Skip to main content
Log in

Micro-machining of additively manufactured metals: a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Metal additive manufacturing (MAM) has attracted significant interest in both academia and industry to produce near-net-shape engineering components. The inherent defects in MAM, however, require suitable subtractive techniques as post-processes to control dimensional and geometric tolerances as well as surface finish. The additively manufactured metals, with different microstructures than the wrought materials that produced by conventional routes, need different approaches and parameters when being machined. This review covers recent published literature on traditional micro-machining as a post-processing operation for MAM and recommends future directions. The text presents a brief review on the main AM processes followed by a comprehensive conventional micro-milling and microdrilling, as well as applications for micro-machining. Micro-tool assessment, built-up-edge prediction and prevention, and link of macro/micro-machining are areas for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dani I, Drossel WG, Milaev N, Korn H, Hannemann C, Hohlfeld J, Wertheim R (2020) Sustainability of industrial components using additive manufacturing and foam materials. Procedia Manuf 43:10–17. https://doi.org/10.1016/j.promfg.2020.02.102

    Article  Google Scholar 

  2. Gusarov AV, Grigoriev SN, Volosova MA, Melnik YA, Laskin A, Kotoban DV, Okunkova AA (2018) On productivity of laser additive manufacturing. J Mater Process Technol 261:213–232. https://doi.org/10.1016/j.jmatprotec.2018.05.033

    Article  Google Scholar 

  3. Kum CW, Wu CH, Wan S, Kang CW (2020) Prediction and compensation of material removal for abrasive flow machining of additively manufactured metal components. J Mater Process Technol 282:89. https://doi.org/10.1016/j.jmatprotec.2020.116704

    Article  Google Scholar 

  4. Murr LE, Martinez E, Amato KN, Gaytan SM, Hernandez J, Ramirez DA, Shindo PW, Medina F, Wicker RB (2012) Fabrication of metal and alloy components by additive manufacturing: examples of 3D materials science. J Market Res 1:42–54. https://doi.org/10.1016/s2238-7854(12)70009-1

    Article  Google Scholar 

  5. Renjith SC, Park K, Okudan Kremer GE (2020) A design framework for additive manufacturing: integration of additive manufacturing capabilities in the early design process. Int J Precis Eng Manuf 21:329–345. https://doi.org/10.1007/s12541-019-00253-3

    Article  Google Scholar 

  6. Nagalingam AP, Yuvaraj HK, Santhanam V, Yeo SH (2020) Multiphase hydrodynamic flow finishing for surface integrity enhancement of additive manufactured internal channels. J Mater Process Technol 283:116692. https://doi.org/10.1016/j.jmatprotec.2020.116692

    Article  Google Scholar 

  7. Tan C, Wang D, Ma W, Chen Y, Chen S, Yang Y, Zhou K (2020) Design and additive manufacturing of novel conformal cooling molds. Mater Des 196:109147. https://doi.org/10.1016/j.matdes.2020.109147

    Article  Google Scholar 

  8. ISO/ASTM F52910 (2018) Additive manufacturing—design—requirements, guide-lines and recommendations, 1st Edition, ISO/ASTM International, West Conshohocken

  9. Peng T, Kellens K, Tang R, Chen C, Chen G (2018) Sustainability of additive manufacturing: an overview on its energy demand and environmental impact. Addit Manuf 21:694–704. https://doi.org/10.1016/j.addma.2018.04.022

    Article  Google Scholar 

  10. Bourhis FL, Kerbrat O, Dembinski L, Hascoet J-Y, Mognol P (2014) Predictive model for environmental assessment in additive manufacturing process. Procedia CIRP 15:26–31. https://doi.org/10.1016/j.procir.2014.06.031

    Article  Google Scholar 

  11. Serres N, Tidu D, Sankare S, Hlawka F (2011) Environmental comparison of MESO-CLAD® process and conventional machining implementing life cycle assessment. J Clean Prod 19:1117–1124. https://doi.org/10.1016/j.jclepro.2010.12.010

    Article  Google Scholar 

  12. Arrizubieta JI, Ukar O, Ostolaza M, Mugica A (2020) Study of the environmental implications of using metal powder in additive manufacturing and its handling. Metals 10:261. https://doi.org/10.3390/met10020261

