Skip to main content
Log in

A hybrid modelling approach for characterizing hole shrinkage mechanisms in drilling Ti6Al4V under dry and cryogenic conditions

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Hole shrinkage is a common phenomenon in drilling difficult-to-cut materials like Ti6Al4V due to their poor thermal properties and high elasticity, which can lead to increase in tool wear and decrease in surface integrity. In this study, an in-depth analysis of hole shrinkage mechanism is carried out through a hybrid modelling approach for both dry and cryogenic cutting conditions. The plastic deformation induced by chip formation and tool-workpiece interaction is treated as equivalent thermomechanical loads, and heat convection conditions are described along tool path in order to perform details in heat transfer process for both cases. Quantitative analysis is presented through numerical simulation and experimental data of temperature and deformation along hole contour to analyze deformation components in order to reveal the hole shrinkage mechanism. Additional interactions between cutting tool and workpiece material are induced by recovery of elastoplastic deformation, and plastic portion is a more devastating factor in tool wear and surface damage induced by hole shrinkage. This study presents an in-depth and fundamental understanding of the hole shrinkage mechanism through a hybrid modelling approach, which can characterize heat transfer process during machining for both dry and cryogenic conditions, and simulation of this fully coupled thermomechanical cutting process with supply of coolants was rarely reported in previous research. The results show that plastic deformation induced hole shrinkage can enhance the interaction between workpiece material and cutting tool, and cryogenic assistance presents a good performance in restricting this kind of phenomenon. The related results could be used to optimize strategies of eliminating hole shrinkage with cryogenic assistance in industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

Abbreviations

D :

The drill diameter (mm)

l :

The height of drill tip (mm)

d :

Projection distance of nozzle (mm)

ϕ :

The nozzle diameter (mm)

φ 2 :

The projection angle (°)

A, B, C :

VPL model parameters regarding strain hardening

n :

VPL model parameter regarding strain rate hardening

v :

VPL model parameter regarding thermal softening

T r :

Reference temperature (K)

h :

The height of contact (mm)

w :

The width of margin (mm)

Δh :

Incremental height per tooth per revolution (mm/r)

σ :

Normal stress (MPa)

τ :

Tangential stress (MPa)

μ l :

Friction coefficient of main edge

μ h :

Friction coefficient of margin

F r :

Radial force (N)

F t :

Tangential force (N)

F f :

Feed force (N)

Λ 1 :

Percentage of shearing energy transformed into heat

Λ 2 :

Percentage of heat produced during chip formation and transformed into machined surface

Λ 3 :

Heat partition coefficient at the interface of tool-workpiece

D l- flux :

Heat flux intensity of main cutting edge area (W/mm2)

D h- flux :

Heat flux intensity of margin area (W/mm2)

ɛ, β, γ, δ, i, j, k, m :

Controlling parameters for calculating heat convection coefficient

ϕ ref, P ref, D ref, α ref :

Referencing values of nozzle diameter, projection pressure, projection distance and projection angle

P :

Driven pressure of LN2 applied in experiments (Bar)

α :

Projection angle of LN2 (°)

a, b :

Intermediate variables for calculating distribution of heat convection coefficient

t :

The current time step during machining process (s)

x(t), y(t), z(t) :

The coordinates of margin along x-, y-, and z-axis at the current time t

T N :

Time required for a single rotation (s)

z 0 :

Initial position of tool along z-direction (mm

References

  1. Arrazola P-J, Garay A, Iriarte L-M, Armendia M, Marya S, Le Maître F (2009) Machinability of titanium alloys (Ti6Al4V and Ti555.3). J Mater Process Technol 209:2223–30. https://doi.org/10.1016/j.jmatprotec.2008.06.020

    Article  Google Scholar 

  2. Rahman M, Wang Z-G, Wong Y-S (2006) A review on high-speed machining of titanium alloys. JSME Int J, Ser C 49:11–20. https://doi.org/10.1299/jsmec.49.11

    Article  Google Scholar 

  3. Khanna N, Agrawal C, Gupta MK, Song Q (2020) Tool wear and hole quality evaluation in cryogenic Drilling of Inconel 718 superalloy. Tribol Int 143:106084. https://doi.org/10.1016/j.triboint.2019.106084

    Article  Google Scholar 

  4. Poutord A, Rossi F, Poulachon G, M’Saoubi R, Abrivard G (2013) Local Approach of wear in drilling Ti6Al4V/CFRP for stack modelling. Procedia CIRP 8:316–321. https://doi.org/10.1016/j.procir.2013.06.109

