Skip to main content
Log in

Impact of electromagnetic stirring on the gas metal arc welding of an MAR-M247 superalloy

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this paper, the impact of electromagnetic stirring (EMS) on the gas metal arc welding (GTAW) of an MAR-M247 superalloy was investigated. Results revealed that, without electromagnetic stirring, it was easy for carbides in the heat-affected zone (HAZ) of the weld bead to liquefy during welding, leading to weld bead cracks. Electromagnetic stirring refined the grains in the HAZ and the weld bead, leading to grain strengthening and subsequently resulting in the effective improvement in the hardness of the weld bead. In addition, electromagnetic stirring significantly facilitated the formation of the weld bead by the removal of large inclusions which in turn effectively improved crack resistance of the joint. It also accelerated the floating up of gas holes thereby reducing the generation of porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Morinaga M, Yukawa N, Adachi H, Ezaki H (1984) New PHACOMP and its applications to alloy design. Superalloys 1984:523–532. https://doi.org/10.7449/1984/Superalloys_1984_523_532

    Article  Google Scholar 

  2. Kvapilova M, Dvorak J, Kral P, Hrbacek K, Sklenicka V (2019) Creep behaviour and life assessment of a cast nickel–base superalloy MAR–M247. High Temp Mater Processes (London) 38(2019):590–600. https://doi.org/10.1515/htmp-2019-0006

    Article  Google Scholar 

  3. Azevedo e Silva PRS, Baldan R, Nunes CA, Coelho GC, Costa AMdS (2013) Solution heat-treatment of Nb-modified MAR-M247 superalloy. Mater Charact 75:214–219. https://doi.org/10.1016/j.matchar.2012.11.006

    Article  Google Scholar 

  4. Whitesell HS, Overfelt RA (2001) Influence of solidification variables on the microstructure, macrosegregation, and porosity of directionally solidified Mar-M247. Mater Sci Eng A 318(1–2):264–276. https://doi.org/10.1016/s0921-5093(01)01264-3

    Article  Google Scholar 

  5. Okada M, Tsutsumi M, Kitamura T, Ohtani R (2010) Initiation and growth of small cracks in directionally solidified Mar-M247 under creep-fatigue Part I: effect of microstructure. Fatigue Fract Eng Mater Struct 21(6):741–750. https://doi.org/10.1046/j.1460-2695.1998.00540.x

    Article  Google Scholar 

  6. Bor H, Chao C, Ma C (1997) The influence of magnesium on carbide characteristics and creep behavior of the Mar-M247 superalloy. Scripta materialia 38(2):329–335. https://doi.org/10.1016/S1359-6462(97)00444-2

    Article  Google Scholar 

  7. Baldan R, Azevedo e Silva PRS, Nunes CA, Coelho GC (2013) Aging of a new niobium-modified MAR-M247 nickel-based superalloy. J Mater Eng Perform 22(8):2337–2342. https://doi.org/10.1007/s11665-013-0531-1

    Article  Google Scholar 

  8. Bor HY, Wei CN, Jeng RR, Ko PY (2008) Elucidating the effects of solution and double ageing treatment on the mechanical properties and toughness of MAR-M247 superalloy at high temperature. Mater Chem Phys 109(2–3):334–341. https://doi.org/10.1016/j.matchemphys.2007.11.041

    Article  Google Scholar 

  9. Bor H, Ma C, Chao C (2000) The influence of Mg on creep properties and fracture behaviors of Mar-M247 superalloy under 1255 K/200 MPa. Metall and Mater Trans A 31(5):1365–1373. https://doi.org/10.1007/s11661-000-0255-3

    Article  Google Scholar 

  10. Kaufman M (1984) Properties of cast Mar-M-247 for turbine blisk applications. Superalloys 1984:43–52. https://doi.org/10.7449/1984/Superalloys_1984_43_52

    Article  Google Scholar 

  11. Liu M-C, Sheng G-M, He H-J, Jiao Y-J (2017) Microstructural evolution and mechanical properties of TLP bonded joints of Mar-M247 superalloys with Ni-Cr-Co-W-Ta-B interlayer. J Mater Process Technol 246:245–251. https://doi.org/10.1016/j.jmatprotec.2017.03.021

    Article  Google Scholar 

  12. Rahimian M, Milenkovic S, Sabirov I (2013) Microstructure and hardness evolution in MAR-M247 Ni-based superalloy processed by controlled cooling and double heat treatment. J Alloy Compd 550:339–344. https://doi.org/10.1016/j.jallcom.2012.10.129

    Article  Google Scholar 

  13. Nathal MV, Ebert LJ (1985) The influence of cobalt, tantalum, and tungsten on the microstructure of single crystal nickel-base superalloys. Metall Trans A 16(10):1849–1862. https://doi.org/10.1007/bf02670372

