Skip to main content
Log in

DEM-FEM coupling simulation of residual stresses and surface roughness induced by shot peening of TC4 titanium alloy

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

An integrated DEM-FEM coupling simulation approach is developed to simulate the real process of shot peening, and is validated by comparing the predicted in-depth residual stresses with the experimentally measured results. Two kinds of three-dimensional finite element models associated with the original surface roughness of Rα0 = 26.7μm and 50.1μm are respectively established by using Gaussian distribution in conjunction with the exponential autocorrelation function, and another target model without the original surface roughness is utilized for reference purposes. Taking advantage of the integrated DEM-FEM coupling simulations of shot peening processes based on the three kinds of target models, the effects of the original surface roughness, shot impact angle, and shot peening coverage on the shot-peened residual stresses and surface roughness are investigated in detail. The obtained results show that the larger original surface roughness of TC4 titanium alloy could be reduced by shot peening, and the reduction increases with the increasing shot peening coverage from 100 to 200%. In the target models associated with the original surface roughness, the distributions of shot-peened surface residual stresses tend to be more uniform than that in the target model without the original surface roughness, whereas both the in-depth residual stresses and surface roughness are not very sensitive to the changes of shot impact angle in the range from 60° to 90°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Tan L, Yao C, Zhang D, Ren J, Shen X, Zhou Z (2020) Effects of different mechanical surface treatments on surface integrity of TC17 alloys. Surf Coat Technol 398:126073. https://doi.org/10.1016/j.surfcoat.2020.126073

    Article  Google Scholar 

  2. Bagherifard S (2019) Enhancing the structural performance of lightweight metals by shot peening. Adv Eng Mater 21(7):1801140. https://doi.org/10.1002/adem.201801140

    Article  Google Scholar 

  3. Karimbaev R, Pyun YS, Maleki E, Unal O, Amanov A (2020) An improvement in fatigue behavior of AISI 4340 steel by shot peening and ultrasonic nanocrystal surface modification. Mat Sci Eng A-Struct 791:139752. https://doi.org/10.1016/j.msea.2020.139752

    Article  Google Scholar 

  4. Omari MA, Mousa HM, Al-Oqla FM, Aljarrah M (2019) Enhancing the surface hardness and roughness of engine blades using the shot peening process. Int J Miner Metall Mater 26(8):999–1004. https://doi.org/10.1007/s12613-019-1818-5

    Article  Google Scholar 

  5. Wang C, Wu G, He T, Zhou YJ, Zhou ZC (2020) Numerical study of fatigue crack propagation in a residual stress field induced by shot peening. J Mater Eng Perform 29(8):5525–5539. https://doi.org/10.1007/s11665-020-05029-9

    Article  Google Scholar 

  6. Wang C, Lai YB, Wang L, Wang CL (2020) Dislocation-based study on the influences of shot peening on fatigue resistance. Surf Coat Technol 383:125247. https://doi.org/10.1016/j.surfcoat.2019.125247

    Article  Google Scholar 

  7. Bag A, Lévesque M, Brochu M (2020) Effect of shot peening on short crack propagation in 300M steel. Int J Fatigue 131:105346. https://doi.org/10.1016/j.ijfatigue.2019.105346

    Article  Google Scholar 

  8. Chadwick DJ, Ghanbari S, Bahr DF, Sangid MD (2018) Crack incubation in shot peened AA7050 and mechanism for fatigue enhancement. Fatigue Fract Eng Mater Struct 41(1):71–83. https://doi.org/10.1111/ffe.12652

    Article  Google Scholar 

  9. Liu YG, Li MQ, Liu HJ (2017) Nanostructure and surface roughness in the processed surface layer of Ti-6Al-4V via shot peening. Mater Charact 123:83–90. https://doi.org/10.1016/j.matchar.2016.11.020

    Article  Google Scholar 

  10. Zhang C, Rong H, Song G, Hu K (2019) Effect of surface roughness by shot peening on stress corrosion cracking behavior of pure titanium welded joints in HCl solution. Acta Metall Sin 55(10):1282–1290. https://doi.org/10.11900/0412.1961.2019.00056

    Article  Google Scholar 

  11. Wen Y, Liu P, Xie LC, Wang Z, Wang LQ, Lu WJ, Jiang CH, Ji V (2020) Evaluation of mechanical behavior and surface morphology of shot-peened Ti-6Al-4V alloy. J Mater Eng Perform 29(1):182–190. https://doi.org/10.1007/s11665-020-04565-8

