Skip to main content
Log in

Review on laser-induced etching processing technology for transparent hard and brittle materials

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The high-efficiency processing and the high geometrical precision requirements on the transparent hard-brittle optoelectrical materials are attractive to the modern industrial’s interest. Laser-induced related ablation/etching technology is proved to be effective processing for micro/nanofabrication of the transparent hard and brittle materials, due to its unique advantages of mechanical micro-machining with controllable thermal damage. There are some influencing factors like laser duration, target-to-substrate distance (work distance), target materials (absorption resolution), laser fluence, and circumstance (pressure, air, resolution) which were discussed in this review. The processing qualities in various methods were compared and described in this review. The new development of laser-induced related ablation/etching and related advanced technologies is introduced at the end of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

The data sets supporting the results of this article are included within the article and its additional files.

References

  1. Zhou H, Liang ZY (2017) Simulation research on micro-grinding force of BK7 based on multi abrasive grains cutting. Heilongjiang Sci 008:1–5

    Google Scholar 

  2. Xie XZ, Zhou CX, Wei X, Hu W, Ren QL (2019) Laser machining of transparent brittle materials: from machining strategies to applications. Opto-Electron Adv 2:11–23

    Article  Google Scholar 

  3. Zhang T, Jiang F, Huang H, Lu J, Wu YQ, Jiang ZY, Xu XP (2021) Towards understanding the brittle-ductile transition in the extreme manufacturing. Int J Extreme Manuf 3:022001

    Article  Google Scholar 

  4. Lin JM, Jiang F, Wen QL, Wu YQ, Lu J, Tian ZG, Wang NC (2021) Deformation anisotropy of nano-scratching on C-plane of sapphire: a molecular dynamics study and experiment. Appl Surf Sci 546:149091

    Article  Google Scholar 

  5. Lin JM, Jiang F, Xu XP, Lu J, Tian ZG, Wen QL, Lu XZ (2021) Molecular dynamics simulation of nanoindentation on c-plane sapphire. Mech Mater 154:103716

    Article  Google Scholar 

  6. Wang NC, Jiang F, Xu XP, Duan N, Wen QL, Lu XZ (2019) Research on the machinability of A-plane sapphire under diamond wire sawing in different sawing directions. Ceram Int 45:10310–10320

    Article  Google Scholar 

  7. Wang LJ, Hu ZW, Yu YQ, Xu XP (2018) Evaluation of double-sided planetary grinding using diamond wheels for sapphire substrates. Crystals 8:262

    Article  Google Scholar 

  8. Luo QF, Lu J, Xu XP, Jiang F (2017) Removal mechanism of sapphire substrates (0001, 1120 and 1010) in mechanical planarization machining. Ceram Int 43:16178–16184

    Article  Google Scholar 

  9. Reyntjens S, Puers R (2001) A review of focused ion beam applications in microsystem technology. J Micromech Microeng 11:287–300

    Article  Google Scholar 

  10. Li SX, Bai ZC, Huang Z, Zhang X, Qin SJ, Mao WX (2012) Study on the machining mechanism of fabrication of micro channels in fused silica substrates by laser-induced plasma. Acta Phys Sin 61:354–361

    Google Scholar 

  11. Lee WB, Tol S, Cheung CF, Gao D, Chiu WM (2003) Ultra-precision machining of optical microstructures. Nanotechnol Precis Eng 1:57–61

    Google Scholar 

  12. Feng KM, Cao SS, Lei LS (1989) Study on the technology of high speed and high finish grinding. New Technol New Process 000:21–23

    Google Scholar 

  13. Yamamura K, Takiguchi T, Ueda M, Hattori AN, Zettsu N (2010) High-integrity finishing of 4H-SiC (0001) by plasma-assisted polishing. Adv Mater Res 126-128:423–428

    Article  Google Scholar 

  14. Liu ZQ, Yang D, Wang B (2016) High performance cutting and high integrity machining technology. Aeronaut Manuf Technol 000:34–43

