Skip to main content
Log in

Effect of annealing on formability and mechanical properties of AA1050/Mg-AZ31B bilayer sheets fabricated by explosive welding method

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this article, for the first time, the effect of annealing was investigated experimentally on the formability and mechanical properties of AA1050/Mg-AZ31B bilayer sheets fabricated by the explosive welding method. To eliminate the work hardening due to the explosive welding and improve the formability of the bilayer sheet, annealing was carried out at 250°C and 350°C for 2 h. The Nakazima test explored the samples’ formability to determine the corresponding forming limit diagram. The mechanical properties and microstructural features were assessed by tensile test, micro hardness, optical microscope, and scanning electron microscopy. Annealing at 250°C showed no significant growth of the layer in the interface; but elevating the annealing temperature to 350°C intensified the interface layer growth and increased its thickness from 7 for the initial sheet to 27μm which can be assigned to the activation of the diffusion mechanism. The influence of the interface thickness increase on the mechanical properties decreased the strength of the bilayer sheet. FLD0 showed a 52% and 22% increase upon annealing at 250°C and 350°C, respectively. The decrease in the formability after 250°C can be due to the formation of brittle intermetallic compounds in the interface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Tekkaya AE, Ben KN, Grzancic G, Hölker R (2014) Forming of lightweight metal components: need for new technologies. Procedia Eng 81:28–37. https://doi.org/10.1016/J.PROENG.2014.09.125

    Article  Google Scholar 

  2. Mróz S, Mola R, Szota P, Stefanik A (2020) Microstructure and properties of 1050A/AZ31 bimetallic bars produced by explosive cladding and subsequent groove rolling process. Arch Civ Mech Eng 20:77. https://doi.org/10.1007/s43452-020-00084-4

    Article  Google Scholar 

  3. Nie H, Liang W, Zheng L, Ren X, Chi C, Fan H (2016) The microstructure, texture and mechanical properties of the rolled Al/Mg/Al clad sheets. J Mater Eng Perform 25:4695–4705. https://doi.org/10.1007/s11665-016-2327-6

    Article  Google Scholar 

  4. Sahul M, Sahul M, Lokaj J, Čaplovič Ľ, Nesvadba P, Odokienová B (2019) The effect of annealing on the properties of AW5754 aluminum alloy-AZ31B magnesium alloy explosively welded bimetals. J Mater Eng Perform 28:6192–6208. https://doi.org/10.1007/s11665-019-04361-z

    Article  Google Scholar 

  5. Abbasi M, Sajjadi SA (2018) Mechanical properties and interface evaluation of Al/AZ31 multilayer composites produced by ARB at different rolling temperatures. J Mater Eng Perform 27:3508–3520. https://doi.org/10.1007/s11665-018-3423-6

    Article  Google Scholar 

  6. Tang J, Chen L, Zhao G, Zhang C, Yu J (2019) Study on Al/Mg/Al sheet fabricated by combination of porthole die co-extrusion and subsequent hot rolling. J Alloys Compd 784:784–738. https://doi.org/10.1016/j.jallcom.2019.01.005

    Article  Google Scholar 

  7. Wu Y, Xin Y-C, Xia X-S, Feng B, Wang YB, Zhao ZD (2019) Influence of annealing treatments on microstructure and mechanical properties of an extruded Mg AZ31/Al 7050 laminate. Acta Metall Sin English Lett 32:227–234. https://doi.org/10.1007/s40195-018-0802-9

    Article  Google Scholar 

  8. Morishige T, Kawaguchi A, Tsujikawa M, Hino M, Hirata T, Higashi K (2008) Dissimilar welding of Al and Mg alloys by FSW. Mater Trans 801150291:1129–1131

    Article  Google Scholar 

  9. Yan Y, Zhang D, Qiu C, Zhang W (2010) Dissimilar friction stir welding between 5052 aluminum alloy and AZ31 magnesium alloy. Trans Nonferrous Met Soc China 20:s619–s623. https://doi.org/10.1016/S1003-6326(10)60550-X

    Article  Google Scholar 

  10. Yan YB, Zhang ZW, Shen W, Wang JH, Zhang LK, Chin BA (2010) Microstructure and properties of magnesium AZ31B–aluminum 7075 explosively welded composite plate. Mater Sci Eng A 527:2241–2245. https://doi.org/10.1016/J.MSEA.2009.12.007