    Article  Google Scholar 

  5. Merzouki J, Poulachon G, Rossi F, Ayed Y, Abrivard G (2017) Method of hole shrinkage radial forces measurement in Ti6Al4V drilling. Procedia CIRP 58:629–634. https://doi.org/10.1016/j.procir.2017.03.226

    Article  Google Scholar 

  6. Abdelhafeez AM, Soo SL, Aspinwall DK, Dowson A, Arnold D (2015) Burr Formation and hole quality when drilling titanium and aluminium alloys. Procedia CIRP 37:230–235. https://doi.org/10.1016/j.procir.2015.08.019

    Article  Google Scholar 

  7. Uehara K, Kumagai S (1968) Chip formation, surface roughness and cutting force in cryogenic machining. Ann CIRP 17:68–74

    Google Scholar 

  8. Hong SY, Ding Y (2001) Cooling approaches and cutting temperatures in cryogenic machining of Ti-6Al-4V. Int J Mach Tools Manuf 41:1417–1437. https://doi.org/10.1016/S0890-6955(01)00026-8

    Article  Google Scholar 

  9. Hong SY, Ding Y, Jeong W (2001) Friction and cutting forces in cryogenic machining of Ti–6Al–4V. Int J Mach Tools Manuf 41:2271–2285. https://doi.org/10.1016/S0890-6955(01)00029-3

    Article  Google Scholar 

  10. Hong SY, Markus I, Jeong W (2001) New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V. Int J Mach Tools Manuf 41:2245–2260. https://doi.org/10.1016/S0890-6955(01)00041-4

    Article  Google Scholar 

  11. Mia M, Gupta MK, Lozano JA, Carou D, Pimenov D, Królczyk G et al (2019) Multi-objective optimization and life cycle assessment of eco-friendly cryogenic N2 assisted turning of Ti-6Al-4V. J Clean Prod 210:121–33. https://doi.org/10.1016/j.jclepro.2018.10.334

    Article  Google Scholar 

  12. Jawahir IS, Attia H, Biermann D, Duflou J, Klocke F, Meyer D et al (2016) Cryogenic manufacturing processes. CIRP Ann 65:713–736. https://doi.org/10.1016/j.cirp.2016.06.007

    Article  Google Scholar 

  13. Ayed Y, Germain G, Melsio AP, Kowalewski P, Locufier D (2017) Impact of supply conditions of liquid nitrogen on tool wear and surface integrity when machining the Ti-6Al-4V titanium alloy. Int J Adv Manuf Technol 93:1199–1206. https://doi.org/10.1007/s00170-017-0604-7

    Article  Google Scholar 

  14. Stampfer B, Golda P, Schießl R, Maas U, Schulze V (2020) Cryogenic orthogonal turning of Ti-6Al-4V: analysis of nitrogen supply pressure variation and subcooler usage. Int J Adv Manuf Technol 111:359–369. https://doi.org/10.1007/s00170-020-06105-z

    Article  Google Scholar 

  15. Merzouki J, Poulachon G, Rossi F, Ayed Y, Abrivard G (2020) Effect of cryogenic assistance on hole shrinkage during Ti6Al4V drilling. Int J Adv Manuf Technol 108:2675–2686. https://doi.org/10.1007/s00170-020-05381-z

    Article  Google Scholar 

  16. Kaynak Y, Gharibi A (2019) Cryogenic machining of titanium Ti-5553 Alloy. J Manuf Sci Eng 141:041012. https://doi.org/10.1115/1.4042605

    Article  Google Scholar 

  17. Shokrani A, Dhokia V, Newman ST (2016) Investigation of the effects of cryogenic machining on surface integrity in CNC end milling of Ti–6Al–4V titanium alloy. J Manuf Process 21:172–179. https://doi.org/10.1016/j.jmapro.2015.12.002

    Article  Google Scholar 

  18. Pusavec F, Lu T, Courbon C, Rech J, Aljancic U, Kopac J et al (2016) Analysis of the influence of nitrogen phase and surface heat transfer coefficient on cryogenic machining performance. J Mater Process Technol 233:19–28. https://doi.org/10.1016/j.jmatprotec.2016.02.003

    Article  Google Scholar 

  19. Guo W, Pei Z, Sang X, Poplawsky JD, Bruschi S, Qu J et al (2019) Shape-preserving machining produces gradient nanolaminate medium entropy alloys with high strain hardening capability. Acta Mater 170:176–186. https://doi.org/10.1016/j.actamat.2019.03.024

