Skip to main content
Log in

Review on joining processes of magnesium alloy sheets

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Magnesium alloy sheets have an increasing proportion of applications in automobiles due to their high specific strength. The usability of traditional welding processes and mechanical joining processes is restricted by the characteristic of magnesium alloy sheets. In order to improve the plasticity of magnesium alloy sheets and realize the reliable joining of magnesium alloy sheets with dissimilar sheets, researchers have conducted a lot of research. In this paper, the existing joining processes of friction stir spot welding, friction stir blind riveting, hybrid self-piercing riveting, and friction self-piercing riveting for magnesium alloy sheets are reviewed; the latest advances of joining process are introduced; and the principle, development, advantages, and shortcomings of each process for improving the plasticity of magnesium alloy sheets are systematically described. Several unaddressed issues in the joining of magnesium alloy sheets are identified. The hybrid of mechanical and solid-state joining processes will be a trend in future development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Li YB, Ma YW, Lou M, Lei HY, Lin ZQ (2016) Advances in welding and joining processes of multi-material lightweight car body [J]. Journal of Mechanical Engineering 52(24):1–23

    Article  Google Scholar 

  2. Li YB, Ma YW, Lou M, Zhang GT, Zhang QX, Qi L, Deng L (2020) Advances in spot joining technologies of lightweight thin-walled structures [J]. Journal of Mechanical Engineering 56(06):125–146

    Article  Google Scholar 

  3. Khalkhali A, Miandoabchi E (2020) The application of equivalent modeling of joints for bending simulation of hybrid aluminum/high strength steel thin-walled sections joined by clinching [J]. Thin-Walled Structures 157:107089. https://doi.org/10.1016/j.tws.2020.107089

    Article  Google Scholar 

  4. Meschut G, Janzen V, Olfermann T (2014) Innovative and highly productive joining technologies for multi-material lightweight car body structures [J]. Journal of Materials Engineering and Performance 23(5):1515–1523. https://doi.org/10.1007/s11665-014-0962-3

    Article  Google Scholar 

  5. Ojo OO, Taban E, Kaluc E (2015) Friction stir spot welding of aluminum alloys: a recent review[J]. Materials Testing 57(7-8):609–627. https://doi.org/10.3139/120.110752

    Article  Google Scholar 

  6. Neugebauer R, Mauermann R, Dietrich S, Kraus C (2007) A new technology for the joining by forming of magnesium alloys [J]. Production Engineering 1(1):65–70

    Article  Google Scholar 

  7. Czerwinski F (2011). Welding and joining of magnesium alloys [J]. Magnesium Alloys-Design, Processing and Properties, 469-490.

  8. Moraes JFC, Rodriguez RI, Jordon JB, Su X (2017) Effect of overlap orientation on fatigue behavior in friction stir linear welds of magnesium alloy sheets [J]. International Journal of Fatigue 100:1–11. https://doi.org/10.1016/j.ijfatigue.2017.02.018

    Article  Google Scholar 

  9. Wang Y, Prangnell PB (2018) Evaluation of Zn-rich coatings for IMC reaction control in aluminum magnesium dissimilar welds [J]. Materials Characterization 139:100–110. https://doi.org/10.1016/j.matchar.2018.02.035

    Article  Google Scholar 

  10. Xu ZW, Chen S, Peng LM, Yan JC, Li ZW (2020) Microstructure evolution and mechanical properties of ultrasonically TLP bonded Mg joint [J]. Journal of Manufacturing Processes 52:145–151. https://doi.org/10.1016/j.jmapro.2020.01.056

    Article  Google Scholar 

  11. Liu LM, Ren DX, Liu F (2014) A review of dissimilar welding techniques for magnesium alloys to aluminum alloys [J]. Materials 7(5):3735–3757. https://doi.org/10.3390/ma7053735

    Article  Google Scholar 

  12. He XC, Pearson I, Young K (2008) Self-pierce riveting for sheet materials: state of the art [J]. Journal of Materials Processing Tech. 199(1):27–36. https://doi.org/10.1016/j.jmatprotec.2007.10.071

    Article  Google Scholar 

  13. He XC (2017) Clinching for sheet materials [J]. Science and Technology of Advanced Materials 18(1):381–405. https://doi.org/10.1080/14686996.2017.1320930