    Article  Google Scholar 

  11. Shi C, Yang X, Ge Y, You J, Hou HB (2017) Lower limit law of welding windows for explosive welding of dissimilar metals. J Iron Steel Res Int 24:852–857. https://doi.org/10.1016/S1006-706X(17)30126-7

    Article  Google Scholar 

  12. Han JH, Ahn JP, Shin MC (2003) Effect of interlayer thickness on shear deformation behavior of AA5083 aluminum alloy/SS41 steel plates manufactured by explosive welding. J Mater Sci 38:13–18. https://doi.org/10.1023/A:1021197328946

    Article  Google Scholar 

  13. Macwan A, Jiang XQ, Li C, Chen DL (2013) Effect of annealing on interface microstructures and tensile properties of rolled Al/Mg/Al tri-layer clad sheets. Mater Sci Eng A 587:344–351. https://doi.org/10.1016/j.msea.2013.09.002

    Article  Google Scholar 

  14. Zhu C, Sun L, Gao W, Li G, Cui J (2019) The effect of temperature on microstructure and mechanical properties of Al/Mg lap joints manufactured by magnetic pulse welding. J Mater Res Technol 8:3270–3280. https://doi.org/10.1016/j.jmrt.2019.05.017

    Article  Google Scholar 

  15. Yan YB, Zhang ZW, Shen W, Wang JH, Zhang LK, Chin BA (2010) Microstructure and properties of magnesium AZ31B-aluminum 7075 explosively welded composite plate. Mater Sci Eng A 527:2241–2245. https://doi.org/10.1016/j.msea.2009.12.007

    Article  Google Scholar 

  16. Zhang N, Wang W, Cao X, Wu J (2015) The effect of annealing on the interface microstructure and mechanical characteristics of AZ31B/AA6061 composite plates fabricated by explosive welding. Mater Des 65:1100–1109. https://doi.org/10.1016/J.MATDES.2014.08.025

    Article  Google Scholar 

  17. Sedighi M, Honarpisheh M (2012) Experimental study of through-depth residual stress in explosive welded Al–Cu–Al multilayer. Mater Des 37:577–581. https://doi.org/10.1016/J.MATDES.2011.10.022

    Article  Google Scholar 

  18. Nie H, Liang W, Chen H, Wang F, Li T, Chi C, Li X (2019) A coupled EBSD/TEM study on the interfacial structure of Al/Mg/Al laminates. J Alloys Compd 781:696–701. https://doi.org/10.1016/j.jallcom.2018.11.366

  19. Bina MH, Dehghani F, Salimi M (2013) Effect of heat treatment on bonding interface in explosive welded copper/stainless steel. Mater Des 45:504–509. https://doi.org/10.1016/J.MATDES.2012.09.037

    Article  Google Scholar 

  20. Akbari Mousavi SAA, Sartangi PF (2008) Effect of post-weld heat treatment on the interface microstructure of explosively welded titanium–stainless steel composite. Mater Sci Eng A 494:329–336. https://doi.org/10.1016/J.MSEA.2008.04.032

    Article  Google Scholar 

  21. Akbari Mousavi SAA, Farhadi Sartangi P (2009) Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel. Mater Des 30:459–468. https://doi.org/10.1016/J.MATDES.2008.06.016

    Article  Google Scholar 

  22. Rouzbeh A, Sedighi M, Hashemi R (2020) Comparison between explosive welding and roll-bonding processes of AA1050/Mg AZ31B bilayer composite sheets considering microstructure and mechanical properties. J Mater Eng Perform 29:6322–6332. https://doi.org/10.1007/s11665-020-05126-9

    Article  Google Scholar 

  23. Wang P, Chen Z, Hu C, Li B, Mo T, Liu Q (2020) Effects of annealing on the interfacial structures and mechanical properties of hot roll bonded Al/Mg clad sheets. Mater Sci Eng A 792:139673. https://doi.org/10.1016/j.msea.2020.139673

    Article  Google Scholar 

  24. Chen Z, Wang D, Cao X, Yang W, Wang W (2018) Influence of multi-pass rolling and subsequent annealing on the interface microstructure and mechanical properties of the explosive welding Mg/Al composite plates. Mater Sci Eng A 723:97–108. https://doi.org/10.1016/j.msea.2018.03.042