    Article  Google Scholar 

  12. Ghanbari S, Bahr DF (2020) Predictions of decreased surface roughness after shot peening using controlled media dimensions. J Mater Sci Technol 58:120–129. https://doi.org/10.1016/j.jmst.2020.03.075

    Article  Google Scholar 

  13. Yang C, Li MQ (2020) 3D surface morphology and performance of TC17 processed by surface severe plastic deformation. Surf Coat Technol 397:125995. https://doi.org/10.1016/j.surfcoat.2020.125995

    Article  Google Scholar 

  14. Liu YG, Li HM, Li MQ (2020) Roles for shot dimension, air pressure and duration in the fabrication of nanocrystalline surface layer in TC17 alloy via high energy shot peening. J Manuf Process 56:562–570. https://doi.org/10.1016/j.jmapro.2020.05.019

    Article  Google Scholar 

  15. Lin Q, Liu H, Zhu C, Chen D, Zhou S (2020) Effects of different shot peening parameters on residual stress, surface roughness and cell size. Surf Coat Technol 398:126054. https://doi.org/10.1016/j.surfcoat.2020.126054

    Article  Google Scholar 

  16. Ongtrakulkij G, Khantachawana A, Kondoh K (2020) Effects of media parameters on enhance ability of hardness and residual stress of Ti6Al4V by fine shot peening. Surf Interfaces 18:100424. https://doi.org/10.1016/j.surfin.2019.100424

    Article  Google Scholar 

  17. Wu J, Liu H, Wei P, Lin Q, Zhou S (2020) Effect of shot peening coverage on residual stress and surface roughness of 18CrNiMo7-6 steel. Int J Mech Sci 183:105785. https://doi.org/10.1016/j.ijmecsci.2020.105785

    Article  Google Scholar 

  18. Maleki E, Unal O (2018) Roles of surface coverage increase and re-peening on properties of AISI 1045 carbon steel in conventional and severe shot peening processes. Surf Interfaces 11:82–90. https://doi.org/10.1016/j.surfin.2018.03.003

    Article  Google Scholar 

  19. Maleki E, Unal O (2020) Optimization of shot peening effective parameters on surface hardness improvement. Met Mater Int 1–13. https://doi.org/10.1007/s12540-020-00758-x

  20. Maleki E, Unal O, Amanov A (2018) Novel experimental methods for the determination of the boundaries between conventional, severe and over shot peening processes. Surf Interfaces 13:233–254. https://doi.org/10.1016/j.surfin.2018.09.003

    Article  Google Scholar 

  21. Mohamed ALMO, Farhat Z, Warkentin A, Gillis J (2020) Effect of a moving automated shot peening and peening parameters on surface integrity of Low carbon steel. J Mater Process Technol 227:116399. https://doi.org/10.1016/j.jmatprotec.2019.116399

    Article  Google Scholar 

  22. Wu J, Liu H, Wei P, Zhu C, Lin Q (2020) Effect of shot peening coverage on hardness, residual stress and surface morphology of carburized rollers. Surf Coat Technol 384:125273. https://doi.org/10.1016/j.surfcoat.2019.125273

    Article  Google Scholar 

  23. Liu H, Wei Y, Tan CKI, Ardi DT, Tan DC, Lee CJJ (2020) XRD and EBSD studies of severe shot peening induced martensite transformation and grain refinements in austenitic stainless steel. Mater Charact 168:110574. https://doi.org/10.1016/j.matchar.2020.110574

    Article  Google Scholar 

  24. Yang S, Zeng W, Yang J (2020) Characterization of shot peening properties and modelling on the fatigue performance of 304 austenitic stainless steel. Int J Fatigue 137:105621. https://doi.org/10.1016/j.ijfatigue.2020.105621

    Article  Google Scholar 

  25. Chen M, Xing S, Liu H, Jiang C, Zhan K, Ji V (2020) Determination of surface mechanical property and residual stress stability for shot-peened SAF2507 duplex stainless steel by in situ X-ray diffraction stress analysis. J Mater Res Technol 9(4):7644–7654. https://doi.org/10.1016/j.jmrt.2020.05.028