    Article  Google Scholar 

  14. Ang HQ (2021) An overview of self-piercing riveting process with focus on joint failures, corrosion issues and optimisation techniques [J]. Chinese Journal of Mechanical Engineering 34(1):1–25. https://doi.org/10.1186/s10033-020-00526-3

    Article  Google Scholar 

  15. Wen T, Huang Q, Liu Q, Ou WX, Zhang S (2016) Joining different metallic sheets without protrusion by flat hole clinching process [J]. International Journal of Advanced Manufacturing Technology 85(1-4):217–225. https://doi.org/10.1007/s00170-015-7936-y

    Article  Google Scholar 

  16. Hu W, Ma ZW, Ji SD, Song Q, Chen MF, Jiang WH (2020) Improving the mechanical property of dissimilar Al/Mg hybrid friction stir welding joint by PIO-ANN [J]. Journal of Materials Science & Technology 53:41–52. https://doi.org/10.1016/j.jmst.2020.01.069

    Article  Google Scholar 

  17. Kumar S, Wu C, Shi L (2020) Intermetallic Diminution During Friction Stir Welding of dissimilar Al/Mg Alloys in lap configuration via ultrasonic assistance [J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 51(11):5725–5742. https://doi.org/10.1007/s11661-020-05982-z

    Article  Google Scholar 

  18. Xu N, Zhang WD, Cai SQ, Zhuo Y, Song QN, Bao YF (2020) Microstructure and tensile properties of rapid-cooling friction-stir-welded AZ31B Mg alloy along thickness direction [J]. Transactions of Nonferrous Metals Society of China 30(12):3254–3262. https://doi.org/10.1016/s1003-6326(20)65458-9

    Article  Google Scholar 

  19. Laska A, Szkodo M (2020) Manufacturing parameters, materials, and welds properties of butt friction stir welded joints-overview [J]. Materials 13(21):1–46. https://doi.org/10.3390/ma13214940

    Article  Google Scholar 

  20. Singh VP, Patel SK, Ranjan A, Kuriachen B (2020) Recent research progress in solid state friction-stir welding of aluminium-magnesium alloys: a critical review [J]. Journal of Materials Research and Technology 9(3):6217–6256. https://doi.org/10.1016/j.jmrt.2020.01.008

    Article  Google Scholar 

  21. Singh RP, Dubey S, Singh A, Kumar S (2021) A review paper on friction stir welding process [J]. Materials Today-Proceedings 38:6–11. https://doi.org/10.1016/j.matpr.2020.05.208

    Article  Google Scholar 

  22. Fujimoto M, Koga S, Abe N, Sato YS, Kokawa H (2008) Microstructural analysis of stir zone of Al alloy produced by friction stir spot welding [J]. Science and Technology of Welding and Joining 13(7):663–670. https://doi.org/10.1179/136217108X347601

    Article  Google Scholar 

  23. Li B, Kang HT (2011) Temperature distribution during friction stir spot welding of magnesium alloy AM60B [J]. Journal of Testing and Evaluation 39(1):16–24. https://doi.org/10.1520/jte101910

    Article  Google Scholar 

  24. Lin YC, Liu JJ, Lin BY, Lin CM, Tsai HL (2012) Effects of process parameters on strength of Mg alloy AZ61 friction stir spot welds [J]. Materials & Design 35:350–357. https://doi.org/10.1016/j.matdes.2011.08.050

    Article  Google Scholar 

  25. Shen J, Min D, Wang D (2011) Effects of heating process on the microstructures and tensile properties of friction stir spot welded AZ31 magnesium alloy plates [J]. Materials & Design 32(10):5033–5037. https://doi.org/10.1016/j.matdes.2011.05.046

    Article  Google Scholar 

  26. Shen J, Wen L, Luo X, Xu N, Wang D, Liu M (2014) Development of novel heating tool friction stir spot welding (HT-FSSW) for AZ31 magnesium alloy [J]. Science and Technology of Welding and Joining 19(5):369–375. https://doi.org/10.1179/1362171814y.0000000202