    Article  Google Scholar 

  13. Allwood JM, Cullen JM (2012) Sustainable materials: with both eyes open, 1st edn. Bauer, Siegfried

    Google Scholar 

  14. Torres-Carrillo S, Siller HR, Vila C, López C, Rodríguez CA (2020) Environmental analysis of selective laser melting in the manufacturing of aeronautical turbine blades. J Clean Prod 246:119068. https://doi.org/10.1016/j.jclepro.2019.119068

    Article  Google Scholar 

  15. Ünal-Saewe T, Gahn L, Kittel J, Gasser A (2020) Johannes Henrich Schleifenbaum. Process development for tip repair of complex shaped turbine blades with IN718. Procedia Manuf 47:1050–1057. https://doi.org/10.1016/j.promfg.2020.04.114

    Article  Google Scholar 

  16. Huang SH, Liu P, Mokasdar A, Hou L (2013) Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol 67(5–8):1191–1203. https://doi.org/10.1007/s00170-012-4558-5

    Article  Google Scholar 

  17. Bonneau V, Yi H, Probst L, Pedersen B, Lonkeu OK (2017) The disruptive nature of 3D printing. European Commission, Brussels

  18. Yang S, Min W, Ghibaudo J, Zhao YF (2019) Understanding the sustainability potential of part consolidation design supported by additive manufacturing. J Clean Prod 232:722–738. https://doi.org/10.1016/j.jclepro.2019.05.380

    Article  Google Scholar 

  19. Liu ZY, Li C, Fang XY, Guo YB (2018) Energy consumption in additive manufacturing of metal parts. Procedia Manuf 26:834–845. https://doi.org/10.1016/j.promfg.2018.07.104

    Article  Google Scholar 

  20. Hassanin H, Elshaer A, Benhadj-Djilali R, Modica F, Fassi I (2018) Surface finish improvement of additive manufactured metal parts. 145–164. https://doi.org/10.1007/978-3-319-68801-5_7

  21. DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid A, De A, Zhang W (2018) Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci 92:112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  Google Scholar 

  22. Thompson MK, Moroni G, VaneLker T, Fadeld G, Campbell RI, Gibson I, Bernard A, Schulz J, Graf P, Ahuja B, Martina F (2016) Design for additive manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann 65:737–760. https://doi.org/10.1016/j.cirp.2016.05.004

    Article  Google Scholar 

  23. Denti L, Sola A (2019) On the effectiveness of different surface finishing techniques on A357.0 parts produced by laser-based powder bed fusion: surface roughness and fatigue strength. Metals (Basel) 9:1284. https://doi.org/10.3390/met9121284

    Article  Google Scholar 

  24. Kumar SPL (2019) Measurement and uncertainty analysis of surface roughness and material removal rate in micro turning operation and process parameters optimization. Measurement 140:538–547. https://doi.org/10.1016/j.measurement.2019.04.029

    Article  Google Scholar 

  25. Hamidi M, Gastaldi D, Francesca N, Vedani M (2018) On morphological surface features of the parts printed by selective laser melting (SLM). Addit Manuf 24:373–377. https://doi.org/10.1016/j.addma.2018.10.011

    Article  Google Scholar 

  26. Maleki E, Bagherifard S, Bandini M, Guagliano M (2020) Surface post-treatments for metal additive manufacturing: progress, challenges, and opportunities. Addit Manuf. https://doi.org/10.1016/j.addma.2020.101619

    Article  Google Scholar 

  27. Tian Y, Tomus D, Huang A, Wu X (2020) Melt pool morphology and surface roughness relationship for direct metal laser solidification of Hastelloy X. Rapid Prototyp J 26:1389–1399. https://doi.org/10.1108/RPJ-08-2019-0215

    Article  Google Scholar 

  28. Teng C, Pal D, Gong H, Zeng K, Briggs K, Patil N, Stucker B (2017) A review of defect modeling in laser material processing. Addit Manuf 14:137–147. https://doi.org/10.1016/j.addma.2016.10.009

    Article  Google Scholar 

  29. Maskery I, Aboulkhair NT, Corfield MR, Tuck C, Clare AT, Leach RK, Wildman RD, Ashcroft IA, Hague RJM (2016) Quantification and characterisation of porosity in selectively laser melted Al–Si10–Mg using X-ray computed tomography. Mater Charact 111:193–204. https://doi.org/10.1016/j.matchar.2015.12.001

