Skip to main content
Log in

Research on chip formation mechanism and surface morphology of particle-reinforced metal matrix composites

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this paper, a finite element (FE) cutting model for particle-reinforced metal matrix composites (PRMMCs) considering material damage was developed to predict SiC particle failure, cutting forces, and machined surface topography in SiCp/Al composite machining, and to analyze the dynamic mechanisms of chip formation and particle failure evolution. The validity of the simulation model was verified by comparing the simulation results with the cutting forces and surface topography obtained from the milling machining experiments. It was found that complex stress-strain fields exist in SiCp/Al composites with mesoscopic non-homogeneous structures, and alternating reticulation of tensile and compressive stress between particles was observed; particle failure due to tool-workpiece interaction exists in both direct and indirect ways; particle failure and local chip deformation during machining affect surface topography and chip shaping, resulting in serrated chips, pitting on the machined surface, and residual particle fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors promise that all data are authentic.

Code availability

ABAQUS finite element simulation software.

References

  1. Dandekar CR, Shin YC (2012) Modeling of machining of composite materials: a review. Int J Mach Tools Manuf 57:102–121. https://doi.org/10.1016/j.ijmachtools.2012.01.006

    Article  Google Scholar 

  2. Kim CS, Cho K, Manjili MH, Nezafati M (2017) Mechanical performance of particulate-reinforced Al metal-matrix composites (MMCs) and Al metal-matrix nano-composites (MMNCs). J Mater Sci 52(1):13319–13349. https://doi.org/10.1007/s10853-017-1378-x

    Article  Google Scholar 

  3. Nicholls CJ, Boswell B, Davies IJ, Islam MN (2017) Review of machining metal matrix composites. Int J Adv Manuf Technol 90(9):2429–2441. https://doi.org/10.1007/s00170-016-9558-4

    Article  Google Scholar 

  4. Dabade UA, Joshi SS (2009) Analysis of chip formation mechanism in machining of Al/SiCp metal matrix composites. J Mater Process Technol 209(10):4704–4710. https://doi.org/10.1016/j.jmatprotec.2008.10.057

    Article  Google Scholar 

  5. Joshi SS, Ramakrishnan N, Ramakrishnan P (2001) Micro-structural analysis of chip formation during orthogonal machining of Al/SiCp composites. J Eng Mater Technol 123(3):315–321. https://doi.org/10.1115/1.1356026

    Article  Google Scholar 

  6. El-Gallab MS, Sklad MP (2004) Machining of aluminum/silicon carbide particulate metal matrix composites: part IV. Residual stresses in the machined workpiece. J Mater Process Technol 152(1):23–34. https://doi.org/10.1016/j.jmatprotec.2004.01.061

    Article  Google Scholar 

  7. Ramesh MV, Chan KC, Lee WB, Cheung CF (2001) Finite-element analysis of diamond turning of aluminium matrix composites. Compos Sci Technol 61(10):1449–1456. https://doi.org/10.1016/s0266-3538(01)00047-1

    Article  Google Scholar 

  8. Wang YF, Liao WH, Yang K, Teng XY, Chen WQ (2019) Simulation and experimental investigation on the cutting mechanism and surface generation in machining SiCp/Al MMCs. Int J Adv Manuf Technol 100(5–8):1393–1404. https://doi.org/10.1007/s00170-018-2769-0

    Article  Google Scholar 

  9. Wang X, Li YQ, Xu JK, Yu HD, Liu QM, Liang W (2020) Comparison and research on simulation models of aluminum-based silicon carbide micro-cutting. Int J Adv Manuf Technol 109(1):589–605. https://doi.org/10.1007/s00170-020-05518-0

    Article  Google Scholar 

  10. Fathipour M, Hamedi M, Yousefi R (2013) Numerical and experimental analysis of machining of Al (20 vol% SiC) composite by the use of ABAQUS software. Mater Werkst 44(1):14–20. https://doi.org/10.1002/mawe.201300959