    Article  Google Scholar 

  27. Xie X, Shen J, Gong FB, Wu D, Zhang T, Luo X, Li Y (2016) Effects of dwell time on the microstructures and mechanical properties of water bath friction stir spot-welded AZ31 magnesium alloy joints [J]. International Journal of Advanced Manufacturing Technology 82(1-4):75–83. https://doi.org/10.1007/s00170-015-7361-2

    Article  Google Scholar 

  28. Wu D, Shen J, Zhou MB, Cheng L, Sang JX (2017) Development of liquid-nitrogen-cooling friction stir spot welding for AZ31 magnesium alloy joints [J]. International Journal of Minerals Metallurgy and Materials 24(10):1169–1176. https://doi.org/10.1007/s12613-017-1507-1

    Article  Google Scholar 

  29. Wu D, Shen J, Lv L, Wen L, Xie X (2017) Effects of nano-SiC particles on the FSSW welded AZ31 magnesium alloy joints [J]. Materials Science and Technology 33(8):998–1003. https://doi.org/10.1080/02670836.2016.1254891

    Article  Google Scholar 

  30. Rostamiyan Y, Seidanloo A, Sohrabpoor H, Teimouri R (2015) Experimental studies on ultrasonically assisted friction stir spot welding of AA6061 [J]. Archives of Civil and Mechanical Engineering 15(2):335–346. https://doi.org/10.1016/j.acme.2014.06.005

    Article  Google Scholar 

  31. Ji SD, Li ZW, Ma L, Yue YM, Gao SS (2016) Investigation of ultrasonic assisted friction stir spot welding of magnesium alloy to aluminum alloy [J]. Strength of Materials 48(1):2–7. https://doi.org/10.1007/s11223-016-9730-y

    Article  Google Scholar 

  32. Schilling C, Santos JD (2002). Method and device for joining at least two adjoining work pieces by friction welding [P]. US6722556.

  33. Kubit A, Trzepiecinski T (2020) A fully coupled thermo-mechanical numerical modelling of the refill friction stir spot welding process in Alclad 7075-T6 aluminium alloy sheets [J]. Archives of Civil and Mechanical Engineering 20(4):117. https://doi.org/10.1007/s43452-020-00127-w

    Article  Google Scholar 

  34. Campanelli LC, Suhuddin UFH, Antonialli AS, Santos JF, Alcântara NG, Bolfarini C (2013) Metallurgy and mechanical performance of AZ31 magnesium alloy friction spot welds [J]. Journal of Materials Processing Technology 213(4):515–521. https://doi.org/10.1016/j.jmatprotec.2012.11.002

    Article  Google Scholar 

  35. Chen Y, Chen J, Amirkhiz BS, Worswick MJ, Gerlich AP (2015) Microstructures and properties of Mg alloy/DP600 steel dissimilar refill friction stir spot welds [J]. Science and Technology of Welding and Joining 20(6):494–501. https://doi.org/10.1179/1362171815y.0000000033

    Article  Google Scholar 

  36. Zhang CC, Cao JY, Shirzadi AA (2021) Refill friction stir spot welding (Refill FSSW) of magnesium lithium alloys: effects of air and argon cooling [J]. Science and Technology of Welding and Joining 26(3):1–8. https://doi.org/10.1080/13621718.2021.1884801

    Article  Google Scholar 

  37. Tozaki Y, Uematsu Y, Tokaji K (2010) A newly developed tool without probe for friction stir spot welding and its performance [J]. Journal of Materials Processing Technology 210(6):844–851. https://doi.org/10.1016/j.jmatprotec.2010.01.015

    Article  Google Scholar 

  38. Atak A (2020) Impact of pinless stirring tools with different shoulder profile designs on friction stir spot welded joints [J]. Journal of Mechanical Science and Technology 34(9):3735–3743. https://doi.org/10.1007/s12206-020-0825-9

    Article  Google Scholar 

  39. Sun YF, Fujii H, Takaki N, Okitsu Y (2012) Microstructure and mechanical properties of mild steel joints prepared by a flat friction stir spot welding technique [J]. Materials & Design 37:384–392. https://doi.org/10.1016/j.matdes.2012.01.027

    Article  Google Scholar 

  40. Sun YF, Fujii H, Takaki N, Okitsu Y (2013) Microstructure and mechanical properties of dissimilar Al alloy/steel joints prepared by a flat spot friction stir welding technique [J]. Materials & Design 47:350–357. https://doi.org/10.1016/j.matdes.2012.12.007