    Article  Google Scholar 

  26. Maleki E, Unal O, Kashyzadeh KR (2019) Efficiency analysis of shot peening parameters on variations of hardness, grain size and residual stress via taguchi approach. Met Mater Int 25(6):1436–1447. https://doi.org/10.1007/s12540-019-00290-7

    Article  Google Scholar 

  27. Su N, Chen M, Xie L, Shi W, Luo F (2020) Dynamic characterization of Ti-4Al-1.5 Mn titanium alloy and a simplified approach for shot peening simulation. Int J Adv Des Manuf Technol 111(9):2733–2747. https://doi.org/10.1007/s00170-020-06299-2

    Article  Google Scholar 

  28. Lin Q, Liu H, Zhu C, Parker RG (2019) Investigation on the effect of shot peening coverage on the surface integrity. Appl Surf Sci 489:66–72. https://doi.org/10.1016/j.apsusc.2019.05.281

    Article  Google Scholar 

  29. Xiao X, Tong X, Sun Y, Li Y, Wei SM, Gao G (2019) An analytical model for predicting peening stresses with general peening coverage. J Manuf Process 45:242–254. https://doi.org/10.1016/j.jmapro.2019.06.029

    Article  Google Scholar 

  30. Liu X, Liu J, Zuo Z, Zhang H (2019) Numerical study on residual stress redistribution of shot-peened aluminum 7075-T6 under fretting loading. Int J Mech Sci 160:156–164. https://doi.org/10.1016/j.ijmecsci.2019.06.031

    Article  Google Scholar 

  31. Gariépy A, Miao HY, Lévesque M (2017) Simulation of the shot peening process with variable shot diameters and impacting velocities. Adv Eng Softw 114:121–133. https://doi.org/10.1016/j.advengsoft.2017.06.011

    Article  Google Scholar 

  32. Bagherifard S, Ghelichi R, Guagliano M (2012) Numerical and experimental analysis of surface roughness generated by shot peening. Appl Surf Sci 258(18):6831–6840. https://doi.org/10.1016/j.apsusc.2012.03.11

    Article  Google Scholar 

  33. Maleki E, Farrahi GH, Kashyzadeh KR, Unal O, Gugaliano M, Bagherifard S (2020) Effects of conventional and severe shot peening on residual stress and fatigue strength of steel AISI 1060 and residual stress relaxation due to fatigue loading: experimental and numerical simulation. Met Mater Int 27:1–17. https://doi.org/10.1007/s12540-020-00890-8

    Article  Google Scholar 

  34. Zhang YL, Lai FQ, Qu SG, Ji V, Liu HP, Li XQ (2020) Effect of shot peening on residual stress distribution and tribological behaviors of 17Cr2Ni2MoVNb steel. Surf Coat Technol 386:125497. https://doi.org/10.1016/j.surfcoat.2020.125497

    Article  Google Scholar 

  35. Zhao C, Shi C, Wang Q, Zhao C, Gao YK, Yang QX (2020) Residual stress field of high-strength steel after shot peening by numerical simulation. J Mater Eng Perform 29(1):358–364. https://doi.org/10.1007/s11665-020-04567-6

    Article  Google Scholar 

  36. Sherafatnia K, Farrahi GH, Mahmoudi AH (2018) Effect of initial surface treatment on shot peening residual stress field: analytical approach with experimental verification. Int J Mech Sci 137:171–181. https://doi.org/10.1016/j.ijmecsci.2018.01.022

    Article  Google Scholar 

  37. Song Z, Komvopoulos K (2014) An elastic–plastic analysis of spherical indentation: constitutive equations for single-indentation unloading and development of plasticity due to repeated indentation. Mech Mater 76:93–101. https://doi.org/10.1016/j.mechmat.2014.05.005

    Article  Google Scholar 

  38. Kim T, Lee H, Hyun HC, Jung S (2013) Effects of Rayleigh damping, friction and rate-dependency on 3D residual stress simulation of angled shot peening. Mater Des 46:26–37. https://doi.org/10.1016/j.matdes.2012.09.030

    Article  Google Scholar 

  39. Wang XL, Wang Z, Wu G, Gan J, Yang Y, Huang HM, He JX, Zhong HL (2019) Combining the finite element method and response surface methodology for optimization of shot peening parameters. Int J Fatigue 129:105231. https://doi.org/10.1016/j.ijfatigue.2019.105231

