISO 230-2:2016 (2012) Test code for machine tools - Part 2: Determination of accuracy and repeatability of positioning of numerically controlled axes. Standard. Geneva, CH: International Organization for Standardization

  9. ASME B89.6.2 (2017) Temperature And Humidity Environment For Dimensional Measurement. Standard. American Society of Mechanical Engineers

  10. Altintas Y, Brecher C, Weck M, Witt S (2005) Virtual machine tool. CIRP Ann 54 (2):115–138

    Article  Google Scholar 

  11. Liang Y, Su H, Lu L, Chen W, Sun Y, Zhang P (2015) Thermal optimization of an ultra-precision machine tool by the thermal displacement decomposition and counteraction method. Int J Adv Manuf Technol 76(1-4):635–645

    Article  Google Scholar 

  12. Horiuchi T, Aono K (2011) Air spindle for ultra high-precision machine tools. NTN Techn Rev 79:130–135

    Google Scholar 

  13. Ge Z, Ding X (2018) Design of thermal error control system for high-speed motorized spindle based on thermal contraction of CFRP. J Mach Tools Manuf 125(Supplement C):99–111

    Article  Google Scholar 

  14. Hatamura Y, Nagao T, Mitsuishi M, Kato K, Taguchi S, Okumura T, Nakagawa G, Sugishita H (1993) Development of an intelligent machining center incorporating active compensation for thermal distortion. CIRP Ann 42(1):549–552

    Article  Google Scholar 

  15. Chen J-S (1997) Fast calibration and modeling of thermally-induced machine tool errors in real machining. Int J Mach Tools Manuf 37(2):159 –169

    Article  Google Scholar 

  16. Yang M, Lee J (1998) Measurement and prediction of thermal errors of a cnc machining center using two spherical balls. J Mater Process Technol 75(1):180 –189

    Article  Google Scholar 

  17. Grama SN, Mathur A, Badhe AN (2018) A model-based cooling strategy for motorized spindle to reduce thermal errors. Int J Mach Tools Manuf 132:3–16

    Article  Google Scholar 

  18. Liu T, Gao W, Tian Y, Zhang D, Zhang Y, Chang W (2017) Power matching based dissipation strategy onto spindle heat generations. Appl Therm Eng 113:499–507

    Article  Google Scholar 

  19. Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools—a review: Part ii: thermal errors. Int J Mach Tools Manuf 40(9):1257–1284

    Article  Google Scholar 

  20. Wu C-W, Tang C-H, Chang C-F, Shiao Y-S (2011) Thermal error compensation method for machine center. Int J Mach Tools Manuf 59(5-8):681–689

    Google Scholar 

  21. Zhu J, Ni J, Shih AJ (2008) Robust machine tool thermal error modeling through thermal mode concept. J Manuf Sci Eng 130(6)

  22. Liu Q, Yan J, Pham DT, Zhou Z, Xu W, Wei Q, Ji C (2016) Identification and optimal selection of temperature-sensitive measuring points of thermal error compensation on a heavy-duty machine tool. Int J Adv Manuf Technol 85(1-4):345–353

    Article  Google Scholar 

  23. Liu H, Miao EM, Wei XY, Zhuang XD (2017) Robust modeling method for thermal error of CNC machine tools based on ridge regression algorithm. Int J Mach Tools Manuf 113:35–48

    Article  Google Scholar 

  24. Fujishima M, Narimatsu K, Irino N, Mori M, Ibaraki S (2019) Adaptive thermal displacement compensation method based on deep learning. CIRP J Manuf Sci Technol 25:22–25

    Article  Google Scholar 

  25. Mian NS, Fletcher S, Longstaff AP, Myers A (2013) Efficient estimation by FEA of machine tool distortion due to environmental temperature perturbations. Precis Eng 37(2):372–379

    Article  Google Scholar 

  26. Mayr J, Ess M, Weikert S, Wegener K (2009) Compensation of thermal effects on machine tools using a FDEM simulation approach, Proceedings Lamdamap, vol 9

  27. Mayr J, Ess M, Pavlic̈ek F, Weikert S, Spescha D, Knapp W (2015) Simulation and measurement of environmental influences on machines in frequency domain. CIRP Ann 64:479–482

    Article  Google Scholar 

  28. Weng L, Gao W, Lv Z, Zhang D, Liu T, Wang Y, Qi X, Tian Y (2018) Influence of external heat sources on volumetric thermal errors of precision machine tools. Int J Adv Manuf Technol 99(1-4):475–495