    Article  Google Scholar 

  41. Wang XP, Morisada Y, Fujii H (2020) Flat friction stir spot welding of AZ31B magnesium alloy using double side adjustable tools: microstructure and mechanical properties [J]. Science and Technology of Welding and Joining 25(8):644–652. https://doi.org/10.1179/1432891714z.000000000471

    Article  Google Scholar 

  42. Wang PC, Stevenson R (2011). Friction stir rivet method of joining[P]. US7862271B2.

  43. Min JY, Li JJ, Carlson BE, Li Y, Quinn JF, Lin JP, Wang W (2015) Friction stir blind riveting for joining dissimilar cast Mg AM60 and Al alloy sheets [J]. Journal of Manufacturing Science and Engineering-Transactions of the Asme 137(5). https://doi.org/10.1115/1.4030156

  44. Lathabai S, Tyagi V, Ritchie D, Kearney T, Finnin B, Christian S, Sansome A, White G (2011) Friction stir blind riveting: a novel joining process for automotive light alloys [J]. SAE International Journal of Materials and Manufacturing 4(1):589–601. https://doi.org/10.4271/2011-01-0477

    Article  Google Scholar 

  45. Zhang CQ, Li BQ, Wang XJ (2011) Lap joint properties of FSBRed dissimilar metals AZ31 Mg alloy and DP600 high-strength steel with various parameters [J]. Advanced Materials Research 228-229:427–432. https://doi.org/10.4028/www.scientific.net/AMR.228-229.427

    Article  Google Scholar 

  46. Zhang CQ, Wang XJ, Li BQ (2011) A technological study on friction stir blind rivet jointing of AZ31B magnesium alloys and high-strength DP600 steel [J]. Advanced Materials Research 183-185:1616–1620. https://doi.org/10.4028/www.scientific.net/AMR.183-185.1616

    Article  Google Scholar 

  47. Wang WM, Wang KF, Khan HA, Li JJ, Miller S (2018) Numerical analysis of magnesium to aluminum joints in friction stir blind riveting [J]. Procedia CIRP 76:94–99. https://doi.org/10.1016/j.procir.2018.01.037

    Article  Google Scholar 

  48. Li SX, Khan HA, Hihara LH, Cong HB, Li JJ (2018) Corrosion behavior of friction stir blind riveted Al/CFRP and Mg/CFRP joints exposed to a marine environment [J]. Corrosion Science 132:300–309. https://doi.org/10.1016/j.corsci.2018.01.005

    Article  Google Scholar 

  49. Hahn O, Schulte V (2001). Method and apparatus for joining metal sheets and the like [P]. US6199271B1.

  50. Clarke CJ, Doo RS, Lucas M, Trinick RJ (2014). Joining apparatus and method [P]. EP2318161B1.

  51. Sun X, Feng Z, Chen J, Huang H, Hu X, Davies RW (2020). Ultrasonically assisted self-piercing riveting [P]. US20200101519A1.

  52. Drossel WG, Jackel M (2014) New die concept for self-pierce riveting materials with limited ductility [J]. Key Engineering Materials 611-612:1452–1459

    Article  Google Scholar 

  53. Hahn O, Horstmann M (2007) Mechanical joining of magnesium components by means of inductive heating-realization and capability [C]. Materials science forum. Trans Tech Publications Ltd 539:1638–1643

    Google Scholar 

  54. Neugebauer R, Dietrich S, Kraus C (2007) Dieless clinching and dieless rivet-clinching of magnesium [J]. Key Engineering Materials 344:693–698. https://doi.org/10.4028/www.scientific.net/KEM.344.693

    Article  Google Scholar 

  55. Neugebauer R, Dietrich S, Kraus C (2007) Joining by forming with a flat counter tool - a new way of joining magnesium components [C]. Materials Science Forum 539:3949–3954

    Google Scholar 

  56. Durandet YC, Deam R, Beer A, Song WQ, Clegg R, Blacket S (2009) Joining of AZ31 magnesium alloy strips by laser assisted self-pierce riveting [C]. In: 8th Int. Conf. on Magnesium Alloys and their Applications, pp 989–995