    Article  Google Scholar 

  30. Jawade SA, Joshi RS, Desai SB (2020) Comparative study of mechanical properties of additively manufactured aluminum alloy. Mater Today 23:89. https://doi.org/10.1016/j.matpr.2020.02.096

    Article  Google Scholar 

  31. Azarniya A, Colera XG, Mirzaali MJ, Sovizi S, Bartolomeu F, Mk StWeglowski, Wits WW, Yap CY, Ahn J, Miranda G, Silva FS, Madaah Hosseini HR, Ramakrishna S, Zadpoor AA (2019) Additive manufacturing of Ti–6Al–4V parts through laser metal deposition (LMD): Process, microstructure, and mechanical properties. J Alloys Compd 804:163–191. https://doi.org/10.1016/j.jallcom.2019.04.255

    Article  Google Scholar 

  32. Kahlin M, Ansell H, Kerwin A, Smith B, Moverare J (2021) Variable amplitude loading of additively manufactured Ti6Al4V subjected to surface post processes. Int J Fatigue 142:105945. https://doi.org/10.1016/j.ijfatigue.2020.105945

    Article  Google Scholar 

  33. Yadroitsev I, Smurov I (2011) surface morphology in selective laser melting of metal powders. Phys Procedia 12:264–270. https://doi.org/10.1016/j.phpro.2011.03.034

    Article  Google Scholar 

  34. Zinovieva O, Zinoviev A, Ploshikhin V (2018) Three-dimensional modeling of the microstructure evolution during metal additive manufacturing. Comput Mater Sci 141:207–220. https://doi.org/10.1016/j.commatsci.2017.09.018

    Article  Google Scholar 

  35. Nagalingam AP, Yeo SH (2020) Surface finishing of additively manufactured Inconel 625 complex internal channels: a case study using a multi-jet hydrodynamic approach. Addit Manuf 36:101428. https://doi.org/10.1016/j.addma.2020.101428

    Article  Google Scholar 

  36. Salonitis K, D’Alvise L, Schoinochoritis B, Chantzis D (2016) Additive manufacturing and post-processing simulation: laser cladding followed by high speed machining. Int J Adv Manuf Technol 85(9–12):2401–2411. https://doi.org/10.1007/s00170-015-7989-y

    Article  Google Scholar 

  37. Jain VK, Jain PK, Rao PV (2012) Micro-machining. Int J Adv Manuf Technol 61(9–12):1173–1174. https://doi.org/10.1007/s00170-012-4317-7

    Article  Google Scholar 

  38. Aramcharoen A, Mativenga PT, Yang S, Cooke KE, Teer DG (2008) Evaluation and selection of hard coatings for micro milling of hardened tool steel. Int J Mach Tools Manuf 48(14):1578–1584. https://doi.org/10.1016/j.ijmachtools.2008.05.011

    Article  Google Scholar 

  39. Câmara MA, Rubio JCC, Abrão AM, Davim JP (2012) State of the art on micro-milling of materials, a review. J Mater Sci Technol 28(8):673–685. https://doi.org/10.1016/S1005-0302(12)60115-7

    Article  Google Scholar 

  40. Balázs BZ, Geier N, Takács M, Davim JP (2021) A review on micro-milling: recent advances and future trends. J Adv Manuf Technol 112(3):655–684. https://doi.org/10.1007/s00170-020-06445-w

    Article  Google Scholar 

  41. Masuzawa T (2000) State of the art of micro-machining. CIRP 49:473–488. https://doi.org/10.1016/S0007-8506(07)63451-9

    Article  Google Scholar 

  42. De Oliveira D, Gomes MC, Da Silva MB (2019) Spheroidal chip in micro-milling. Wear 426–427:1672–1682. https://doi.org/10.1016/j.wear.2019.01.090

    Article  Google Scholar 

  43. Ford S, Despeisse M (2016) Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J Clean Prod 137:1573–1587. https://doi.org/10.1016/j.jclepro.2016.04.150

    Article  Google Scholar 

  44. Chen D, Heyer S, Ibbotson S, Salonitis K, Steingrímsson JG, Thiede S (2015) Direct digital manufacturing: definition, evolution, and sustainability implications. J Clean Prod 107:615–625. https://doi.org/10.1016/j.jclepro.2015.05.009