    Article  Google Scholar 

  29. Beitelschmidt M, Galant A, Großmann K, Kauschinger B (2015) Innovative simulation technology for real-time calculation of the thermo-elastic behaviour of machine tools in motion. Appl Mech Mater 794:363–370

    Article  Google Scholar 

  30. Jones D, Snider C, Nassehi A, Yon J, Hicks B (2020) Characterising the digital twin: A systematic literature review. CIRP J Manuf Sci Technol 29(part A):36–52

    Article  Google Scholar 

  31. Galant A, Großmann K, Mühl A (2015) Thermo-elastic simulation of entire machine tool. Lecture Notes in Production Engineering. Springer

  32. Großmann K, Galant A, Merx M, Riedel M (2014) Methodology for the efficient analysis of thermal and thermo-elastic behaviour of machine tools. Adv Mater Res 1018:395–402

    Article  Google Scholar 

  33. Zhang C, Gao F, Yan L (2017) Thermal error characteristic analysis and modeling for machine tools due to time-varying environmental temperature. Precis Eng 47:231–238

    Article  Google Scholar 

  34. Tan B, Mao X, Liu H, Li B, He S, Peng F, Yin L (2014) A thermal error model for large machine tools that considers environmental thermal hysteresis effects. Int J Mach Tools Manuf 82-83:11–20

    Article  Google Scholar 

  35. Huang S, Feng P, Xu C, Ma Y, Ye J, Zhou K (2018) Utilization of heat quantity to model thermal errors of machine tool spindle. Int J Adv Manuf Technol 97:1733–1743

    Article  Google Scholar 

  36. Yun WS, Kim SK, Cho DW (1999) Thermal error analysis for a CNC lathe feed drive system. Int J Mach Tools Manuf 39(7):1087 –1101

    Article  Google Scholar 

  37. Delbressine FLM, Florussen GHJ, Schijvenaars LA, Schellekens PHJ (2006) Modelling thermomechanical behaviour of multi-axis machine tools. Precis Eng 30(1):47 –53

    Article  Google Scholar 

  38. Cheng Q, Qi Z, Zhang G, Zhao Y, Sun B, Gu P (2016) Robust modelling and prediction of thermally induced positional error based on grey rough set theory and neural networks. Int J Adv Manuf Technol 83(5-8):753–764

    Article  Google Scholar 

  39. Gebhardt M, Mayr J, Furrer N, Widmer T, Weikert S, Knapp W (2014) High precision grey-box model for compensation of thermal errors on five axis machines. CIRP Ann 63:509–512

    Article  Google Scholar 

  40. Abdulshahed AM, Longstaff AP, Fletcher S, Myers A (2013) Application of GNNMCI(1, N) to environmental thermal error modelling of CNC machine tools. In: Proceedings of the 3rd international conference on advanced manufacturing engineering and technologies, pp 253–262

  41. Wang L, Wang H, Li T, Li F (2015) A hybrid thermal error modeling method of heavy machine tools in z-axis. Int J Adv Manuf Technol 80(1-4):389–400

    Article  Google Scholar 

  42. Dahlem P, Sanders MP, Fröhlich HB, Schmitt RH (2020) Hybrid model approaches for compensating environmental influences in machine tools using integrated sensors. at-Automatisierungstechnik 68 (6):465–476

    Article  Google Scholar 

  43. Zhang J, Feng P, Chen C, Yu D, Wu Z (2013) A method for thermal performance modeling and simulation of machine tools. Int J Adv Manuf Technol 68:1517–1527

    Article  Google Scholar 

  44. Li Z, Zhao C, Lu Z (2020) Thermal error modeling method for ball screw feed system of cnc machine tools in x-axis. Int J Adv Manuf Technol 106:5383–5392

    Article  Google Scholar 

  45. Xu R, Feng H, Zhao L, Xu L (2006) Experimental investigation of thermal contact conductance at low temperature based on fractal description. Int Commun Heat Mass Transfer 33:811–818

    Article  Google Scholar 

  46. Baïri A, Laraqi N (2005) Heat transfer across a solid solid interface obtained by machining in a lathe. J Mater Process Technol 169:89–93

    Article  Google Scholar 

  47. Fang B, Gu T, Ye D, Luo T (2016) An improved thermo-mechanical model for vertical machining center. Int J Adv Manuf Technol 87:2581–2592

    Article  Google Scholar 

  48. Cui Y, Li H, Li T, Chen L (2018) An accurate thermal performance modeling and simulation method for motorized spindle of machine tool based on thermal contact resistance analysis. Int J Adv Manuf Technol 96:2525–2537