    Article  Google Scholar 

  25. Gladkovsky SV, Kuteneva SV, Sergeev SN (2019) Microstructure and mechanical properties of sandwich copper/steel composites produced by explosive welding. Mater Charact 154:294–303. https://doi.org/10.1016/j.matchar.2019.06.008

    Article  Google Scholar 

  26. Shiran MKG, Khalaj G, Pouraliakbar H, Jandaghi MR, Dehnavi AS, Bakhtiari H (2018) Multilayer Cu/Al/Cu explosive welded joints: characterizing heat treatment effect on the interface microstructure and mechanical properties. J Manuf Process 35:657–663. https://doi.org/10.1016/j.jmapro.2018.09.014

    Article  Google Scholar 

  27. Wang P, Huang H, Liu J, Liu Q, Chen Z (2020) Microstructure and mechanical properties of Ti6Al4V/AA6061/AZ31 laminated metal composites (LMCs) fabricated by hot roll bonding. J Alloys Compd 861:157943. https://doi.org/10.1016/j.jallcom.2020.157943

    Article  Google Scholar 

  28. Bataev IA, Tanaka S, Zhou Q, Lazurenko DV, Junior AMJ, Bataev AA, Hokamoto K, Mori A, Chen P (2019) Towards better understanding of explosive welding by combination of numerical simulation and experimental study. Mater Des 169:107649. https://doi.org/10.1016/j.matdes.2019.107649

    Article  Google Scholar 

  29. Lysak VI, Kuzmin SV (2015) Energy balance during explosive welding. J Mater Process Technol 222:356–364. https://doi.org/10.1016/j.jmatprotec.2015.03.024

    Article  Google Scholar 

  30. Kreye H (1977) Melting phenomena in solid state welding processes. Weld J 56:154–158

    Google Scholar 

  31. Botros KK, Groves TK (1980) Characteristics of the wavy interface and the mechanism of its formation in high-velocity impact welding. J Appl Phys 51:3715–3721. https://doi.org/10.1063/1.328157

    Article  Google Scholar 

  32. Acarer M, Demir B (2008) An investigation of mechanical and metallurgical properties of explosive welded aluminum–dual phase steel. Mater Lett 62:4158–4160. https://doi.org/10.1016/J.MATLET.2008.05.060

    Article  Google Scholar 

  33. Xin Y, Hong R, Feng B, Yu H, Wu Y, Liu Q (2015) Fabrication of Mg/AL multilayer plates using an accumulative extrusion bonding process. Mater Sci Eng A 640:210–216. https://doi.org/10.1016/J.MSEA.2015.06.008

    Article  Google Scholar 

  34. Nie H, Hao X, Chen H, Kang X, Wang T, Mi Y, Liang W (2019) Effect of twins and dynamic recrystallization on the microstructures and mechanical properties of Ti/Al/Mg laminates. Mater Des 181:107948. https://doi.org/10.1016/j.matdes.2019.107948

    Article  Google Scholar 

  35. Cui XL, Lin P, Ma YY, Yan CK, Li LC, Chi CZ, Liu G (2019) Anisotropic deformation behavior and forming limit of hot-rolled Al/Mg/Al three-layered composite sheets. JOM 71:1696–1704. https://doi.org/10.1007/s11837-018-3303-4

    Article  Google Scholar 

  36. Jalali Aghchai A, Shakeri M, Mollaei Dariani B (2013) Influences of material properties of components on formability of two-layer metallic sheets. Int J Adv Manuf Technol 66:809–823. https://doi.org/10.1007/s00170-012-4368-9

    Article  Google Scholar 

  37. SID.ir | A novel methodology to determination of forming limit curve in two-layer metallic sheets based on numerical models. https://www.sid.ir/En/Seminar/ViewPaper.aspx?ID=43503. Accessed 27 Aug 2019

Download references

Code availability

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Hashemi.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests. Also, the authors would like to express their gratitude to Iran National Science Foundation (INSF) for supporting this research under Grant Number 97011518.

Additional declarations for articles in life science journals that report the results of studies involving humans and/or animals

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atifeh, S.M., Rouzbeh, A., Hashemi, R. et al. Effect of annealing on formability and mechanical properties of AA1050/Mg-AZ31B bilayer sheets fabricated by explosive welding method. Int J Adv Manuf Technol 118, 775–784 (2022). https://doi.org/10.1007/s00170-021-07999-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07999-z

Keywords

Navigation