    Article  Google Scholar 

  14. Gasko KL, Janowski GM, Pletka BJ (1988) The influence of γ-γ′ eutectic on the mechanical properties of conventionally cast MAR-M247. Mater Sci Eng A 104:1–8. https://doi.org/10.1016/0025-5416(88)90400-4

    Article  Google Scholar 

  15. Baldan R, da Rocha RLP, Tomasiello RB, Nunes CA, da Silva Costa AM, Barboza MJR, Coelho GC, Rosenthal R (2013) Solutioning and aging of MAR-M247 nickel-based superalloy. J Mater Eng Perform 22(9):2574–2579. https://doi.org/10.1007/s11665-013-0565-4

    Article  Google Scholar 

  16. Liao J-H, Bor H-Y, Wei C-N, Chao C-G, Liu T-F (2012) Influence of microstructure and its evolution on the mechanical behavior of modified MAR-M247 fine-grain superalloys at 871°C. Mater Sci Eng A 539:93–100. https://doi.org/10.1016/j.msea.2012.01.059

    Article  Google Scholar 

  17. Milenkovic S, Sabirov I, Llorca J (2012) Effect of the cooling rate on microstructure and hardness of MAR-M247 Ni-based superalloy. Mater Lett 73:216–219. https://doi.org/10.1016/j.matlet.2012.01.028

    Article  Google Scholar 

  18. Rakoczy Ł, Grudzień M, Zielińska-Lipiec A (2018) Contribution of microstructural constituents on hot cracking of MAR-M247 nickel based superalloy. Arch Metall Mater 63:181–189. https://doi.org/10.24425/118926

    Article  Google Scholar 

  19. Yeratapally SR, Hochhalter JD, Ruggles TJ, Sangid MD (2017) Investigation of fatigue crack incubation and growth in cast MAR-M247 subjected to low cycle fatigue at room temperature. Int J Fract 208:79–96. https://doi.org/10.1007/s10704-017-0213-3

    Article  Google Scholar 

  20. Eckmann S, Schweizer C (2017) Characterization of fatigue crack growth, damage mechanisms and damage evolution of the nickel-based superalloys MAR-M247 CC (HIP) and CM-247 LC under thermomechanical fatigue loading using in situ optical microscopy. Int J Fatigue 99:235–241. https://doi.org/10.1016/j.ijfatigue.2017.01.015

    Article  Google Scholar 

  21. Reza Abedi M, Hamed S, Hossein R (2016) The effect of repair welding number on microstructure of hastelloy X fabricated via TIG process. Int J Mater Sci Appl 5(2):43–48. https://doi.org/10.11648/j.ijmsa.20160502.12

    Article  Google Scholar 

  22. Wang Q, Sun DL, Na Y, Zhou Y, Han XL, Wang J (2011) Effects of TIG welding parameters on morphology and mechanical properties of welded joint of Ni-base superalloy. Procedia Engineering 10:37–41. https://doi.org/10.1016/j.proeng.2011.04.009

    Article  Google Scholar 

  23. Chen C, Fan C, Cai X, Liu Z, Lin S, Yang C (2019) Arc characteristics and weld appearance in pulsed ultrasonic assisted GTAW process. Results in Physics 15:102692. https://doi.org/10.1016/j.rinp.2019.102692

    Article  Google Scholar 

  24. Vidyarthy RS, Dwivedi DK, Muthukumaran V (2018) Optimization of A-TIG process parameters using response surface methodology. Mater Manuf Processes 33(7):709–717. https://doi.org/10.1080/10426914.2017.1303154

    Article  Google Scholar 

  25. Li Z, Gobbi SL, Richter KH (1997) Autogenous welding of Hastelloy X to Mar-M 247 by laser. J Mater Process Technol 70(1–3):285–292. https://doi.org/10.1016/s0924-0136(97)02939-7

    Article  Google Scholar 

  26. Allen C, Shaw-Edwards R, Nijdam T (2015) Nickel-containing superalloy laser weld qualities and properties. J Laser Appl 27:S29001. https://doi.org/10.2351/1.4906301

    Article  Google Scholar 

  27. Alvarez P, Vázquez L, Ruiz N, Rodríguez P, Magaña A, Niklas A, Santos F (2019) Comparison of hot cracking susceptibility of TIG and laser beam welded alloy 718 by varestraint testing. Metals 9(9):985. https://doi.org/10.3390/met9090985

    Article  Google Scholar 

  28. Böttger B, Apel M, Jokisch T (2020) Senger A, Phase-field study on microstructure formation in Mar-M247 during electron beam welding and correlation to hot cracking susceptibility, IOP Conference Series: Materials Science and Engineering. IOP Publishing, 012072. https://doi.org/10.1088/1757-899X/861/1/012072