    Article  Google Scholar 

  20. Liu H, Zhang J, Xu B, Xu X, Zhao W (2020) Prediction of microstructure gradient distribution in machined surface induced by high speed machining through a coupled FE and CA approach. Mater Des 196:109133. https://doi.org/10.1016/j.matdes.2020.109133

    Article  Google Scholar 

  21. Salame C, Bejjani R, Marimuthu P (2019) A better understanding of cryogenic machining using CFD and FEM simulation. Procedia CIRP 81:1071–1076. https://doi.org/10.1016/j.procir.2019.03.255

    Article  Google Scholar 

  22. Rotella G, Umbrello D (2014) Finite element modeling of microstructural changes in dry and cryogenic cutting of Ti6Al4V alloy. CIRP Ann 63:69–72. https://doi.org/10.1016/j.cirp.2014.03.074

    Article  Google Scholar 

  23. Dix M, Wertheim R, Schmidt G, Hochmuth C (2014) Modeling of drilling assisted by cryogenic cooling for higher efficiency. CIRP Ann 63:73–76. https://doi.org/10.1016/j.cirp.2014.03.080

    Article  Google Scholar 

  24. Imbrogno S, Sartori S, Bordin A, Bruschi S, Umbrello D (2017) Machining simulation of Ti6Al4V under dry and cryogenic conditions. Procedia CIRP 58:475–480. https://doi.org/10.1016/j.procir.2017.03.263

    Article  Google Scholar 

  25. Umbrello D, Bordin A, Imbrogno S, Bruschi S (2017) 3D finite element modelling of surface modification in dry and cryogenic machining of EBM Ti6Al4V alloy. CIRP J Manuf Sci Technol 18:92–100. https://doi.org/10.1016/j.cirpj.2016.10.004

    Article  Google Scholar 

  26. Shi B, Elsayed A, Damir A, Attia H, M’Saoubi R (2019) A hybrid modeling approach for characterization and simulation of cryogenic machining of Ti–6Al–4V alloy. J Manuf Sci Eng 141:021021. https://doi.org/10.1115/1.4042307

    Article  Google Scholar 

  27. Valiorgue F, Rech J, Hamdi H, Gilles P, Bergheau JM (2007) A new approach for the modelling of residual stresses induced by turning of 316L. J Mater Process Technol 191:270–273. https://doi.org/10.1016/j.jmatprotec.2007.03.021

    Article  Google Scholar 

  28. Valiorgue F, Rech J, Hamdi H, Gilles P, Bergheau JM (2012) 3D modeling of residual stresses induced in finish turning of an AISI304L stainless steel. Int J Mach Tools Manuf 53:77–90. https://doi.org/10.1016/j.ijmachtools.2011.09.011

    Article  Google Scholar 

  29. Mondelin A, Valiorgue F, Rech J, Coret M, Feulvarch E (2012) Hybrid model for the prediction of residual stresses induced by 15–5PH steel turning. Int J Mech Sci 58:69–85. https://doi.org/10.1016/j.ijmecsci.2012.03.003

    Article  Google Scholar 

  30. Ramirez C (2017) Critères d’optimisation des alliages de TITane pouraméliorer leur USinabilité. ENSAM, Paris

    Google Scholar 

  31. Follansbee PS, Gray GT (1989) An analysis of the low temperature, low and high strain-rate deformation of Ti-6AI-4V. Metall Trans A 20(5):863–874. https://doi.org/10.1007/BF02651653

  32. Mills KC (2002) Recommended values of thermophysical properties for selected commercial alloys. Woodhead Publishing

  33. Swarnakar AK, Van der Biest O, Baufeld B (2011) Thermal expansion and lattice parameters of shaped metal deposited Ti–6Al–4V. J Alloy Compd 509:2723–2728. https://doi.org/10.1016/j.jallcom.2010.12.014

    Article  Google Scholar 

  34. Marquardt ED, Le JP, Radebaugh R (2002) Cryogenic material properties database. Cryocoolers 11, Springer, p 681–7

  35. Ziegler WT, Mullins JC, Hwa SCP (1963) Specific heat and thermal conductivity of four commercial titanium alloys from 20 to 300 K. Advances in Cryogenic Engineering, Springer, p 268–77

  36. Faverjon P, Rech J, Valiorgue F, Orset M (2015) Optimization of a drilling sequence under MQL to minimize the thermal distortion of a complex aluminum part. Prod Eng Res Devel 9:505–515. https://doi.org/10.1007/s11740-015-0614-y