    Article  Google Scholar 

  45. Ålgårdh J, Strondl A, Karlsson S, Farre S, Joshi S, Andersson J, Ågren J (2017) State-of-the-art for additive manufacturing of metals. Metalliska Material

  46. Hung WNP (2019) Corliss M. Micro-machining of advanced materials. In: Micro-machining. IntechOpen. https://doi.org/10.5772/intechopen.89432

  47. Ji H, Gupta MK, Song Q, Cai W, Zheng T, Zhao Y, Liu Z, Pimenov DY (2021) Microstructure and machinability evaluation in micro milling of selective laser melted Inconel 718 alloy. J Market Res 14:348–362. https://doi.org/10.1016/j.jmrt.2021.06.081

    Article  Google Scholar 

  48. Gomes MC, Silva MB, Duarte MAV (2020) Experimental study of micro-milling operation of stainless steel. J Adv Manuf Technol 111(11):3123–3139. https://doi.org/10.1007/s00170-020-06232-7

    Article  Google Scholar 

  49. Rysava Z, Bruschi S (2016) Comparison between EBM and DMLS Ti6Al4V machinability characteristics under dry micro-milling conditions. In: Materials science forum. Trans Tech Publications Ltd, pp 177–184. https://doi.org/10.4028/www.scientific.net/MSF.836-837.177

  50. Bonaiti G, Parenti P, Annoni M, Kapoor S (2017) Micro-milling machinability of DED additive titanium Ti-6Al-4V. In: 45th SME North American manufacturing research conference. Elsevier BV, pp 497–509. https://doi.org/10.1016/j.promfg.2017.07.104

  51. Hojati F, Daneshi A, Soltani B, Azarhoushang B, Biermann D (2020) Study on machinability of additively manufactured and conventional titanium alloys in micro-milling process. Precis Eng 62:1–9. https://doi.org/10.1016/j.precisioneng.2019.11.002

    Article  Google Scholar 

  52. Rysava Z, Bruschi S, Piska M, Zidek J (2018) Comparing the performance of micro-end mills when micro-milling of additive manufactured TI-6AL-4V titanium alloy. Mm Sci J 25:2543–2546. https://doi.org/10.17973/MMSJ.2018_11_201823

    Article  Google Scholar 

  53. Khaliq W, Zhang C, Jamil M, Khan AM (2020) Tool wear, surface quality, and residual stresses analysis of micro-machined additive manufactured Ti–6Al–4V under dry and MQL conditions. Tribol Int. https://doi.org/10.1016/j.triboint.2020.106408

    Article  Google Scholar 

  54. De Oliveira CF, Araujo AC, Munhoz ALJ, Kapoor SG (2020) The influence of additive manufacturing on the micro-milling machinability of Ti6Al4V: a comparison of SLM and commercial workpieces. J Manuf Process 60:299–307. https://doi.org/10.1016/j.jmapro.2020.10.006

    Article  Google Scholar 

  55. Allegri G, Colpani A, Ginestra PS, Attanasio A (2019) An experimental study on micro-milling of a medical grade Co-Cr-Mo alloy produced by selective laser melting. Materials. https://doi.org/10.3390/ma12132208

    Article  Google Scholar 

  56. De Assis CLF, Mecelis GR, Coelho RT (2020) An investigation of stainless steel 316L parts produced by powder bed fusion submitted to micro-end milling operations. J Adv Manuf Technol 109(7):1867–1880. https://doi.org/10.1007/s00170-020-05710-2

    Article  Google Scholar 

  57. Coelho RT, Azevedo R, Assis C (2018). An investigation of anisotropy on AISI 316L obtained by additive manufacturing (AM) measuring surface roughness after micro-end milling operations. In: Euspen’s 18th international conference & exhibition, Venice

  58. Kuriakose S, Parenti P, Cataldo S, Annoni MPG (2018) Micro-milling of metallic feedstock produced by extrusion additive manufacturing. In: WCMNM 2018 world congress on micro and nano manufacturing, pp125–128. https://doi.org/10.3850/978-981-11-2728-1_92

  59. Parenti P, Cataldo S, Grigis A, Covelli M, Annoni M (2019) Implementation of hybrid additive manufacturing based on extrusion of feedstock and milling. In: 47th SME North American manufacturing research conference, NAMRC 2019. Elsevier BV, pp 738–746. https://doi.org/10.1016/j.promfg.2019.06.230