    Article  Google Scholar 

  40. Ghasemi A, Hassani-Gangaraj SM, Mahmoudi AH, Farrahi GH, Guagliano M (2016) Shot peening coverage effect on residual stress profile by FE random impact analysis. Surf Eng 32(11):861–870. https://doi.org/10.1080/02670844.2016.1192336

    Article  Google Scholar 

  41. Xiao X, Tong X, Gao G, Zhao R, Liu Y, Li Y (2018) Estimation of peening effects of random and regular peening patterns. J Mater Process Technol 254:13–24. https://doi.org/10.1016/j.jmatprotec.2017.11.018

    Article  Google Scholar 

  42. Wang C, Wang L, Wang XG, Xu YJ (2018) Numerical study of grain refinement induced by severe shot peening. Int J Mech Sci 146:280–294. https://doi.org/10.1016/j.ijmecsci.2018.08.005

    Article  Google Scholar 

  43. Wang C, Hu JC, Gu ZB, Xu YJ, Wang XG (2017) Simulation on residual stress of shot peening based on a symmetrical cell model Chin. Aust J Mech Eng 30(2):344–351. https://doi.org/10.1007/s10033-017-0084-6

    Article  Google Scholar 

  44. Kim T, Lee H, Jung S, Lee JH (2012) A 3D FE model with plastic shot for evaluation of equi-biaxial peening residual stress due to multi-impacts. Surf Coat Technol 206(13):3125–3136. https://doi.org/10.1016/j.surfcoat.2011.12.042

    Article  Google Scholar 

  45. Wang C, Wang CL, Wang L, Lai YB, Li K, Zhou YJ (2020) A dislocation density–based comparative study of grain refinement, residual stresses, and surface roughness induced by shot peening and surface mechanical attrition treatment. Int J Adv Manuf Technol 108:505–525. https://doi.org/10.1007/s00170-020-05413-8

    Article  Google Scholar 

  46. Wei Q, Wu WX, He W, Zhu JG, Zhang J (2020) 3D finite element simulation of shot peening using a sequential model with multiple-shot impacts. Int J Comp Meth-Sing 17(03):1850137. https://doi.org/10.1142/S0219876218501372

    Article  MATH  Google Scholar 

  47. Miao HY, Larose S, Perron C, Lévesque M (2009) On the potential applications of a 3D random finite element model for the simulation of shot peening. Adv Eng Softw 40(10):1023–1038. https://doi.org/10.1016/j.advengsoft.2009.03.013

    Article  MATH  Google Scholar 

  48. Rougier E, Munjiza A, Lei Z, Chau VT, Knight EE, Hunter A, Srinivasan G (2020) The combined plastic and discrete fracture deformation framework for finite-discrete element methods. Int J Numer Methods Eng 121(5):1020–1035. https://doi.org/10.1002/nme.6255

    Article  MathSciNet  Google Scholar 

  49. Gao W, Zang M, Xu W (2014) An approach to freely combining 3D discrete and finite element methods. Int J Comp Meth-Sing 11(01):1350051. https://doi.org/10.1142/S0219876213500515

    Article  MathSciNet  MATH  Google Scholar 

  50. Chung YC, Ooi JY (2012) Linking of discrete element modelling with finite element analysis for analysing structures in contact with particulate solid. Powder Technol 217:107–120. https://doi.org/10.1016/j.powtec.2011.10.016

    Article  Google Scholar 

  51. Hong T, Ooi SB (2008) A numerical simulation to relate the shot peening parameters to the induced residual stresses. Eng Fail Anal 15(8):1097–1110. https://doi.org/10.1016/j.engfailanal.2007.11.017

    Article  Google Scholar 

  52. Jebahi M, Gakwaya A, Lévesque J, Mechri O, Ba K (2016) Robust methodology to simulate real shot peening process using discrete-continuum coupling method. Int J Mech Sci 107:21–33. https://doi.org/10.1016/j.ijmecsci.2016.01.005

    Article  Google Scholar 

  53. Tu F, Delbergue D, Klotz T, Bag A, Miao H, Bianc’hetti C, Brochu M, Bocher P, Levesque M (2018) Discrete element-periodic cell coupling model and investigations on shot stream expansion, Almen intensities and target materials. Int J Mech Sci 145:353–366. https://doi.org/10.1016/j.ijmecsci.2018.06.023