    Google Scholar 

  57. Durandet YC, Deam R, Beer A, Song WQ, Blacket S (2010) Laser assisted self-pierce riveting of AZ31 magnesium alloy strips [J]. Materials & Design 31:S13–S16. https://doi.org/10.1016/j.matdes.2009.10.038

    Article  Google Scholar 

  58. Durandet YC, Song WQ, Blacket S, Brandt M (2008) Spot joining of magnesium using laser assisted self-piercing riveting technology [C]. Pacific International Conference on Applications of Lasers and Optics. Laser Institute of America 2008(1):318–323. https://doi.org/10.2351/1.5057030

    Article  Google Scholar 

  59. Durandet YC, Song WQ, Dempster B, Brandt M, Blacket S (2012). Method and apparatus for joining metals using self-piercing rivets with preheating [P]. US8234770B2.

  60. Han SL, Wu YW, Lin C, Gao Y (2014) The virtual design of self-pierce riveting device for magnesium alloy based on TRIZ [J]. Mechanical Science and Technology for Aerospace Engineering 33(04):610–613

    Google Scholar 

  61. Han SL, Tang XD, Gao Y, Zeng QL (2015) Effects of friction factors on flat bottom self-pierce riveting joints of AZ31 magnesium alloy [J]. Materials Research Innovations 19(sup10):S10-235–S10-238. https://doi.org/10.1179/1432891715Z.0000000002155

    Article  Google Scholar 

  62. Li YB, Lin ZQ, Lou M, Lai XM, Chen GL, Wang PZ (2012). Electroplastic clinching device [P], CN201010272239.6.

  63. Lou M (2015). Study on mechanism and process of electric-aided self-piercing riveting of dual-phase steels [D]. Shanghai Jiao Tong University.

  64. Wang WJ, Liu ZX, Shang Y, Liu AL, Wang MX, Sun RN, Wang PC (2011) Self-piercing riveting of wrought magnesium AZ31 sheets [J]. Journal of Manufacturing Science and Engineering 133(3):031009

    Article  Google Scholar 

  65. Wang JW (2010). Investigation of self-piercing riveting of AZ31 Mg alloy [D]. Zhengzhou University.

  66. Shang Y (2010). The Fatigue performance of riveted and rivet-bonded joints for magnesium alloys [D]. Zhengzhou University.

  67. Liu ZX, Wang PC, Wang JW (2012) Investigation to self-piercing riveting of wrought magnesium AZ31 sheets [J]. Advanced Materials Research 472-475:1188–1191

    Article  Google Scholar 

  68. Niu SZ, Lou M, Ma YW, Yang BX, Shan H, Li YB (2021) Resistance rivet welding of magnesium/steel dissimilar materials [J]. Materials Letters 282:128876. https://doi.org/10.1016/j.matlet.2020.128876

    Article  Google Scholar 

  69. Zhang H, Jayatissa AH, Durbin S, Ma G (2012) What if they are not weld-able? [J]. Management and Production Engineering Review 3(3):86–91

    Google Scholar 

  70. Du Y (2011). Study on self-piercing riveting of friction-heated magnesium alloy sheets [D]. Zhengzhou University.

  71. Du Y, Wang MX, Liu ZX, Han GK, Yang LJ, Liu ZY (2011) Self-piercing riveting of friction-heated AZ31 alloy sheet [J]. Hot Working Technology 40(15):152–156

    Google Scholar 

  72. Zhang XL (2013). Study on the joining technology of low plastic metal sheets [D]. Zhengzhou University.

  73. Han GK, Wang MX, Liu ZX, Wang PC (2013) A new joining process for magnesium alloys: rotation friction drilling riveting [J]. Journal of Manufacturing Science and Engineering 135(3):031012. https://doi.org/10.1115/1.4023721

    Article  Google Scholar 

  74. Duan HY, Han GK, Wang MX, Zhang XL, Liu ZX, Liu ZY (2014) Rotation friction pressing riveting of AZ31 magnesium alloy sheet [J]. Materials & Design 54:414–424. https://doi.org/10.1016/j.matdes.2013.08.012