    Google Scholar 

  15. Wu X, Shen JY, Jiang F, Wu HR, Li L (2021) Study on the oxidation of WC-Co cemented carbide under different conditions. Int J Refract Met Hard Mater 94:105381

    Article  Google Scholar 

  16. Cao TT (2016) Reserch of the hole drilling of K24 superalloy technology by femtosecond laser. Harbin Institute of Technology, Harbin

    Google Scholar 

  17. Peng LY, Lin JX, Tang P, Guo L, Zhang QM (2014) Research on properties of femtosecond laser ablation of 0Cr18Ni9 stainless steel. Laser Optoelectron Progress 51:071401

    Article  Google Scholar 

  18. Zhang DX (2007) Fabrication of microoptical element with femtosecond laser. Tianjin University, Tianjin

    Google Scholar 

  19. Liu MN, Li MT, Sun HB (2018) 3D femtosecond laser nanoprinting. Laser Optoelectron Progress 55:98–110

    Google Scholar 

  20. Rong LR (2013) New application of new generation femtosecond laser in ultra-fine cold processing. MW Metal Cutt 29-32

  21. Yan XW, Jia JY (2010) The study of principles and etch properties of focus ion beam system. Equip Electron Prod Manuf 09:19–21

    Google Scholar 

  22. Qu MN, Shen YL, Wu LY, Tian M, Wang Y, Cheng XL (2020) Topology control for focused ion beam milling of lithium niobate. J Chin Electron Microsc Soc 39:189–195

    Google Scholar 

  23. Shen YL, Qu MN, Wang Y, Fu XC (2020) Dynamic analysis on deformation of three-dimensional structures based on FIB irradiation technique. Res Explor Lab 39:44–47

    Google Scholar 

  24. Ray SK, Maiti CK, Chakraborti NB (1993) Rapid plasma etching of silicon, silicon dioxide and silicon nitride using microwave discharges. Semicond Sci Technol 8:599–604

    Article  Google Scholar 

  25. Bliznetsov V, Lin HM, Zhang YJ, Johnson D (2015) Deep SiO2 etching with Al and AlN masks for MEMS devices. J Micromech Microeng 25:087002

    Article  Google Scholar 

  26. Shao Y (2017) Study on water-assisted laser induced plasma etching of Pyrex7740 Glass. Wenzhou University, Wenzhou

    Google Scholar 

  27. Lu XZ, Jiang F, Lei TP, Zhou R, Zhang CT (2017) Laser-induced plasma-assisted ablation and metallization on C-Plane single crystal sapphire (c-Al2O3). Micromachines 8:300

    Article  Google Scholar 

  28. Zhang J, Sugioka K, Midorikawa K (1998) Laser-induced plasma-assisted ablation of fused quartz using the fourth harmonic of a Nd+: YAG laser. Appl Physics A 67:545–549

    Article  Google Scholar 

  29. Zhou Y, Gao YB, Wu BX, Tao S, Liu Z (2014) Deburring effect of plasma produced by nanosecond laser ablation. J Manuf EnceEng 136:024501

    Article  Google Scholar 

  30. Sarma U, Joshi SN (2020) Machining of micro-channels on polycarbonate by using Laser-Induced Plasma Assisted Ablation (LIPAA). Opt Laser Technol 128:106527

    Article  Google Scholar 

  31. Tang H W. Laser induced plasma micro/nanomachining. (Harbin Institute of Technology, Harbin, 2019).

  32. Xie XZ, Yuan XR, Chen WF, Wei X, Hu W, Hu MF, Gao XY (2013) New development and applications of laser-induced cavitation bubbles. Laser Optoelectron Progress 50:168–174

    Google Scholar 

  33. Pallav K, Ehmann K F. 2010 Feasibility of laser induced plasma micro-machining (LIP-MM). In: Ratchev S. (eds) Precision Assembly Technologies and Systems. IPAS 2010. IFIP Advances in Information and Communication Technology, vol 315. Springer, Berlin, Heidelberg. https://www.researchgate.net/publication/220832576