  29. Stone H, Roberts S, Reed R (2000) A process model for the distortion induced by the electron-beam welding of a nickel-based superalloy. Metall and Mater Trans A 31(9):2261–2273. https://doi.org/10.1007/s11661-000-0143-x

    Article  Google Scholar 

  30. Węglowski MS, Błacha S, Phillips A (2016) Electron beam welding—techniques and trends—review. Vacuum 130:72–92. https://doi.org/10.1016/j.vacuum.2016.05.004

    Article  Google Scholar 

  31. Ma Z (2008) Friction stir processing technology: a review. Metall and Mater Trans A 39(3):642–658. https://doi.org/10.1007/s11661-007-9459-0

    Article  Google Scholar 

  32. Senkov ON, Mahaffey DW, Semiatin SL, Woodward C (2014) Inertia friction welding of dissimilar superalloys Mar-M247 and LSHR. Metall and Mater Trans A 45(12):5545–5561. https://doi.org/10.1007/s11661-014-2512-x

    Article  Google Scholar 

  33. Mahaffey DW, Senkov ON, Shivpuri R, Semiatin SL (2016) Effect of process variables on the inertia friction welding of superalloys LSHR and Mar-M247. Metall and Mater Trans A 47(8):3981–4000. https://doi.org/10.1007/s11661-016-3600-x

    Article  Google Scholar 

  34. Magalhães V, Leitão C, Rodrigues D (2018) Friction stir welding industrialisation and research status. Sci Technol Weld Joining 23(5):400–409. https://doi.org/10.1080/13621718.2017.1403110

    Article  Google Scholar 

  35. Singh RP, Dubey S, Singh A, Kumar S (2021) A review paper on friction stir welding process. Materials Today: Proceedings 38:6–11. https://doi.org/10.1016/j.matpr.2020.05.208

    Article  Google Scholar 

  36. Rathinasuriyan C, Pavithra E, Sankar R, Kumar VS (2021) Current status and development of submerged friction stir welding: a review. Int J Precis Eng Manuf-Green Technol 8(2):687–701. https://doi.org/10.1007/s40684-020-00187-6

    Article  Google Scholar 

  37. Wu H, Chang Y, Lu L, Bai J (2017) Review on magnetically controlled arc welding process. Int J Adv Manuf Technol 91(9–12):4263–4273. https://doi.org/10.1007/s00170-017-0068-9

    Article  Google Scholar 

  38. Jiang SY, Wang XW, Chen HM, Liu P (2012) The impact of adscititious longitudinal magnetic field on CO2 welding process, Advanced Materials Research. Trans Tech Publ, pp 1447–1450. https://doi.org/10.4028/www.scientific.net/AMR.538-541.1447

  39. Watanabe T, Nakamura H, Ei K (2010) Grain refinement by TIG welding with electromagnetic stirring—a study of solidification control of austenitic stainless steel weld metal. Weld Int 3(4):312–317. https://doi.org/10.1080/09507118909447649

    Article  Google Scholar 

  40. Lim YC, Yu X, Cho JH, Sosa J, Farson DF, Babu SS, McCracken S, Flesner B (2013) Effect of magnetic stirring on grain structure refinement Part 2—nickel alloy weld overlays. Sci Technol Weld Joining 15(5):400–406. https://doi.org/10.1179/136217110x12720264008231

    Article  Google Scholar 

  41. Jeng S-L, Su D-P, Lee J-T, Huang J-Y (2020) The impact of EMS on the temperature fluctuations, appearance, and microstructure of GTA stainless steel welds. Metals 10(1):118. https://doi.org/10.3390/met10010118

    Article  Google Scholar 

  42. Liu Y, Sun Q, Liu J, Wang S, Feng J (2015) Effect of axial external magnetic field on cold metal transfer welds of aluminum alloy and stainless steel. Mater Lett 152:29–31. https://doi.org/10.1016/j.matlet.2015.03.077

    Article  Google Scholar 

  43. Jeng S-L, Su D-P, Lee J-T, Huang J-Y (2018) Effects of electromagnetic stirring on the cast austenitic stainless steel weldments by gas tungsten arc welding. Metals 8(8):630. https://doi.org/10.3390/met8080630

    Article  Google Scholar 

  44. Tsang T, Savage D (1971) The effect of arc oscillation in either transverse or longitudinal direction has beneficial effect on the fusion zone microstructure and tends to reduce sensitivity in hot cracking. Weld J 50(11):777–786

    Google Scholar 

  45. Chen R, Jiang P, Shao X, Mi G, Wang C (2017) Effect of static magnetic field on microstructures and mechanical properties of laser-MIG hybrid welding for 304 stainless steel. Int J Adv Manuf Technol 91(9–12):3437–3447. https://doi.org/10.1007/s00170-017-0006-x