    Article  Google Scholar 

  37. Shi G, Deng X, Shet C (2002) A finite element study of the effect of friction in orthogonal metal cutting. Finite Elem Anal Des 38:863–883

    Article  Google Scholar 

  38. Rech J, Arrazola PJ, Claudin C, Courbon C, Pusavec F, Kopac J (2013) Characterisation of friction and heat partition coefficients at the tool-work material interface in cutting. CIRP Ann 62:79–82. https://doi.org/10.1016/j.cirp.2013.03.099

    Article  Google Scholar 

  39. Courbon C, Pusavec F, Dumont F, Rech J, Kopac J (2013) Tribological behaviour of Ti6Al4V and Inconel718 under dry and cryogenic conditions—application to the context of machining with carbide tools. Tribol Int 66:72–82. https://doi.org/10.1016/j.triboint.2013.04.010

    Article  Google Scholar 

  40. Lequien P, Poulachon G, Outeiro JC, Rech J (2018) Hybrid experimental/modelling methodology for identifying the convective heat transfer coefficient in cryogenic assisted machining. Appl Therm Eng 128:500–507. https://doi.org/10.1016/j.applthermaleng.2017.09.054

    Article  Google Scholar 

  41. Lequien P (2017) Etude fondamentale de l’assistance cryogénique pour application au fraisage du Ti6Al4V. ENSAM, Paris

    Google Scholar 

  42. Iqbal SA, Mativenga PT, Sheikh MA (2008) An investigative study of the interface heat transfer coefficient for finite element modelling of high-speed machining. Proc Inst Mech Eng B J Eng Manuf 222:1405–1416. https://doi.org/10.1243/09544054JEM1179

    Article  Google Scholar 

  43. Liu X, Kopec M, El Fakir O, Qu H, Wang Y, Wang L et al (2020) Characterisation of the interfacial heat transfer coefficient in hot stamping of titanium alloys. Int Commun Heat Mass Transfer 113:104535. https://doi.org/10.1016/j.icheatmasstransfer.2020.104535

    Article  Google Scholar 

  44. Lu B, Wang L, Geng Z, Huang Y (2017) Determination of interfacial heat transfer coefficient for TC11 titanium alloy hot forging. Heat Mass Transfer 53:3049–3058. https://doi.org/10.1007/s00231-017-2032-5

    Article  Google Scholar 

  45. Xu M, Ling R, Zhang Z, Xie J (2017) Study on interfacial heat transfer behavior of TA15 titanium alloy and die materials. Int J Heat Mass Transf 108:1573–1578. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.078

    Article  Google Scholar 

  46. Zhu Z, Guo K, Sun J, Li J, Liu Y, Zheng Y et al (2018) Evaluation of novel tool geometries in dry drilling aluminium 2024–T351/titanium Ti6Al4V stack. J Mater Process Technol 259:270–281

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Camille Robert from LAMPA, Arts et Métiers ParisTech Angers for his kind help in assistance of using the computational clusters.

Funding

This research was fully funded by Institute Carnot ARTS.

Author information

Authors and Affiliations

Authors

Contributions

Hongguang Liu: methodology, data curation, formal analysis, validation, visualization, writing—original draft, reviewing & editing. Hélène Birembaux: Methodology, Data curation, Supervision, Writing – review & editing. Yessine Ayed: Methodology, Formal analysis, Supervision, Writing – review & editing. Frédéric Rossi: Validation, Data curation, Supervision, Writing – review & editing. Gérard Poulachon: Conceptualization, Funding acquisition, Project administration, Supervision, Writing – review & editing.

Corresponding author

Correspondence to Hongguang Liu.

Ethics declarations

Consent to publish

The authors consent that the work entitled as “A hybrid modelling approach for characterizing hole shrinkage mechanisms in drilling Ti6Al4V under dry and cryogenic conditions” for possible publication in International Journal of Advanced Manufacturing Technology. The authors certify that this manuscript is original and has not been published in whole or in part nor is it being considered for publication elsewhere.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Birembaux, H., Ayed, Y. et al. A hybrid modelling approach for characterizing hole shrinkage mechanisms in drilling Ti6Al4V under dry and cryogenic conditions. Int J Adv Manuf Technol 118, 3849–3868 (2022). https://doi.org/10.1007/s00170-021-08229-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08229-2

Keywords

Navigation