    Article  Google Scholar 

  54. Zhang J, Lu S, Wu T, Zhou Z, Zhang W (2018) An evaluation on SP surface property by means of combined FEM-DEM shot dynamics simulation. Adv Eng Softw 115:283–296. https://doi.org/10.1016/j.advengsoft.2017.10.001

    Article  Google Scholar 

  55. Ahmad AS, Wu Y, Gong H (2020) Coupled finite and discrete element shot peening simulation based on Johnson–Cook material model. Proc Inst Mech Eng Part L 234(7):974–987. https://doi.org/10.1177/1464420720921211

    Article  Google Scholar 

  56. Marini M, Piona F, Fontanari V, Bandini M, Benedetti M (2020) A new challenge in the DEM/FEM simulation of the shot peening process: The residual stress field at a sharp edge. Int J Mech Sci 169:105327. https://doi.org/10.1016/j.ijmecsci.2019.105327

    Article  Google Scholar 

  57. Hu YZ, Tonder K (1992) Simulation of 3-D random rough surface by 2-D digital filter and Fourier analysis. Int J Mach Tool Manu 32(1-2):83–90. https://doi.org/10.1016/0890-6955(92)90064-n

    Article  Google Scholar 

  58. Wu G, Wang Z, Gan J, Yang Y, Meng QS, Wei S, Huang HM (2019) FE analysis of shot-peening-induced residual stresses of AISI 304 stainless steel by considering mesh density and friction coefficient. Surf Eng 35(3):242–254. https://doi.org/10.1080/02670844.2018.1470817

    Article  Google Scholar 

  59. Bagherifard S, Ghelichi R, Guagliano M (2014) Mesh sensitivity assessment of shot peening finite element simulation aimed at surface grain refinement. Surf Coat Technol 243:58–64. https://doi.org/10.1016/j.surfcoat.2012.04.002

    Article  Google Scholar 

  60. Karpat Y (2011) Temperature dependent flow softening of titanium alloy Ti6Al4V: an investigation using finite element simulation of machining. J Mater Process Technol 211(4):737–749. https://doi.org/10.1016/j.jmatprotec.2010.12.008

    Article  Google Scholar 

  61. Xie L, Zhang J, Xiong C, Wu L, Jiang C, Lu W (2012) Investigation on experiments and numerical modelling of the residual stress distribution in deformed surface layer of Ti-6Al-4V after shot peening. Mater Des 41:314–318. https://doi.org/10.1016/j.matdes.2012.05.024

    Article  Google Scholar 

  62. Yin XN (2015) Surface integrity study on shot peened Ti-6Al-4V titanium alloy, MD-thesis. Dalian University of Technology

  63. Klemenz M (2009) Anwendung der simulation der RandschichtausbildungbeimKugelstrahlen auf die Abschätzung der SchwingfestigkeitgekerbterBauteile. PhD-thesis. Shaker, Aachen: Universität Karlsruhe

Download references

Funding

The authors are grateful for the supports provided by Anhui Provincial Natural Science Foundation (2008085QE228), Natural Science Foundation of Anhui Higher Education Institutions of China (KJ2019A0126), and Graduate Innovation Foundation of Anhui University of Science and Technology (2020CX2048, 2021CX2061).

Author information

Authors and Affiliations

Authors

Contributions

KL: modeling, data curation, and writing. CW: data analysis, investigation, writing, and reviewing. XH: modeling and data curation. YZ: reviewing and editing. YL: reviewing and grammar checking. CW: investigation and supervision.

Corresponding author

Correspondence to Cheng Wang.

Ethics declarations

Ethics approval

It is approved that the paper is original and has been written based on the authors’ own finding. All the figures and tables are original, and every expression from other published works were acknowledged and referenced.

Consent to participate

All authors are aware and satisfied of the authorship order and correspondence of the paper.

Consent for publication

All authors are satisfied that the last revised version of the paper is published without any change.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Wang, C., Hu, X. et al. DEM-FEM coupling simulation of residual stresses and surface roughness induced by shot peening of TC4 titanium alloy. Int J Adv Manuf Technol 118, 1469–1483 (2022). https://doi.org/10.1007/s00170-021-07905-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07905-7

Keywords

Navigation