  34. Teichman JMH, Glickman RD, Chan KF, Jansen ED, Welch AJ (2005) Plasma bubble formation induced by holmium laser. Urology 65:627–628

    Article  Google Scholar 

  35. Saxena I, Ehmann K (2014) Multimaterial capability of laser induced plasma micromachining. Micro Nano-Manu 2:31005–31005

    Article  Google Scholar 

  36. Stolarski DJ, Hardman JM, Bramlette CM, Noojin GD, Thomas RJ, Rockwell BA, Roach WP (1995) Integrated light spectroscopy of laser-induced breakdown in aqueous media. Proc SPIE - Int Soc Opt Eng 2391:100–109

    Google Scholar 

  37. Saxena I, Ehmann K, Cao J (2014) Laser-induced plasma in aqueous media: numerical simulation and experimental validation of spatial and temporal profiles. Appl Opt 53:8283–8294

    Article  Google Scholar 

  38. Yuan XR (2013) Study on the processing mechanism and technological rule of sapphire substrate by laser-induced backside wetting etching. Guangdong University of Technology, Guangzhou

    Google Scholar 

  39. Huang XD (2015) Numerical simulation and experimental investigation in laser-induced backside wet etching of sapphire. Guangdong University of Technology, Guangzhou

    Google Scholar 

  40. Long JY, Li JG, Li ML, Xie XZ (2019) Fabrication of robust metallic micropatterns on glass surfaces by selective metallization in laser-induced porous surface structures. Surf Coat Technol 374:338–344

    Article  Google Scholar 

  41. Long JY, Zhou CX, Cao ZQ, Xie XZ, Hu W (2019) Incubation effect during laser-induced backside wet etching of sapphire using high-repetition-rate near-infrared nanosecond lasers. Opt Laser Technol 109:61–70

    Article  Google Scholar 

  42. Huang ZQ, Hong MH, Do TBM, Lin QY (2008) Laser etching of glass substrates by 1064 nm laser irradiation. Appl Phys A Mater Sci Process a93:159–163

    Article  Google Scholar 

  43. Bonse J, Wrobel JM, Krüger J, Kautek W (2001) Ultrashort-pulse laser ablation of indium phosphide in air. Appl Physics A 72:89–94

    Article  Google Scholar 

  44. Hanada Y, Sugioka K, Miyamoto I, Midorikawa K (2005) Double-pulse irradiation by laser-induced plasma-assisted ablation (LIPAA) and mechanisms study. Appl Surf Sci 248:276–280

    Article  Google Scholar 

  45. Hanada Y, Sugioka K, Obata K, Gaenov SV, Miyamoto I, Midorikawa K (2006) Transient electron excitation in laser-induced plasma-assisted ablation of transparent materials. J Appl Phys 99:043301

    Article  Google Scholar 

  46. Hong MH, Sugioka K, Wu DJ, Chew KJ, Chong TC (15, 2003) Laser-induced plasma-assisted ablation and its applications. Proc SPIE Int Soc Opt Eng 4830:492–506

  47. Hong M H, Xie Q, Lim B C, Sugioka K, Chong T C. Low resistivity glass metallization by laser induced plasma assisted ablation (LIPAA). Proceedings of Spie the International Society for Optical Engineering 5662.

