Skip to main content
Log in

Microstructure-Based Numerical Simulation of the Tensile Behavior of SiCp/Al Composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Modeling and prediction of the damage evolution in particle reinforced composites is a complex problem. Microstructure characters such as the particle morphologies, sizes, and distribution significantly affect the damage evolution in composites. A numerical simulation has been performed to investigate the damage evolution of SiCp/AA2009 composites. Tensile deformation in SiCp/AA2009 composites was simulated using the microstructure-based model constructed from the metallograph. Matrix damage, particle cracking, and interface debonding were simulated combining the ductile damage model, the normal stress criterion, and the maximum stress ratio criterion. The simulation results show that under tensile loading, damage initiates at the interface, and then propagates along the weakest direction. The simulation microstructures agree well with experimental results in which interface debonding, particle cracking, and matrix damage co-exist. In addition, the effects of component properties on the damage evolution are examined for various situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Wang, J. Zhang, Z. Wang, W. Liang, and L. Zhou, Finite Element Simulation of the Failure Process of Single Fiber Composites Considering Interface Properties, Compos. B Eng., 2012, 45(1), p 573–580

    Article  Google Scholar 

  2. S. Rudraraju, A. Salvi, K. Garikipati, and A.M. Waas, Experimental Observations and Numerical Simulations of Curved Crack Propagation in Laminated Fiber Composites, Compos. Sci. Technol., 2012, 72(10), p 1064–1074

    Article  Google Scholar 

  3. B. Cox and Q. Yang, In Quest of Virtual Tests for Structural Composites, Science, 2006, 314(5802), p 1102–1107

    Article  Google Scholar 

  4. J. Williams, J. Segurado, J. Lorca, and N. Chawla, Three Dimensional (3D) Microstructure-Based Modeling of Interfacial Decohesion in Particle Reinforced Metal Matrix Composites, Mater. Sci. Eng. A, 2012, 557(15), p 113–118

    Article  Google Scholar 

  5. J. Boselli, P. Pitcher, P. Gregson, and I. Sinclair, Numerical Modelling of Particle Distribution Effects on Fatigue in Al/SiCp Composites, Mater. Sci. Eng. A, 2001, 300(1), p 113–124

    Article  Google Scholar 

  6. M. Li, S. Ghosh, T.N. Rouns, H. Weiland, O. Richmond, and W. Hunt, Serial Sectioning Method in the Construction of 3D Microstructures for Particle-Reinforced MMCs, Mater. Charact., 1998, 41(2), p 81–95

    Article  Google Scholar 

  7. S. Ghosh and S. Moorthy, Three Dimensional Voronoi Cell Finite Element Model for Microstructures with Ellipsoidal Heterogeneities, Comput. Mech., 2004, 34(6), p 510–531

    Article  Google Scholar 

  8. P. Kenesei, H. Biermann, and A. Borbely, Structure-Property Relationship in Particle Reinforced Metal-Matrix Composites Based on Holotomography, Scr. Mater., 2005, 53(7), p 787–791

    Article  Google Scholar 

  9. L. Babout, E. Maire, and R. Fougeres, Damage Initiation in Model Metallic Materials: X-ray Tomography and Modelling, Acta Mater., 2004, 52(8), p 2475–2487

    Article  Google Scholar 

  10. L.L. Mishnaevsky, Jr., Automatic Voxel-Based Generation of 3D Microstructural FE Models and Its Application to the Damage Analysis of Composites, Mater. Sci. Eng. A, 2005, 407(1), p 11–23

    Article  Google Scholar 

  11. X. Deng and N. Chawla, Modeling the Effect of Particle Clustering on the Mechanical Behavior of SiC Particle Reinforced Al Matrix Composites, J. Mater. Sci., 2006, 41(17), p 5731–5734

    Article  Google Scholar 

  12. J. Llorca, S. Suresh, and A. Needleman, An Experimental and Numerical Study of Cyclic Deformation in Metal-Matrix Composites, Metall. Trans. A, 1992, 23(3), p 919–934

    Article  Google Scholar 

  13. J.C. Shao, B.L. Xiao, Q.Z. Wang, Z.Y. Ma, and K. Yang, An Enhanced FEM Model for Particle Size Dependent Flow Strengthening and Interface Damage in Particle Reinforced Metal Matrix Composites, Compos. Sci. Technol., 2011, 71(1), p 39–45