  60. Parenti P, Kuriakose S, Mussi V, Strano M, Annoni MPG (2017) Green-state micro-milling of AISI316L feedstock. In: 2017 World Congress on Micro and Nano Manufacturing (WCMNM 2017), pp 1–4

  61. Le Coz G, Fischer M, Piquard R, D’Acunto A, Laheurte P, Dudzinski D (2017) Micro cutting of Ti-6Al-4V parts produced by SLM process. Procedia Cirp 58:228–232. https://doi.org/10.1016/j.procir.2017.03.326

    Article  Google Scholar 

  62. Hung NP (2020) Post-processing of Metal Additive Manufacturing Parts. American Society for Metals Handbooks: Additive Manufacturing Processes, vol. 24A. Bourell D, Frazier W, Kuhn H, Seifi M. ISBN: 978-162708-288-4

  63. Irani RA, Bauer RJ, Warkentin A (2005) A review of cutting fluid application in the grinding process. Int J Mach Tools Manuf 45:1696–1705. https://doi.org/10.1016/j.ijmachtools.2005.03.006

    Article  Google Scholar 

  64. Marinescu ID, Hitchiner M, Uhlmann E, Rowe WB, Inasaki I (2007) Handbook of machining with grinding wheels. CRC Press, New York

    Google Scholar 

  65. Klocke F (2009) Manufacturing process 2: grinding, honing, lapping. Springer, Berlin

    Book  Google Scholar 

  66. Majumdar S, Das P, Roy D, Chakraborty S (2021) Evaluation of cutting fluid application in surface grinding. Measurement 169:108464. https://doi.org/10.1016/j.measurement.2020.108464

    Article  Google Scholar 

  67. Sanchez JA, Pombo I, Alberdi R, Izquierdo B, Plaza S, Martinez-Toledano J (2010) Machining evaluation of a hybrid MQL-CO2 grinding technology. J Clean Prod 18:1840–1849. https://doi.org/10.1016/j.jclepro.2010.07.002

    Article  Google Scholar 

  68. Walker T (2013) The MQL Handbook, a guide to machining with minimum quantity lubrication. Copyright ©, Unist, Inc

  69. Din 69090. MQL Machining Technology. Deutsches Institut fur Normung; 2011.

  70. Li Q, Lerma I, Edinbarough I, Alvarado J, Hung NP (2015) Characterization of micro-mist for effective machining. In: Proc. of the ASME 2015 international mechanical engineering congress & exposition, pp 13–19

  71. Orberg E, Jones FD, Horton HL, Ryffel H (2012) Machinery’s handbook. Industrial Press, New York

    Google Scholar 

  72. Jun MBG, Joshi SS, Devor RE, Kapoor SG (2008) An experimental evaluation of an atomization-based cutting fluid application system for micro-machining. J Manuf Sci Eng 130:89. https://doi.org/10.1115/1.2738961

    Article  Google Scholar 

  73. Ucun I, Aslantas K, Bedir F (2013) An experimental investigation of the effect of coating material on tool wear in micro milling of Inconel 718 super alloy. Wear 2005(300):8–19. https://doi.org/10.1016/j.wear.2013.01.103

    Article  Google Scholar 

  74. Vasquez E, Gomar J, Ciurana J, Rodriguez CA (2015) Analyzing effects of cooling and lubrication conditions in micro-milling of Ti6Al4V. J Clean Prod 87:906–913. https://doi.org/10.1016/j.jclepro.2014.10.016

    Article  Google Scholar 

  75. Aslantas K, Ciciek A (2018) The effects of cooling-lubrication techniques on cutting performance in micro-milling of Inconel 718 superalloy. Procedia CIRP 77:77–73. https://doi.org/10.1016/j.procir.2018.08.219

    Article  Google Scholar 

  76. Dos Santos AG, Da Silva MB, Jackson MJ (2018) Tungsten carbide micro-tool wear when micro milling UNS S32205 duplex stainless steel. Wear 414–415:109–117. https://doi.org/10.1016/j.wear.2018.08.007

    Article  Google Scholar 

  77. Ziberov M, De Oliveira D, Da Silva MB, Hung WNP (2020) Wear of TiAlN and DLC coated micro-tools in micro-milling of Ti-6Al-4V alloy. J Manuf Process 56:337–349. https://doi.org/10.1016/j.jmapro.2020.04.082