  48. Hong M H, Sugioka K, Lu Y F, Midorikawa K, Chong T C. Optical diagnostics in laser-induced plasma-assisted ablation of fused quartz. Proc. SPIE 4088, First International Symposium on Laser Precision Microfabrication. https://doi.org/10.1117/12.405763

  49. Xie XZ, Che RH, Wei X, Hu W, Ren QL (2015) Study on the technological rule of laser-induced backside wet etching sapphire substrates. Appl Laser 35:236–241

    Article  Google Scholar 

  50. Cheng JY, Yen MH, Wei CW, Chuang YC, Young TH (2005) Crack-free direct-writing on glass using a low-power UV laser in the manufacture of a microfluidic chip. J Micromech Microeng 15:1147–1156

    Article  Google Scholar 

  51. Schwaller P, Zehnder S, Arx UV, Neuenschwander B (2011) A novel model for the mechanism of laser-induced backside wet etching in aqueous Cu solutions using ns pulses at 1064 nm. Phys Procedia 12(part-PB):188–194

    Article  Google Scholar 

  52. Xie XZ, Zhou CX, Gao XY, Ren QL, Hu W (2020) Study on working solution of laser-induced backside wet etching. Laser Technol 44:7–13

    Google Scholar 

  53. Xie XZ (2013) Cavitation bubble dynamics during laser wet etching of transparent sapphire substrates by 1064 nm laser irradiation. J Laser Micro Nanoeng 8:259–265

    Article  Google Scholar 

  54. Ehrhardt M, Lorenz P, Yunxiang P, Han B, Zimmer K (2017) Laser-induced back-side etching with liquid and the solid hydrocarbon absorber films of different thicknesses. Appl Physics A 123:251

    Article  Google Scholar 

  55. Zhou CX (2019) Study on mechanism of laser backside wet etching sapphire substrate based on metal salt solution. Guangdong University of Technology, Guangzhou

    Google Scholar 

  56. Zheng JX, Gao BR, Xue YF, Luo ZY, Han SG, Liu XQ, Chen QD (2021) Fabrication of sapphire grating by femtosecond laser assisted etching (invited). Acta Photonica Sin 50:0650109

    Google Scholar 

  57. Dong ZW, Zhang WB, Zheng LW, Jiang T, Fan GX, Zhao X, Zhao QL, Chen DY, Xia YQ (2015) Processing of diamond applying femtosecond and nanosecond laser pulses. Infrared Laser Eng 44:893–896

    Google Scholar 

  58. Chen TQ, Yang J, Jia TQ (2021) A study on ablation quality of silicon by femtosecond laser pulse trains. Acta Photonica Sin 50:0650112

    Google Scholar 

  59. Liu HG, Li Y, Lin WX, Hong MH (2020) High-aspect-ratio crack-free microstructures fabrication on sapphire by femtosecond laser ablation. Opt Laser Technol 132:106472

    Article  Google Scholar 

  60. Wang HL, Wen QL, Xu XP, Lu J, Jiang F, Cui CC (2021) Ablation characteristics and material removal mechanisms of a single-crystal diamond processed by nanosecond or picosecond lasers. Opt Express 29:22714–22731

    Article  Google Scholar 

  61. Wu SZ, Lv XD, Li CZ, Zhang CC, Li JQ, Xiao Y, Wu D (2021) Advances in the preparation of functional surfaces with special wettability by femtosecond laser ablation (invited). Acta Photonica Sin 50:0650102

    Google Scholar 

  62. Wang L, Fan H, Li ZZ, Wang Y, Xu YS, Wang L, Chen QD (2021) Fabrication of time capsules by femtosecond laser-induced birefringence (Invited). Acta Photonica Sin 50:0650105

    Google Scholar 

  63. Li L, Hong MH, Schmidt M, Zhong ML, Malshe A, In’t Veld BH, Kovalenko V (2011) Laser nano-manufacturing – State of the art and challenges. CIRP Ann Manuf Technol 60:735–755

    Article  Google Scholar 

  64. Zhao Y, Li Q, Wang ZF, Dai ZR, Chen T (2019) Microchannel fabrication in fused quartz by backside laser-induced plasma ablation using 248 nm KrF excimer laser. Appl Sci 9:5320

    Article  Google Scholar 

  65. Zhang J, Sugioka K, Midorikawa K (1998) Direct fabrication of microgratings in fused quartz by laser-induced plasma-assisted ablation with a KrF excimer laser. Opt Lett 23:1486–1488

