Skip to main content
Log in

Development of a cyclic liquid nitrogen injection system and its application to minimum quantity lubrication milling of the Ti-6Al-4V alloy

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The Ti-6Al-4V alloy represents a large portion of the material used in medical and aerospace applications due to its excellent properties. Its machining requires unique conditions, and new machining proposals are presented every day. This work describes a condition of sustainable manufacturing, minimizing the waste of cutting fluid by a cycle lubrication approach. The system developed has an electronic circuit for controlling the flow of liquid nitrogen under pressure applied to a commercial valve. A 23 factorial planning design following the recommendations of the cutting insert manufacturer was carried out; the machining tests were performed under the conditions stipulated. Roughness studies were carried out for different cooling strategies as well as the insert flank wear. The cycle system showed that liquid nitrogen is saved and there are lower Sa and Sz roughness values compared with machining without lubrication and classical nitrogen injection. Simulations using the computational fluid dynamics approach were implemented. The behavior of a drop of liquid nitrogen under the action of gravity and its behavior in the bulkhead were simulated. The specified tool height when machining allows the adequate lubrication of the tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Availability of data and materials

No additional data available.

Abbreviations

a p :

Depth of cut (DOC) [mm]

f :

Feed rate [mm/rev]

K :

Kelvin [K]

S a :

Arithmetic average height of the surface [μm]

S ku :

Kurtosis of height distribution [dimensionless]

S sk :

Skewness of height distribution [dimensionless]

S z :

Maximum height [μm]

V b :

Flank wear [mm]

v c :

Cutting speed [m/min]

References

  1. Rinaldi S, Rotella G, Del Prete A (2021) A physically based constitutive model of microstructural evolution of Ti6Al4V hard machining under different lubri-cooling conditions. Int J Adv Manuf Technol 112:1641–1659. https://doi.org/10.1007/s00170-020-06540-y

    Article  Google Scholar 

  2. Albertelli P, Monno M (2021) Energy assessment of different cooling technologies in Ti-6Al-4V milling. Int J Adv Manuf Technol 112:3279–3306. https://doi.org/10.1007/s00170-020-06575-1

    Article  Google Scholar 

  3. Ayed Y, Germain G, Melsio AP, Kowalewski P, Locufier D (2017) Impact of supply conditions of liquid nitrogen on tool wear and surface integrity when machining the Ti-6Al-4V titanium alloy. Int J Adv Manuf Technol 93:1199–1206. https://doi.org/10.1007/s00170-017-0604-7

    Article  Google Scholar 

  4. Lequien P, Poulachon G, Outeiro JC, Rech J (2018) Hybrid experimental/modelling methodology for identifying the convective heat transfer coefficient in cryogenic assisted machining. Appl Therm Eng 128(January):500–507. https://doi.org/10.1016/j.applthermaleng.2017.09.054

    Article  Google Scholar 

  5. Telles F, Amorim HJ, Souza AJ (2021) Comparative assessment of lubri-cooling conditions when turning CP-Ti Grade 4 based on surface roughness. Int J Adv Manuf Technol 113:365–378. https://doi.org/10.1007/s00170-021-06672-9

    Article  Google Scholar 

  6. Lequien P, Poulachon G, Outeiro JC (2018) Thermomechanical analysis induced by interrupted cutting of Ti6Al4V under several cooling strategies. CIRP Ann 67:91–94. https://doi.org/10.1016/j.cirp.2018.03.018

    Article  Google Scholar 

  7. MatWeb – material property data. www.matweb.com. Accessed 11 May 2021

  8. Monicault JM et al., Journées de l’Association Titane – 11&12 mai 2005 – CCI Nantes.

  9. Olewski T, Vechot L, Mannan MS (2013) Study of the vaporization rate of liquid nitrogen by small- and medium-scale experiments. Chem Eng Trans 31:133–138. https://doi.org/10.3303/CET1331023

    Article  Google Scholar 

  10. Muhammad J et al (2019) Effects of hybrid Al 2 O 3-CNT nanofluids and cryogenic cooling on machining of Ti–6Al–4V. Int J Adv Manuf Technol 102(9-12):3895–3909. https://doi.org/10.1007/s00170-019-03485-9