    Article  Google Scholar 

  46. Malinowski-Brodnicka M, Den Ouden G, Vink W (1990) Effect of electromagnetic stirring on GTA welds in austenitic stainless steel. Welding J. 2(2); 52s-59s. http://files.aws.org/wj/supplement/WJ_1990_02_s52.pdf

  47. Arturo GRM, Hugo LMV, Rafael GH, Egberto BB, Antonio GSJ (2015) Electrochemical characterization of AISI 2205 duplex stainless steel welded joints with electromagnetic interaction. Procedia Mater Sci 8:950–958. https://doi.org/10.1016/j.mspro.2015.04.156

    Article  Google Scholar 

  48. Curiel FF, García R, López VH, González-Sánchez J (2011) Effect of magnetic field applied during gas metal arc welding on the resistance to localised corrosion of the heat affected zone in AISI 304 stainless steel. Corros Sci 53(7):2393–2399. https://doi.org/10.1016/j.corsci.2011.03.022

    Article  Google Scholar 

  49. Shoichi M, Yukio M, Koki T, Yasushi T, Yukinori M, Yusuke M (2013) Study on the application for electromagnetic controlled molten pool welding process in overhead and flat position welding. Sci Technol Weld Joining 18(1):38–44. https://doi.org/10.1179/1362171812y.0000000070

    Article  Google Scholar 

  50. Avilov VV, Gumenyuk A, Lammers M, Rethmeier M (2013) PA position full penetration high power laser beam welding of up to 30 mm thick AlMg3 plates using electromagnetic weld pool support. Sci Technol Weld Joining 17(2):128–133. https://doi.org/10.1179/1362171811y.0000000085

    Article  Google Scholar 

  51. Pearce BP, Kerr HW (1981) Grain refinement in magnetically stirred GTA welds of aluminum alloys. Metall Trans B 12(3):479–486. https://doi.org/10.1007/bf02654317

    Article  Google Scholar 

  52. Griffiths WD, McCartney DG (1997) The effect of electromagnetic stirring on macrostructure and macrosegregation in the aluminium alloy 7150. Mater Sci Eng, A 222(2):140–148. https://doi.org/10.1016/s0921-5093(96)10527-x

    Article  Google Scholar 

  53. Gao ZH, Xu J, Zhang ZF, Tang MO (2013) Effect of annular electromagnetic stirring on microstructure and mechanical property of 7075 aluminium alloy. Mater Sci Forum 749:75–81. https://doi.org/10.4028/www.scientific.net/MSF.749.75

    Article  Google Scholar 

  54. Chen Y, Sui FF, Cong KL, Yan XQ, Zhang GY, Guan SK (2011) Effects of shielding gas and magnetic field on characteristics of AZ31 magnesium alloy by TIG welding. Mater Sci Forum 704–705:1186–1196. https://doi.org/10.4028/www.scientific.net/MSF.704-705.1186

    Article  Google Scholar 

  55. Yao Q, Luo Z, Li Y, Yan FY, Duan R (2014) Effect of electromagnetic stirring on the microstructures and mechanical properties of magnesium alloy resistance spot weld. Mater Des 63:200–207. https://doi.org/10.1016/j.matdes.2014.06.004

    Article  Google Scholar 

  56. Zhang X-L, Li T-J, Teng H-T, Xie S-S, Jin J-Z (2008) Semisolid processing AZ91 magnesium alloy by electromagnetic stirring after near-liquidus isothermal heat treatment. Mater Sci Eng, A 475(1–2):194–201. https://doi.org/10.1016/j.msea.2007.04.049

    Article  Google Scholar 

  57. Chen Y, Zhang L, Liu W, Wu G, Ding W (2016) Preparation of Mg–Nd–Zn–(Zr) alloys semisolid slurry by electromagnetic stirring. Mater Des 95:398–409. https://doi.org/10.1016/j.matdes.2016.01.131

    Article  Google Scholar 

  58. Bor HY, Chao CG, Ma CY (1999) The effects of Mg microaddition on the mechanical behavior and fracture mechanism of MAR-M247 superalloy at elevated temperatures. Metall and Mater Trans A 30(3):551–561. https://doi.org/10.1007/s11661-999-0047-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

TYC: conceptualization, methodology, investigation, supervision, funding acquisition, validation, writing—review and editing. LCY: conceptualization, investigation, and validation. All authors equally contributed the overall manuscript. CRY: conceptualization, investigation, methodology, writing—original draft, writing—review and editing.

Corresponding author

Correspondence to Ren-Yu Chen.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu-Chih, T., Lu, CY. & Chen, RY. Impact of electromagnetic stirring on the gas metal arc welding of an MAR-M247 superalloy. Int J Adv Manuf Technol 119, 343–355 (2022). https://doi.org/10.1007/s00170-021-08236-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08236-3

Keywords

Navigation