    Article  Google Scholar 

  66. Rahman TU, Urrehman Z, Ullah S, Qayyum H, Dogar AH (2019) Laser-induced plasma-assisted ablation (LIPAA) of glass: effects of the laser fluence on plasma parameters and crater morphology. Opt Laser Technol 120:105768

    Article  Google Scholar 

  67. Hopp B, Vass C, Smausz T (2007) Laser induced backside dry etching of transparent materials. Appl Surf Sci 253:7922–7925

    Article  Google Scholar 

  68. Zhang J, Sugioka K, Midorikawa K (1999) High-quality and high-efficiency machining of glass materials by laser-induced plasma-assisted ablation using conventional nanosecond UV, visible, and infrared lasers. Appl Physics A 69:S879–S882

    Article  Google Scholar 

  69. Yang K (2018) Laser induced plasma deposition technique and its application. Huazhong University of Science & Technology, Wuhan

    Google Scholar 

  70. Feng CL, Wang HX, Qin SJ (2010) Research of the fabrication of micro channels in a fused silica substrate using laser-induced plasma. Laser Technol 34:433–436

    Google Scholar 

  71. Hanada Y, Sugioka K, Takase F, Miyamoto I, Takai H, Midorikawa K (2005) Microfabrication of sapphire by laser-induced plasma-assisted ablation (LIPAA). J High Temp Soc 30:105–110

    Article  Google Scholar 

  72. Hong MH, Sugioka K, Lu YF, Midorikawa K, Chong TC (2015) Laser microfabrication of transparent hard materials and signal diagnostics. Appl Surf Sci 186:556–561

    Article  Google Scholar 

  73. Liu JH, Lu JZ, Lei JJ, Gao X, Lin JQ (2020) Effect of ambient gas pressure on characteristics of air plasma induced by nanosecond laser. Chin J Phys 69:208–214

    Google Scholar 

  74. Wang X S, Huang Y K, Shen B, Xu B, Zhang J, Miu J L. Advances of short and ultrashort pulse laser induced plasma micro-machining. Laser Optoelectron Progress 57:111405

  75. Bogaerts A, Chen Z, Gijbels R, Vertes A (2003) Laser ablation for analytical sampling: what can we learn from modeling. Spectrochim Acta Part B Atomic Spectrosc 58:1867–1893

    Article  Google Scholar 

  76. Lin ZY, Jian JT, Wang XH, Hang W (2018) Expansion characteristics of atom and ion component in laser-induced aluminum plasma. Acta Phys Sin 67:185201

    Article  Google Scholar 

  77. Li C, Nikumb S (2003) Optical quality micro-machining of glass with focused laser-produced metal plasma etching in the atmosphere. Appl Opt 42:2383–2387

    Article  Google Scholar 

  78. Wu BX (2008) High-intensity nanosecond-pulsed laser-induced plasma in air, water, and vacuum: A comparative study of the early-stage evolution using a physics-based predictive model. Appl Phys Lett 93:1021–1073

    Google Scholar 

  79. Cowpe JS, Pilkington RD, Astin JS, Hill AE (2009) The effect of ambient pressure on laser-induced silicon plasma temperature, density and morphology. J Phys D Appl Phys 42(8):165202–165209

    Article  Google Scholar 

  80. Bashir S, Farid N, Mahmood K, Rafique MS (2012) Influence of ambient gas and its pressure on the laser-induced breakdown spectroscopy and the surface morphology of laser-ablated Cd. Appl Physics A 107:203–212

    Article  Google Scholar 

  81. Hanada Y, Sugioka K, Miyamoto I, Midorikawa K (2007) Colour marking of transparent materials by laser-induced plasma-assisted ablation (LIPAA). J Physics Conf 59:687–690

    Article  Google Scholar 

  82. Hong MH, Sugioka K, Wu DJ, Wong LL, Chong TC (2001) Laser-induced-plasma-assisted ablation for glass microfabrication. Proc SPIE Int Soc Opt Eng 4595:138–146