    Article  Google Scholar 

  78. Kumar AS, Deb S, Paul S (2020) Tribological characteristics and micro-milling performance of nanoparticle enhanced water based cutting fluids in minimum quantity lubrication. J Manuf Process 56:766–776. https://doi.org/10.1016/j.jmapro.2020.05.032

    Article  Google Scholar 

  79. De Oliveira D, Gomes MC, Da Silva MB (2020) Influence of cutting fluid application frequency on the surface quality of micro-milled slots on Inconel 718 alloy. In: 48th SME North American manufacturing research conference, NAMRC 48, Ohio, USA, Procedia Manufacturing, vol 48, pp 553–558. https://doi.org/10.1016/j.promfg.2020.05.082

  80. Biermann D, Steiner M, Krebs E (2013) Investigation of different hard coatings for micro-milling of austenitic stainless steel. Procedia CIRP 7:246–251. https://doi.org/10.1016/j.procir.2013.05.042

    Article  Google Scholar 

  81. Biermann D, Steiner M (2012) Analysis of micro burr formation in austenitic stainless steel X5CrNi18-10. Procedia CIRP 3:97–102. https://doi.org/10.1016/j.procir.2012.07.018

    Article  Google Scholar 

  82. Tansukatanon S, Tangwarodomnukun V, Dumkum C, Kruytong P, Plaichum N, Charee W (2019) Micro-machining of stainless steel using TiAlN-coated tungsten carbide end mill. Procedia Manuf 30:419–426. https://doi.org/10.1016/j.promfg.2019.02.058

    Article  Google Scholar 

  83. Dumkum C, Jaritngam P, Tangwarodomnukun V (2019) Surface characteristics and machining performance of TiAlN-, TiN-and AlCrN-coated tungsten carbide drills. Proc Inst Mech Eng B 233:1075–1086. https://doi.org/10.1177/0954405418765307

    Article  Google Scholar 

  84. Aramcharoen A, Mativenga PT, Yang S. The effect of AlCrTiN coatings on product quality in micro-milling of 45 HRC hardened H13 die steel. In: Proceedings of the 35th international MATADOR conference 2007;203–206. https://doi.org/10.1007/978-1-84628-988-0_45

  85. Jindal PC, Santhanam AT, Schleinkofer U, Shuster AF (1999) Performance of PVD TiN, TiCN, and TiAlN coated cemented carbide tools in turning. Int J Refract Metal Hard Mater 17:163–170. https://doi.org/10.1016/S0263-4368(99)00008-6

    Article  Google Scholar 

  86. Schueler GM, Engmann J, Marx T, Haberland R, Aurich JC (2010) Burr formation and surface characteristics in micro-end milling of titanium alloys. In: Burrs-analysis, control and removal. Springer, Berlin, Heidelberg, pp129–138. https://doi.org/10.1007/978-3-642-00568-8_14

  87. Mittal RK, Singh RK, Kulkarni SS, Kumar P, Barshilia HC (2018) Characterization of anti-abrasion and anti-friction coatings on micro-machining response in high speed micro-milling of Ti-6Al-4V. J Manuf Process 34:303–312. https://doi.org/10.1016/j.jmapro.2018.06.021

    Article  Google Scholar 

  88. Wu T, Cheng K (2013) Micro milling performance assessment of diamond-like carbon coatings on a micro-end mill. Proc Inst Mech Eng J 227:1038–1046. https://doi.org/10.1177/1350650112474123

    Article  Google Scholar 

  89. Jawaid A, Koksal S, Sharif S (2001) Cutting performance and wear characteristics of PVD coated and uncoated carbide tools in face milling Inconel 718 aerospace alloy. J Mater Process Technol 116:2–9. https://doi.org/10.1016/S0924-0136(01)00850-0

    Article  Google Scholar 

  90. Li L, He N, Wang M, Wang ZG (2002) High speed cutting of Inconel 718 with coated carbide and ceramic inserts. J Mater Process Technol 129:127–130. https://doi.org/10.1016/S0924-0136(02)00590-3

    Article  Google Scholar 

  91. Gatto A, Iuliano L (1997) Advanced coated ceramic tools for machining superalloys. Int J Mach Tools Manuf 37:591–605. https://doi.org/10.1016/S0890-6955(96)00075-2