    Article  Google Scholar 

  11. Wang BB, Xie LJ, Chen XL, Wang XB (2016) The milling simulation and experimental research on high volume fraction of SiCp/Al. Int J Adv Manuf Technol 82(5–8):809–816. https://doi.org/10.1007/s00170-015-7399-1

    Article  Google Scholar 

  12. Li Y, Ramesh KT (1998) Influence of particle volume fraction, shape, and aspect ratio on the behavior of particle-reinforced metal-matrix composites at high rates of strain. Acta Mater 46(16):5633–5646. https://doi.org/10.1016/S1359-6454(98)00250-X

    Article  Google Scholar 

  13. Ye TK, Xu YX, Ren J (2019) Effects of SiC particle size on mechanical properties of SiC particle reinforced aluminum metal matrix composite. Mater Sci Eng A 753:146–155. https://doi.org/10.1016/j.msea.2019.03.037

    Article  Google Scholar 

  14. Qin SY, Chen CG, Zhang GD, Wang WL, Wang ZG (1999) The effect of particle shape on ductility of SiCp reinforced 6061 Al matrix composites. Mater Sci Eng A 272(2):363–370. https://doi.org/10.1016/S0921-5093(99)00503-1

    Article  Google Scholar 

  15. Spowart JE, Miracle DB (2003) The influence of reinforcement morphology on the tensile response of 6061/SiC/25p discontinuously-reinforced aluminum. Mater Sci Eng A 357(1–2):111–123. https://doi.org/10.1016/S0921-5093(03)00244-2

    Article  Google Scholar 

  16. Teng XY, Chen WQ, Huo DH, Shyha I, Chao L (2018) Comparison of cutting mechanism when machining micro and nano-particles reinforced SiCp/Al metal matrix composites. Compos Struct 203:636–647. https://doi.org/10.1016/j.compstruct.2018.07.076

    Article  Google Scholar 

  17. Teng XY, Huo DH, Chen WQ, Wong E, Zheng L, Shyha I (2018) Finite element modelling on cutting mechanism of nano Mg/SiC metal matrix composites considering cutting edge radius. J Manuf Process 32:116–126. https://doi.org/10.1016/j.jmapro.2018.02.006

    Article  Google Scholar 

  18. Pramanik A, Zhang LC, Arsecularatne JA (2008) Machining of metal matrix composites: effect of ceramic particles on residual stress, surface roughness and chip formation. Int J Mach Tools Manuf 48(15):1613–1625. https://doi.org/10.1016/j.ijmachtools.2008.07.008

    Article  Google Scholar 

  19. Dai LH, Ling Z, Bai YL (1999) A strain gradient-strengthening law for particle reinforced metal matrix composites. Scr Mater 41(3):245–251. https://doi.org/10.1016/s1359-6462(99)00153-0

    Article  Google Scholar 

  20. Ashby MF (1970) The deformation of plastically non-homogeneous materials. Philos Mag 21(170):399–424. https://doi.org/10.1080/14786437008238426

    Article  Google Scholar 

  21. Jung HK, Cheong YM, Ryu HJ, Hong SH (1999) Analysis of anisotropy in elastic constants of SiCp/2124 Al metal matrix composites. Scr Mater 41(12):1261–1267. https://doi.org/10.1016/S1359-6462(99)00295-X

    Article  Google Scholar 

  22. Dandekar CR, Shin YC (2009) Multi-step 3-D finite element modeling of subsurface damage in machining particulate reinforced metal matrix composites. Compos Pt A-Appl Sci Manuf 40(8):1231–1239. https://doi.org/10.1016/j.compositesa.2009.05.017

    Article  Google Scholar 

  23. Pramanik A, Zhang LC, Arsecularatne JA (2007) An FEM investigation into the behavior of metal matrix composites: tool-particle interaction during orthogonal cutting. Int J Mach Tools Manuf 47(10):1497–1506. https://doi.org/10.1016/j.ijmachtools.2006.12.004