    Article  Google Scholar 

  11. Wang Y, Liu J, Liu K, Liu Z, Wang S, Dai M (2020) Modeling of temperature distribution in turning of Ti-6Al-4V with liquid nitrogen cooling. Int J Adv Manuf Technol 107:451–462. https://doi.org/10.1007/s00170-020-05093-4

    Article  Google Scholar 

  12. Lim CL, Adam NM, Ahmad KA (2018) Cryogenic pipe flow simulation for liquid nitrogen with vacuum insulated pipe (VIP) and Polyurethane (PU) foam insulation under steady-state conditions. Therm Sci Eng Prog 7:302–310. https://doi.org/10.1016/j.tsep.2018.07.009

    Article  Google Scholar 

  13. Ahmad A, Al-Dadah R, Mahmoud S (2017) CFD modelling of a novel liquid nitrogen/air engine and cryogenic heat exchanger for small scale applications. Energy Procedia 142:3654–3660. https://doi.org/10.1016/j.egypro.2017.12.258

    Article  Google Scholar 

  14. Cai C, Gao F, Huang Z, Yang Y (2018) Numerical simulation on the flow field characteristics and impact capability of liquid nitrogen jet. Energy Explor Exploit 36:989–1005. https://doi.org/10.1177/0144598717743994

    Article  Google Scholar 

  15. Cai C, Ren K, Su S, du M, Wang Z (2019) Numerical analysis on the transient cavity flow field during liquid nitrogen jet fracturing. Therm Sci 23:1387–1392. https://doi.org/10.2298/TSCI180520137C

    Article  Google Scholar 

  16. Zhao W, Ren F, Iqbal A, Gong L, He N, Xu Q (2020) Effect of liquid nitrogen cooling on surface integrity in cryogenic milling of Ti-6Al-4 V titanium alloy. Int J Adv Manuf Technol 106:1497–1508. https://doi.org/10.1007/s00170-019-04721-y

    Article  Google Scholar 

  17. Wang F, Wang Y (2021) Cleaner milling on Ti-6Al-4V alloy cooled by liquid nitrogen: external spray and inner injection. Int J Adv Manuf Technol 112:1193–1206. https://doi.org/10.1007/s00170-020-06440-1

    Article  Google Scholar 

  18. Trabelsi S, Morel A, Germain G, Bouaziz Z (2017) Tool wear and cutting forces under cryogenic machining of titanium alloy (Ti17). Int J Adv Manuf Technol 91:1493–1505. https://doi.org/10.1007/s00170-016-9841-4

    Article  Google Scholar 

  19. Song KH, Lim DW, Park JY, Ha SJ, Yoon GS (2020) Investigation on influence of hybrid nozzle of CryoMQL on tool wear, cutting force, and cutting temperature in milling of titanium alloys. Int J Adv Manuf Technol 110:2093–2103. https://doi.org/10.1007/s00170-020-05646-7

    Article  Google Scholar 

  20. Aramcharoen A (2016) Influence of cryogenic cooling on tool wear and chip formation in turning of titanium alloy. Proc CIRP 46:83–86. https://doi.org/10.1016/j.procir.2016.03.184

    Article  Google Scholar 

  21. Musfirah AH, Ghani JA, Haron CHC, Kasim MS (2015) effect of cutting parameters on cutting zone in cryogenic high speed milling of INCONEL 718 alloy. J Teknol 77:1–7. https://doi.org/10.11113/jt.v77.6877

    Article  Google Scholar 

  22. Dhar NR, Kamruzzaman M, Khan MMA, Chattopadhyay AB (2006) Effects of cryogenic cooling by liquid nitrogen jets on tool wear, surface finish and dimensional deviation in turning different steels. IJMMM 1:115–131. https://doi.org/10.1504/IJMMM.2006.010662

    Article  Google Scholar 

  23. Jawahir IS, Dillon OW, Rouch KE, et al (2006) Total life-cycle considerations in product design for sustainability: a framework for comprehensive evaluation. In: Proc. 10th Int. Research/Expert Conference “Trends in the Development of Machinery and Associated Technology” TMT 2006, Barcelona-Lloret de Mar, Spain, 11-15 Sept. 2006. pp 1–10