    Article  Google Scholar 

  92. Li G, Sui X, Jiang C, Gao Y, Wang K, Wang Q, Liu D (2016) Low adhesion effect of TaO functional composite coating on the titanium cutting performance of coated cemented carbide insert. Mater Des 110:105–111. https://doi.org/10.1016/j.matdes.2016.07.125

    Article  Google Scholar 

  93. Sui X, Li G, Jiang C, Gao Y, Wang K, Wang Q (2017) Improved surface quality of layered architecture TiAlTaN/Ta coatings for high precision micro-machining. Surf Coat Technol 320:298–303. https://doi.org/10.1016/j.surfcoat.2016.12.083

    Article  Google Scholar 

  94. Oliaei SNB, Karpat Y, Davim JP, Perveen A (2018) Micro tool design and fabrication: a review. J Manuf Process 36:496–519. https://doi.org/10.1016/j.jmapro.2018.10.038

    Article  Google Scholar 

  95. Steffens HD, Mack M, Moehwald K, Reichel K (1991) Reduction of droplet emission in random arc technology. Surf Coat Technol 46:65–74. https://doi.org/10.1016/0257-8972(91)90150-U

    Article  Google Scholar 

  96. Krebs E, Wolf M, Biermann D, Tillmann W, Stangier D (2018) High-quality cutting edge preparation of micro-milling tools using wet abrasive jet machining process. Prod Eng Res Devel 12:45–51. https://doi.org/10.1007/s11740-017-0787-7

    Article  Google Scholar 

  97. Yang SC, Cooke K, Aramcharoen A, Mativenga P, Teer D (2011) Micro-tool coatings using magnetron sputtering. Mater Technol 26:20–24. https://doi.org/10.1179/175355511X12941605982145

    Article  Google Scholar 

  98. Torres CD, Heaney PJ, Sumant AV, Hamilton MA, Carpick RW, Pfefferkorn FE (2009) Analyzing the performance of diamond-coated micro end mills. Int J Mach Tools Manuf 49:599–612. https://doi.org/10.1016/j.ijmachtools.2009.02.001

    Article  Google Scholar 

  99. Vafadar A, Hayward K, Tolouei-Rad M (2017) Drilling reconfigurable machine tool selection and process parameters optimization as a function of product demand. J Manuf Syst 45:58–69. https://doi.org/10.1016/j.jmsy.2017.08.004

    Article  Google Scholar 

  100. Rajemi MF, Mativenga PT, Aramcharoen A (2010) Sustainable machining: selection of optimum turning conditions based on minimum energy considerations. J Clean Prod 18:1059–1065. https://doi.org/10.1016/j.jclepro.2010.01.025

    Article  Google Scholar 

  101. Newman ST, Nassehi A, Imani-Asrai R, Dhokia V (2012) Energy efficient process planning for CNC machining. CIRP J Manuf Sci Technol 5:127–136. https://doi.org/10.1016/j.cirpj.2012.03.007

    Article  Google Scholar 

  102. Zhou G, Lu Q, Xiao Z, Zhou C, Tian C (2019) Cutting parameter optimization for machining operations considering carbon emissions. J Clean Prod 208:937–950. https://doi.org/10.1016/j.jclepro.2018.10.191

    Article  Google Scholar 

  103. Liu E, An W, Xu Z, Zhang H (2020) Experimental study of cutting-parameter and tool life reliability optimization in inconel 625 machining based on wear map approach. J Manuf Process 2020(53):34–42. https://doi.org/10.1016/j.jmapro.2020.02.006

    Article  Google Scholar 

  104. Thepsonthi T, Hamdi M, Mitsui K (2009) Investigation into minimal-cutting-fluid application in high-speed milling of hardened steel using carbide mills. Int J Mach Tools Manuf 49:156–162. https://doi.org/10.1016/j.ijmachtools.2008.09.007

    Article  Google Scholar 

  105. Debnath S, Reddy MM, Yi QS (2014) Environmental friendly cutting fluids and cooling techniques in machining: a review. J Clean Prod 83:33–47. https://doi.org/10.1016/j.jclepro.2014.07.071

    Article  Google Scholar 

  106. Jiang Z, Zhou F, Zhang H, Wang Y, Sutherland JW (2015) Optimization of machining parameters considering minimum cutting fluid consumption. J Clean Prod 108:183–191. https://doi.org/10.1016/j.jclepro.2015.06.007