    Article  Google Scholar 

  24. Pramanik A, Zhang LC, Arsecularatne JA (2006) Prediction of cutting forces in machining of metal matrix composites. Int J Mach Tools Manuf 46(14):1795–1803. https://doi.org/10.1016/j.ijmachtools.2005.11.012

    Article  Google Scholar 

  25. Pramanik A, Zhang LC (2017) Particle fracture and debonding during orthogonal machining of metal matrix composites. Adv Manuf 5(1):77–82. https://doi.org/10.1007/s40436-017-0170-0

    Article  Google Scholar 

  26. Kannan S, Kishawy HA, Deiab I (2009) Cutting forces and TEM analysis of the generated surface during machining metal matrix composites. J Mater Process Technol 209(5):2260–2269. https://doi.org/10.1016/j.jmatprotec.2008.05.025

    Article  Google Scholar 

  27. Christman T, Needleman A, Suresh S (1989) An experimental and numerical study of deformation in metal-ceramic composites. Acta Metall 37(11):3029–3050. https://doi.org/10.1016/0001-6160(89)90339-8

    Article  Google Scholar 

  28. Finot M, Shen YL, Needleman A, Suresh S (1994) Micromechanical modeling of reinforcement fracture in particle-reinforced metal-matrix composites. Metall Mater Trans A 25(11):2403–2420. https://doi.org/10.1007/BF02648860

    Article  Google Scholar 

  29. Mishnaevsky L Jr, Derrien K, Baptiste D (2004) Effect of microstructure of particle reinforced composites on the damage evolution: probabilistic and numerical analysis. Compos Sci Technol 64(12):1805–1818. https://doi.org/10.1016/j.compscitech.2004.01.013

    Article  Google Scholar 

  30. Zhang JT, Liu LS, Zhai PC, Fu ZY, Zhang QJ (2007) The prediction of the dynamic responses of ceramic particle reinforced MMCs by using multi-particle computational micro-mechanical method. Compos Sci Technol 67(13):2775–2785. https://doi.org/10.1016/j.compscitech.2007.02.002

    Article  Google Scholar 

  31. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proc 7th Int Sympo Ballistics 21:541–548

    Google Scholar 

  32. Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1):31–48. https://doi.org/10.1016/0013-7944(85)90052-9

    Article  Google Scholar 

  33. Liu JW, Cheng K, Ding H, Chen SJ, Zhao L (2018) Simulation study of the influence of cutting speed and tool-particle interaction location on surface formation mechanism in micromachining SiCp/Al composites. Proc Inst Mech Eng Part C - J Eng Mech Eng Sci 232(11):2044–2056. https://doi.org/10.1177/0954406217713521

    Article  Google Scholar 

  34. Zhou L, Huang ST, Wang D, Yu XL (2011) Finite element and experimental studies of the cutting process of SiCp/Al composites with PCD tools. Int J Adv Manuf Technol 52(5–8):619–626. https://doi.org/10.1007/s00170-010-2776-2

    Article  Google Scholar 

  35. Hillerborg A, Modéer M, Petersson P-E (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6(6):773–781. https://doi.org/10.1016/0008-8846(76)90007-7

    Article  Google Scholar 

  36. Su YS, Ouyang QB, Zhang WL, Li ZQ, Guo Q, Fan GL, Zhang D (2014) Composite structure modeling and mechanical behavior of particle reinforced metal matrix composites. Mater Sci Eng A 597(12):359–369. https://doi.org/10.1016/j.msea.2014.01.024

    Article  Google Scholar 

  37. Zhang J, Ouyang QB, Guo Q, Li ZQ, Fan GL, Su YS, Jiang L, Lavernia EJ, Schoenung JM, Zhang D (2016) 3D microstructure-based finite element modeling of deformation and fracture of SiCp/Al composites. Compos Sci Technol 123:1–9. https://doi.org/10.1016/j.compscitech.2015.11.014