    Google Scholar 

  83. Hanada Y, Sugioka K, Gomi Y, Yamaoka H, Otsuki O, Miyamoto I, Midorikawa K (2004) Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micro-machining of glass materials. Appl Physics A 79:1001–1003

    Article  Google Scholar 

  84. Li Y, Liu HG, Hong MH (2019) High-quality sapphire microprocessing by dual-beam laser induced plasma assisted ablation. Opt Express 28:6242–6250

    Article  Google Scholar 

  85. Luo F, Long H, Hu SL, Jiang C, Li B, Wang YQ (2004) Preparation of metallic coating on surface of diamond particles by pulsed laser deposition. Chin J Lasers 31:1203–1206

    Google Scholar 

  86. Pan CF, Chen KY, Liu B, Ren L, Wang JR, Hu QK, Liang L, Zhou JH, Jiang LL (2017) Fabrication of micro-texture channel on glass by laser-induced plasma-assisted ablation and chemical corrosion for microfluidic devices. J Mater Process Technol 240:314–323

    Article  Google Scholar 

  87. Hanada Y, Sugioka K, Takase H, Midorikawa K (2005) Selective metallization of polyimide by laser-induced plasma-assisted ablation (LIPAA). Appl Physics A 80:111–115

    Article  Google Scholar 

  88. Xu SJ, Liu B, Pan CF, Ren L, Jiang LL (2017) Ultrafast fabrication of micro-channels and graphite patterns on glass by nanosecond laser-induced plasma-assisted ablation (LIPAA) for electrofluidic devices. J Mater Process Technol 247:204–213

    Article  Google Scholar 

  89. Mason KJ, Goldberg JM (1987) Production and initial characterization of a laser-induced plasma in a pulsed magnetic field for atomic spectrometry. Anal Chem 59:1250–1255

    Article  Google Scholar 

  90. Wolff S, Saxena I (2014) A preliminary study on the effect of external magnetic fields on laser-induced plasma micro-machining (LIPMM). Manuf Lett 2:54–59

    Article  Google Scholar 

  91. Saxena I, Wolff S, Cao J (2015) Unidirectional magnetic field assisted laser induced plasma micro-machining. Manuf Lett 3:1–4

    Article  Google Scholar 

  92. Xue SM, Chen GY, Su MG, Shen BZ, Zhang ZR (2006) An experimental investigation on the properties of laser-induced Al plasma under additional electric field. J Northwest Normal Univ 42:50–53

    Google Scholar 

  93. Wen QL, Wang HL, Cheng GH, Jiang F, Xu XP (2020) Improvement of ablation capacity of sapphire by gold film-assisted femtosecond laser processing. Opt Lasers Eng 128:106007

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support by National Natural Science Foundation of China (No. 51835004, No. 51975222, No. 51805176) and Natural Science Foundation of Fujian (Grant No. 2019J01059).

Funding

The authors gratefully acknowledge financial support by National Natural Science Foundation of China (No. 51835004, No. 51975222, No. 51805176) and Natural Science Foundation of Fujian (Grant No. 2019J01059).

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to the creation of this manuscript for important intellectual content. Xizhao Lu, Feng Jiang, and Qiuling Wen provide ideas for the manuscript; Jialin Chen and Xizhao Lu collected data and wrote the manuscript. Jing Lu, Dajiang Lei, and Yongcheng Pan provided suggestions and materials for revision of the manuscript.

Corresponding authors

Correspondence to Xizhao Lu or Feng Jiang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

All authors agree to participate to this study.

Consent to publish

All authors agree to publish to this paper.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Lu, X., Wen, Q. et al. Review on laser-induced etching processing technology for transparent hard and brittle materials. Int J Adv Manuf Technol 117, 2545–2564 (2021). https://doi.org/10.1007/s00170-021-07853-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07853-2

Keywords

Navigation