    Article  Google Scholar 

  107. De Oliveira D, Gomes MC, De Oliveira GV, Dos Santos AG, Da Silva MB (2021) Experimental and computational contribution to CHIP geometry Evaluation when micro-milling Inconel 718. Wear. https://doi.org/10.1016/j.wear.2021.203658

    Article  Google Scholar 

  108. Kumar SPL (2018) Experimental investigations and empirical modeling for optimization of surface roughness and machining time parameters in micro end milling using Genetic Algorithm. Measurement 124:386–394. https://doi.org/10.1016/j.measurement.2018.04.056

    Article  Google Scholar 

  109. Abeni A, Metelli A, Allegri G, Attanasio A (2020) Process parameters optimization in micro-milling of watch mechanism features. Procedia Manuf 47:472–478. https://doi.org/10.1016/j.promfg.2020.04.340

    Article  Google Scholar 

  110. Venkata RK (2019) A study on performance characteristics and multi response optimization of process parameters to maximize performance of micro milling for Ti-6Al-4V. J Alloys Compd 781:773–782. https://doi.org/10.1016/j.jallcom.2018.12.105

    Article  Google Scholar 

  111. De Oliveira FB, Rodrigues AR, Coelho RT, de Souza AF (2015) Size effect and minimum chip thickness in micro-milling. Int J Mach Tools Manuf 89:39–54. https://doi.org/10.1016/j.ijmachtools.2014.11.001

    Article  Google Scholar 

  112. Wang F, Cheng X, Liu Y, Yang X, Fanjie M (2017) Micro-milling simulation for the hard-to-cut material. Procedia Eng 174:693–699. https://doi.org/10.1016/j.proeng.2017.01.209

    Article  Google Scholar 

  113. Aslantas K, Hopa HE, Percin M, Ucun I, Çicek A (2016) Cutting performance of nano-crystalline diamond (NCD) coating in micro-milling of Ti6Al4V alloy. Precis Eng 45:55–66. https://doi.org/10.1016/j.precisioneng.2016.01.009

    Article  Google Scholar 

  114. Zhang P, Liu Z, Du J, Su G, Zhang J, Xu C (2020) On machinability and surface integrity in subsequent machining of additively-manufactured thick coatings: a review. J Manuf Process 53:123–143. https://doi.org/10.1016/j.jmapro.2020.02.013

    Article  Google Scholar 

  115. Davoudinejad A, Li D, Zhang Y, Tosello G (2019) Optimization of corner micro end milling by finite element modelling for machining thin features. Procedia CIRP 82:362–367. https://doi.org/10.1016/j.procir.2019.04.158

    Article  Google Scholar 

  116. Suneesh E, Sivapragash M (2021) Multi-response optimisation of micro-milling performance while machining a novel magnesium alloy and its alumina composites. Measurement 68:108345. https://doi.org/10.1016/j.measurement.2020.108345

    Article  Google Scholar 

  117. Ribeiro KS, Mariani FE, Coelho RT (2020) A study of different deposition strategies in direct energy deposition (DED) processes. Procedia Manuf 48:663–670. https://doi.org/10.1016/j.promfg.2020.05.158

    Article  Google Scholar 

  118. Marchese G, Garmendia Colera X, Calignano F, Lorusso M, Biamino S, Minetola P, Manfredi D (2017) Characterization and comparison of Inconel 625 processed by selective laser melting and laser metal deposition. Adv Eng Mater 19(3):1600635. https://doi.org/10.1002/adem.201600635

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Federal Agency for the Support and Improvement of Higher Education (CAPES), National Council for Scientific and Technological Development (CNPq), Minas Gerais State Research Foundation (FAPEMIG), and São Paulo Research Foundation (FAPESP).

Funding

This work was supported by the São Paulo Research Foundation, award numbers: 2016/11309-0; 2019/00343-1; 2019/08926-6; 2020/03110-5, National Council for Scientific and Technological Development, award numbers: 308860/2017-9; 142055/2019-0 and Federal Agency for the Support and Improvement of Higher Education, Award Numbers: 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milla Caroline Gomes.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, M.C., dos Santos, A.G., de Oliveira, D. et al. Micro-machining of additively manufactured metals: a review. Int J Adv Manuf Technol 118, 2059–2078 (2022). https://doi.org/10.1007/s00170-021-08112-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08112-0

Keywords

Navigation