    Article  Google Scholar 

  49. Bergman TL, Lavine A, Incropera FP, Dewitt DP (2017) Fundamentals of heat and mass transfer. Wiley

  50. Neugebauer R, Ihlenfeldt S, Zwingenberger C (2010) An extended procedure for convective boundary conditions on transient thermal simulations of machine tools. Prod Eng 4(6):641–646

    Article  Google Scholar 

  51. Li D, Feng P, Zhang J, Wu Z, Yu D (2014) Calculation method of convective heat transfer coefficients for thermal simulation of a spindle system based on RBF neural network. Int J Adv Manuf Technol 70:1445–1454

    Article  Google Scholar 

  52. Fan C, Sun F, Yang L (2008) A numerical method on inverse determination of heat transfer coefficient based on thermographic temperature measurement. Chin J Chem Eng 16:901–908

    Article  Google Scholar 

  53. Cengel YA (2002) Heat transfer, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  54. Nilsson UE, Hasselstrom AKJ (2012) Thermal contact conductance in bolted joints. Chalmers University of Technology, Gothenburg

  55. ISO 898-1:2013 (2013) Mechanical properties of fasteners made of carbon steel and alloy steel - Part 1: Bolts, screws and studs with specified property classes - Coarse thread and fine pitch thread. Standard. Geneva, CH: International Organization for Standardization

  56. ISO 230-3:2007 (2007) Test code for machine tools - Part 3: Determination of thermal effects. Standard. Geneva, CH: International Organization for Standardization

  57. Mitsuishi M, Warisawa S, Hanayama R (2001) Development of an intelligent high-speed machining center. CIRP Ann 50(1):275–280

    Article  Google Scholar 

  58. Powell M (1994) A direct search optimization method that models the objective and constraint functions by linear interpolation. Adv Optim Numer Anal:51–67

  59. Bishop CM (2006) Pattern recognition and machine learning. Springer

  60. Vyroubal J (2012) Compensation of machine tool thermal deformation in spindle axis direction based on decomposition method. Precis Eng 36(1):121–127

    Article  Google Scholar 

  61. Grama SN, Mathur A, Aralaguppi R, Subramanian T (2017) Optimization of high speed machine tool spindle to minimize thermal distortion. procedia CIRP 58:457–462

    Article  Google Scholar 

  62. Cheng Q, Qi B, Liu Z, Zhang C, Xue D (2019) An accuracy degradation analysis of ball screw mechanism considering time-varying motion and loading working conditions. Mech Mach Theory 134:1–23

    Article  Google Scholar 

  63. Abuaniza A, Fletcher S, Mian NS, Longstaff AP (2016) Thermal error modelling of a cnc machine tool feed drive system using fea method. Int J Eng Res Technol 5(3):118–126

    Google Scholar 

  64. Gim T, Ha J-y, Lee J-y, Lee C-h, Ko T-j (2001) Ball screw as thermal error compensator. In: Proceedings form ASPE Annual Meeting. Citeseer

  65. Du Z, Yao X, Hou H, Yang J (2018) A fast way to determine temperature sensor locations in thermal error compensation. Int J Adv Manuf Technol 97(1-4):455–465

    Article  Google Scholar 

  66. Hongyao S, Lei S, Linchu Z, Jianfeng S, Xiheng L, Jianzhong F (2018) Position-independent thermal error compensation and evaluation based on linear correlation filtering technology. Int J Adv Manuf Technol 95(1-4):1357–1367

    Article  Google Scholar 

  67. Zhong RY, Xu X, Klotz E, Newman ST (2017) Intelligent manufacturing in the context of industry 4.0: a review. Engineering 3(5):616–630

    Article  Google Scholar 

Download references

Acknowledgements

MNK and HAS acknowledge the Advanced Machine Tool Testing Facility (AMTTF) for providing a thermal chamber to perform experiments. Further, they thank Mr. Srinivas N. Grama and Mr. Ashvarya Mathur of Dr. Kalam Centre for Innovation, Bharat Fritz Werner Ltd., for their help with the coding, conduction of experiments, manuscript preparation as well as proof-reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mallinath N. Kaulagi.

Ethics declarations

Ethics approval

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Author contribution

Not applicable.

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Consent to participate

Not applicable

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaulagi, M.N., Sonawane, H.A. Thermal network-based compensation model for a vertical machining center subjected to ambient temperature fluctuations. Int J Adv Manuf Technol 124, 3973–3994 (2023). https://doi.org/10.1007/s00170-021-08241-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08241-6

Keywords

Navigation