    Article  Google Scholar 

  14. J. Segurado and J. LLorca, Computational Micromechanics of Composites: The Effect of Particle Spatial Distribution, Mech. Mater., 2006, 38(8), p 873–883

    Article  Google Scholar 

  15. B. McWilliams, T. Sano, J. Yu, A. Gordon, and C. Yen, Influence of Hot Rolling on the Deformation Behavior of Particle Reinforced Aluminum Metal Matrix Composite, Mater. Sci. Eng. A, 2013, 577(10), p 54–63

    Article  Google Scholar 

  16. W. Xu, X. Sun, D. Li, S. Ryu, and M.A. Khaleel, Mechanism-Based Representative Volume Elements (RVEs) for Predicting Property Degradations in Multiphase Materials, Comput. Mater. Sci., 2013, 68(2), p 152–159

    Article  Google Scholar 

  17. A.L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth. Part I. Yield Criteria and Flow Rules for Porous Ductile Media, Division of Engineering, Brown University, Providence, RI, 1975

    Book  Google Scholar 

  18. V. Tvergaard, Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions, Int. J. Fract., 1981, 17(4), p 389–407

    Article  Google Scholar 

  19. V. Tvergaard and A. Needleman, Analysis of the Cup-Cone Fracture in a Round Tensile Bar, Acta Metall., 1984, 32(1), p 157–169

    Article  Google Scholar 

  20. H.-Y. Jeong, A New Yield Function and a Hydrostatic Stress-Controlled Void Nucleation Model for Porous Solids with Pressure-Sensitive Matrices, Int. J. Solids Struct., 2002, 39(5), p 1385–1403

    Article  Google Scholar 

  21. Hibbitt, Karlsson, Sorensen. ABAQUS/Explicit: User’s Manual, Hibbitt, Karlsson and Sorensen Incorporated, 2001

  22. J. Segurado and J. LLorca, A Computational Micromechanics Study of the Effect of Interface Decohesion on the Mechanical Behavior of Composites, Acta Mater., 2005, 53(18), p 4931–4942

    Article  Google Scholar 

  23. L.P. Canal, J. Segurado, and J. LLorca, Failure Surface of Epoxy-Modified Fiber-Reinforced Composites Under Transverse Tension and Out-of-Plane Shear, Int. J. Solids Struct., 2009, 46(11), p 2265–2274

    Article  Google Scholar 

  24. Hibbitt, Karlsson, Sorensen. ABAQUS: Theory Manual, Hibbitt, Karlsson and Sorensen Incorporated, 1997

  25. P.P. Camanho and C.G. Davila, Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials, NASA Tech. Paper, 2002, 211737(1), p 1–37

    Google Scholar 

  26. Z.Y. Liu, Q.Z. Wang, B.L. Xiao, Z.Y. Ma, and Y. Liu, Effects of Double Extrusion on the Microstructure and Tensile Property of the P/M Processed SiCp/AA2009 Composites, Acta Metall. Sin., 2010, 46(9), p 1121–1127

    Article  Google Scholar 

  27. G. Tursun, U. Weber, E. Soppa, and S. Schmauder, The Influence of Transition Phases on the Damage Behaviour of an Al/10 vol.% SiC Composite, Comput. Mater. Sci., 2006, 37(1), p 119–133

    Article  Google Scholar 

  28. H. Zhang, K. Ramesh, and E. Chin, Effects of Interfacial Debonding on the Rate-Dependent Response of Metal Matrix Composites, Acta Mater., 2005, 53(17), p 4687–4700

    Article  Google Scholar 

  29. M. Kiser, F. Zok, and D. Wilkinson, Plastic Flow and Fracture of a Particulate Metal Matrix Composite, Acta Mater., 1996, 44(9), p 3465–3476

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China under Grant No. 2012CB619600 and National High-tech R&D Program under Grant No. 2013AA030700. The authors would like to thank J. C. Shao and Q. Z. Wang for their helpful suggestion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kan, Y., Liu, Z.G., Zhang, S.H. et al. Microstructure-Based Numerical Simulation of the Tensile Behavior of SiCp/Al Composites. J. of Materi Eng and Perform 23, 1069–1076 (2014). https://doi.org/10.1007/s11665-013-0805-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0805-7

Keywords

Navigation