  24. Hong SY, Ding Y (2001) Cooling approaches and cutting temperatures in cryogenic machining of Ti-6Al-4V. Int J Mach Tools Manuf 41:1417–1437. https://doi.org/10.1016/S0890-6955(01)00026-8

    Article  Google Scholar 

  25. Shokrani A, Dhokia V, Newman ST (2012) Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. Int J Mach Tools Manuf 57:83–101. https://doi.org/10.1016/j.ijmachtools.2012.02.002

    Article  Google Scholar 

  26. Lawal SA, Choudhury IA, Nukman Y (2013) A critical assessment of lubrication techniques in machining processes: a case for minimum quantity lubrication using vegetable oil-based lubricant. J Clean Prod 41:210–221. https://doi.org/10.1016/j.jclepro.2012.10.016

    Article  Google Scholar 

  27. Yu D, Pimenov MM, Gupta MK, Machado AR, Tomaz ÍV, Sarikaya M, Wojciechowski S, Mikolajczyk T, Kapłonek W (2021) Improvement of machinability of Ti and its alloys using cooling-lubrication techniques: a review and future prospect. J Mater Res Technol 11:719–753. https://doi.org/10.1016/j.jmrt.2021.01.031

    Article  Google Scholar 

  28. Deshpande S, Deshpande Y (2019) A review on cooling systems used in machining processes. Mater Today Proc 18:5019–5031. https://doi.org/10.1016/j.matpr.2019.07.496

    Article  Google Scholar 

  29. Shokrani A, Newman ST (2019) A new cutting tool design for cryogenic machining of Ti-6Al-4V titanium alloy. Materials (Basel) 12:477. https://doi.org/10.3390/ma12030477

    Article  Google Scholar 

  30. Ahmad-Yazid A, Taha Z, Almanar IP (2010) A review of cryogenic cooling in high speed machining (HSM) of mold and die steels. Sci Res Essays 5(5):412–427. https://academicjournals.org/journal/SRE/article-full-text-pdf/DCB973D19123. Accessed 11 May 2021

  31. Tahri C, Lequien P, Outeiro JC, Poulachon G (2017) CFD simulation and optimize of LN2 flow inside channels used for cryogenic machining: application to milling of titanium alloy Ti-6Al-4V. 16th CIRP Conference on Modelling of Machining Operations (16th CIRP CMMO). Proc CIRP 58:584–589. https://doi.org/10.1016/j.procir.2017.03.230

    Article  Google Scholar 

  32. Wei L, Zhu G, Qian J, Fei Y, Jin Z (2015) Numerical simulation of flow - induced noise in high pressure reducing valve. PLoS One 10(6):e0129050. https://doi.org/10.1371/journal.pone.0129050

    Article  Google Scholar 

  33. Bouazaoui K, Agounoun R, Kadiri I, Sbai K (2020) CFD Simulations and experimental investigation of nucleate pool boiling of liquid nitrogen. IOP Conf Ser Mater Sci Eng 783:012011. https://doi.org/10.1088/1757-899X/783/1/012011

    Article  Google Scholar 

  34. Xiaobin Z, Wei X, Jianye C, Yuchen W, Tang K (2015) CFD simulations and experimental verification on nucleate pool boiling of liquid nitrogen. Phys Procedia 67:569–575. https://doi.org/10.1016/j.phpro.2015.06.077

    Article  Google Scholar 

  35. Pillaia KM, Deepak J, Reby Royb KE (2017) CFD investigations on the liquid nitrogen chill down of straight transfer lines and ITS comparison with helically coiled transfer lines. Int J Eng Adv Technol (IJEAT) 6(5):2249–8958 ISSN: 2249-8958

    Google Scholar 

  36. Oosthuizen T, Nunco K, Conradie P, Dimitrov D (2016) the effect of cutting parameters on surface integrity in milling TI6Al4V. South Afr J Ind Eng 27:115–123. https://doi.org/10.7166/27-4-1199