    Article  Google Scholar 

  38. Wu Q, Xu WX, Zhang LC (2019) Microstructure-based modelling of fracture of particulate reinforced metal matrix composites. Compos Pt B-Eng 163(15):384–392. https://doi.org/10.1016/j.compositesb.2018.12.099

    Article  Google Scholar 

  39. Kan Y, Liu ZG, Zhang SH, Zhang LW, Cheng M, Song HW (2014) Microstructure-based numerical simulation of the tensile behavior of SiCp/Al composites. J Mater Eng Perform 23(3):1069–1076. https://doi.org/10.1007/s11665-013-0805-7

    Article  Google Scholar 

  40. Zorev NN (1963) Inter-relationship between shear processes occurring along tool face and on shear plane in metal cutting. Int Res Prod Eng ASME 49:42–49

    Google Scholar 

  41. Wang T, Xie LJ, Wang XB (2015) Simulation study on defect formation mechanism of the machined surface in milling of high volume fraction SiCp/Al composite. Int J Adv Manuf Technol 79(5–8):1185–1194. https://doi.org/10.1007/s00170-015-6876-x

    Article  Google Scholar 

  42. Pen HM, Guo JH, Cao ZZ, Wang XC, Wang ZG (2018) Finite element simulation of the micromachining of nanosized-silicon-carbide-particle reinforced composite materials based on the cohesive zone model. Nanotech Pre Eng 1(04):40–45. https://doi.org/10.1016/j.npe.2018.12.003

    Article  Google Scholar 

  43. Goh CS, Wei J, Lee LC, Gupta M (2007) Properties and deformation behaviour of Mg-Y2O3 nanocomposites. Acta Mater 55(15):5115–5121. https://doi.org/10.1016/j.actamat.2007.05.032

    Article  Google Scholar 

  44. Ashby MF, Johnson L (1969) On the generation of dislocations at misfitting particles in a ductile matrix. Philos Mag 20(167):1009–1022. https://doi.org/10.1080/14786436908228069

    Article  Google Scholar 

  45. Dunand DC, Mortensen A (1991) On plastic relaxation of thermal stresses in reinforced metals. Acta Metall Mater 39(2):127–139. https://doi.org/10.1016/0956-7151(91)90261-X

    Article  Google Scholar 

  46. Kim CT, Lee JK, Plichta MR (1990) Plastic relaxation of thermoelastic stress in aluminum/ceramic composites. Metall Mater Trans A 21(2):673–682. https://doi.org/10.1007/BF02671938

    Article  Google Scholar 

  47. Unterweger K, Kolednik O (2013) The local deformation behaviour of MMCs-an experimental study. Z Metallkd 96(9):1063–1068. https://doi.org/10.3139/146.101141

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support from the National Natural Science Foundation of China (Grant No. 51575289 and Grant No.51705270).

Funding

This study is supported by the National Natural Science Foundation of China (Grant No. 51575289 and Grant No. 51705270).

Author information

Authors and Affiliations

Authors

Contributions

This paper further explores the dynamic mechanisms of chip formation and particle failure in the machining of SiCp/Al composites to provide some theoretical references for the optimization of composite design and cutting technology.

Corresponding authors

Correspondence to Youqiang Wang or Ping Zhang.

Ethics declarations

Ethical approval

All authors agree with this article.

Consent to participate

All authors voluntarily participated in the work of this paper.

Consent to publish

All authors agree to the submission and publication of this paper.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Wang, Y., Zhang, P. et al. Research on chip formation mechanism and surface morphology of particle-reinforced metal matrix composites. Int J Adv Manuf Technol 117, 3793–3804 (2021). https://doi.org/10.1007/s00170-021-07921-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07921-7

Keywords

Navigation