    Article  Google Scholar 

  75. Li YB, Wei ZY, Wang ZZ, Li YT (2013) Friction self-piercing riveting of aluminum alloy AA6061-T6 to magnesium alloy AZ31B [J]. Journal of Manufacturing Science and Engineering 135(6):061007

    Article  Google Scholar 

  76. Liu X, Lim YC, Li YB, Tang W, Ma YW, Feng ZL, Ni J (2016) Effects of process parameters on friction self-piercing riveting of dissimilar materials [J]. Journal of Materials Processing Tech. 237:19–30. https://doi.org/10.1016/j.jmatprotec.2016.05.022

    Article  Google Scholar 

  77. Ma YW, Li YB, Lin ZQ (2019) Joint formation and mechanical performance of friction self-piercing riveted aluminum alloy AA7075-T6 joints[J]. Journal of Manufacturing Science and Engineering 141(4):041005. https://doi.org/10.1115/1.4042568

    Article  Google Scholar 

  78. Ma YW, Li YB, Hu W, Lou M, Lin ZQ (2016) Modeling of friction self-piercing riveting of aluminum to magnesium [J]. Journal of Manufacturing Science and Engineering 138(6). https://doi.org/10.1115/1.4032085

  79. Ma YW, Lou M, Li YB, Lin ZQ (2018) Modeling and experimental validation of friction self-piercing riveted aluminum alloy to magnesium alloy [J]. Welding in the World 62(6):1195–1206. https://doi.org/10.1007/s40194-018-0614-6

    Article  Google Scholar 

  80. Ma YW, Xian XR, Lou M, Li YB, Lin ZQ (2017) Friction self-piercing riveting (F-SPR) of dissimilar materials [J]. Procedia Engineering 207:950–955. https://doi.org/10.1016/j.proeng.2017.10.857

    Article  Google Scholar 

  81. Ma YW, Yang BX, Lou M, Li YB, Ma NS (2020) Effect of mechanical and solid-state joining characteristics on tensile-shear performance of friction self-piercing riveted aluminum alloy AA7075-T6 joints [J]. Journal of Materials Processing Technology 278:116543. https://doi.org/10.1016/j.jmatprotec.2019.116543

    Article  Google Scholar 

  82. Ma YW, He GZ, Lou M, Li YB, Lin ZQ (2018) Effects of process parameters on crack inhibition and mechanical interlocking in friction self-piercing riveting of aluminum alloy and magnesium alloy [J]. Journal of Manufacturing Science and Engineering 140(10)

  83. Ma YW, Niu SZ, Shan H, Li YB, Ma NS (2020) Impact of stack orientation on self-piercing riveted and friction self-piercing riveted aluminum alloy and magnesium alloy joints [J]. Automotive Innovation 3(3):242–249. https://doi.org/10.1007/s42154-020-00108-y

    Article  Google Scholar 

  84. Yang BX, Ma YW, Shan H, Yang TH, Sun J, Li YB (2021). Mechanical performance of friction self-piercing riveted 2A12-T4 aluminum alloy sheets [J]. Acta Aeronautica et Astronautica Sinica (in Chinese), 1-12.

  85. Yang BX, Ma YW, Shan H, Niu SZ, Li YB (2021) Friction self-piercing riveting (F-SPR) of aluminum alloy to magnesium alloy using a flat die [J]. Journal of Magnesium and Alloys. https://doi.org/10.1016/j.jma.2020.12.016

  86. Lim YC, Chen J, Jun J, Leonard DN, Brady M, Warren CD, Feng Z (2021) Mechanical and corrosion assessment of friction self-piercing rivet joint of carbon fiber-reinforced polymer and magnesium alloy AZ31B [J]. Journal of Manufacturing Science and Engineering 143(3):031006. https://doi.org/10.1115/1.4048378

    Article  Google Scholar 

Download references

Funding

This work was funded by the Natural Science Foundation of Shandong Province (Grant No. ZR2018MEE024) and a Project of Shandong Province Higher Educational Science and Technology Program (Grant No. J17KA018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Li.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Li, Z., Wang, Z. et al. Review on joining processes of magnesium alloy sheets. Int J Adv Manuf Technol 118, 2787–2803 (2022). https://doi.org/10.1007/s00170-021-07981-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07981-9

Keywords

Navigation