    Article  Google Scholar 

  37. Polishetty A, Goldberg M, Littlefair G, Puttaraju M, Patil P, Kalra A (2014) A preliminary assessment of machinability of titanium alloy Ti 6Al 4V during thin wall machining using trochoidal milling. Proc Eng 97:357–364. https://doi.org/10.1016/j.proeng.2014.12.259

    Article  Google Scholar 

  38. Dong WP, Sullivan PJ, Stout KJ (1994) Comprehensive study of parameters for characterising three- dimensional surface topography: III: parameters for characterising amplitude and some functional properties. Wear 178:29–43. https://doi.org/10.1016/0043-1648(94)90127-9

    Article  Google Scholar 

  39. Rodrigues AR, Manarelli FH, Queiroz MCGP, et al (2013) Rugosidade e microestrutura da peça no fresamento do aço VP100 para moldes. In: Annals of the 7 Congresso Brasileiro de Engenharia de Fabricação - COBEF 2013. May 20-24 2013. Penedo, Itatiaia-RJ, Brazil. Ed. ABCM, ISSN 2236-0395, p. 15-19.

  40. Khan MA, Jaffery SHI, Khan M, Younas M, Butt SIB, Ahmad R, Warsi SS (2020) Multi-objective optimization of turning titanium-based alloy Ti-6Al-4V under dry, wet, and cryogenic conditions using gray relational analysis (GRA). Int J Adv Manuf Technol 106:3897–3911. https://doi.org/10.1007/s00170-019-04913-6

    Article  Google Scholar 

  41. Khan MA, Jaffery SHI, Khan M, Younas M, Butt SI, Ahmad R, Warsi SS (2019) Statistical analysis of energy consumption, tool wear and surface roughness in machining of Titanium alloy (Ti-6Al-4V) under dry, wet and cryogenic conditions. Mech Sci 10:561–573. https://doi.org/10.5194/ms-10-561-2019

    Article  Google Scholar 

  42. Bermingham MJ, Kirsch J, Sun S, Palanisamy S, Dargusch MS (2011) New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4V. Int J Mach Tool Manu 51:500–511

    Article  Google Scholar 

  43. Park K-H et al (2010) A study on droplets and their distribution for minimum quantity lubrication (MQL). Int J Mach Tools Manuf 50(9):824–833

    Article  Google Scholar 

  44. Connor, Nick. (2019) O que é o efeito Leidenfrost – Ponto Leidenfrost – Definição. Thermal Engineering. https://www.thermal-engineering.org/pt-br/o-que-e-o-efeito-leidenfrost-ponto-leidenfrost-definicao/. Accessed 18 May 2021

  45. van Limbeek MAJ, Nes TH, Vanapalli S (2020) Impact dynamics and heat transfer characteristics of liquid nitrogen drops on a sapphire prism. Int J Heat Mass Transf 148:118999. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118999

    Article  Google Scholar 

Download references

Acknowledgements

The Instituto Maua de Tecnologia of Sao Caetano do Sul and Instituto SENAI of Sao Paulo are acknowledged for making their laboratories available for the test’s executions.

Author information

Authors and Affiliations

Authors

Contributions

Nelson W. Paschoalinoto: conceptualization, methodology, writing. Gilmar F. Batalha: supervision review, validation. Paulo S. Ladivez: research, validation. Ed Claudio Bordinassi: writing, resources and review. Aderval F de L. Filho: investigation, data curation, visualization. Gleicy de L. X. Ribeiro: conceptualization, investigation, visualization.

Corresponding author

Correspondence to Nelson W. Paschoalinoto.

Ethics declarations

Ethical approval

No ethical approval was required for this research.

Consent to participate

Not applicable.

Consent to publish

All authors have read and agreed to the published version of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paschoalinoto, N.W., Batalha, G.F., Ladivez, P.S. et al. Development of a cyclic liquid nitrogen injection system and its application to minimum quantity lubrication milling of the Ti-6Al-4V alloy. Int J Adv Manuf Technol 118, 1529–1552 (2022). https://doi.org/10.1007/s00170-021-07994-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07994-4

Keywords

Navigation