Skip to main content

Advertisement

Log in

Spark plasma sintering of titanium matrix composite—a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Based on the need to fabricate new or modified materials that possess demanding mechanical and wear properties that are needed for operation in extreme environmental conditions, it is necessary to understand the fundamentals of such materials based on their physical metallurgy and fabrication techniques to match up with industrial growth. The unique properties of titanium and its alloys have prompted research into ways of improving their utilization as a potential candidate for applications in extreme conditions. A way to improve the mechanical properties of titanium and its alloy is to develop a titanium matrix composite by adding ceramic reinforcements and choosing the appropriate fabrication route and parameters. The development of titanium matrix composites, the fabrication methods, and the incorporation of reported research works are discussed in this review. This serves to give a wide range of understanding into the development of titanium matrix composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable

References

  1. Chuvil'deev VN, Kopylov VI, Nokhrin AV, Tryaev PV, Kozlova NA, Tabachkova NY et al (2017) Study of mechanical properties and corrosive resistance of ultrafine-grained α-titanium alloy Ti-5Al-2V. J Alloys Compd 723:354–367

    Article  Google Scholar 

  2. Falodun OE, Obadele BA, Oke SR, Maja ME, Olubambi PA (2018) Effect of sintering parameters on densification and microstructural evolution of nano-sized titanium nitride reinforced titanium alloys. J Alloys Compd 736:202–210

    Article  Google Scholar 

  3. Khidhir B, Ahmed YM, Sahari K, Ishak M. Titanium and its alloy 2014.

    Google Scholar 

  4. Niinomi M (2019) Titanium alloys. In: Narayan R (ed) Encyclopedia of Biomedical Engineering. Elsevier, Oxford, pp 213–224

    Chapter  Google Scholar 

  5. Hajbagheri FA, Bozorg SK, Amadeh A (2008) Microstructure and wear assessment of TIG surface alloying of CP-titanium with silicon. J Mater Sci 43(17):5720–5727

    Article  Google Scholar 

  6. Rominiyi A, Shongwe M, Maledi NB, Jeje S, Babalola B, Lepele P (2019) Influence of sintering temperature on densification, microstructure and mechanical properties of Ti-6Ni alloy developed via spark plasma sintering. IOP Conference Series: Materials Science and Engineering: IOP Publishing, pp 012017, 655

  7. Prando D, Brenna A, Diamanti MV, Beretta S, Bolzoni F, Ormellese M et al (2017) Corrosion of titanium: part 1: aggressive environments and main forms of degradation. 15(4):e291–e302

  8. Falodun OE, Obadele BA, Oke SR, Ige OO, Olubambi PA, Lethabane ML et al (2018) Influence of spark plasma sintering on microstructure and wear behaviour of Ti-6Al-4V reinforced with nanosized TiN. Trans Nonferrous Metals Soc China 28(1):47–54

    Article  Google Scholar 

  9. Ceschini L, Lanzoni E, Martini C, Prandstraller D, Sambogna G (2008) Comparison of dry sliding friction and wear of Ti6Al4V alloy treated by plasma electrolytic oxidation and PVD coating. Wear. 264(1):86–95

    Article  Google Scholar 

  10. Ureña J, Tabares E, Tsipas S, Jiménez-Morales A, Gordo E (2019) Dry sliding wear behaviour of β-type Ti-Nb and Ti-Mo surfaces designed by diffusion treatments for biomedical applications. J Mech Behav Biomed Mater 91:335–344

    Article  Google Scholar 

  11. Cassar G, Wilson JCA-B, Banfield S, Housden J, Matthews A, Leyland A (2010) A study of the reciprocating-sliding wear performance of plasma surface treated titanium alloy. Wear. 269(1):60–70

    Article  Google Scholar 

  12. El-Morsy AW (2018) Wear analysis of Ti-5Al-3V-2.5Fe alloy using factorial design approach and fractal geometry. Eng Technol Appl Sci Res 8(1):2379–2384

  13. Qin Y, Geng L, Ni D (2011) Dry sliding wear behavior of extruded titanium matrix composite reinforced by in situ TiB whisker and TiC particle. J Mater Sci 46(14):4980–4985

    Article  Google Scholar 

  14. Li X, Zhou Y, Li Y, Ji X, Wang S (2015) Dry sliding wear characteristics of Ti-6.5 Al-3.5 Mo-1.5 Zr-0.3 Si alloy at various sliding speeds. Metall Mater Trans A 46(9):4360–4368

    Article  Google Scholar 

  15. Mall S, Nichols T (1997) Titanium matrix composites: mechanical behavior. CRC Press

    Google Scholar 

  16. Lütjering G, Williams JC (2007) Titanium, engineering materials and processes, 2nd edn. Springer

    Google Scholar 

  17. Saheb N, Iqbal Z, Khalil A, Hakeem AS, Al Aqeeli N, Laoui T et al (2012) Spark plasma sintering of metals and metal matrix nanocomposites: a review. J Nanomater 2012:983470

    Article  Google Scholar 

  18. Zadra M, Girardini L (2014) High-performance, low-cost titanium metal matrix composites. Mater Sci Eng A 608:155–163

    Article  Google Scholar 

  19. Hassan H, Hamid ZA (2011) Electrodeposited Ni–Cr2O3 nanocomposite anodes for ethanol electrooxidation. Int J Hydrog Energy 36(8):5117–5127

    Article  Google Scholar 

  20. Fayomi O, Popoola A, Aigbodion V (2014) Effect of thermal treatment on the interfacial reaction, microstructural and mechanical properties of Zn–Al–SnO2/TiO2 functional coating alloys. J Alloys Compd 617:455–463

    Article  Google Scholar 

  21. Ruidong X, Junli W, Zhongcheng G, Hua W (2008) Effects of rare earth on microstructures and properties of Ni-WP-CeO2-SiO2 nano-composite coatings. J Rare Earths 26(4):579–583

    Article  Google Scholar 

  22. Peters M, Kumpfert J, Ward CH, Leyens C (2003) Titanium alloys for aerospace applications. Adv Eng Mater 5(6):419–427

    Article  Google Scholar 

  23. Chandran KR, Panda K, Sahay S (2004) TiB w-reinforced Ti composites: processing, properties, application prospects, and research needs. JOM. 56(5):42–48

    Article  Google Scholar 

  24. Amsc N, CMPS AA (1999) Composite materials handbook. Department of Defense handbook composite materials handbook vol 4 metal matrix composites (mil-hdbk-17-4a volume 4 of 5 17 June 2002 superseding mil-hdbk-17-4 21 september 1999), 4

  25. Liu Y, Chen L, Tang H, Liu CT, Liu B, Huang B (2006) Design of powder metallurgy titanium alloys and composites. Mater Sci Eng A 418(1-2):25–35

    Article  Google Scholar 

  26. Kieschke R, Deve H, McCullough C, Griffin C. Processing of tow-based titanium composites. Recent advances in titanium metal matrix composites . 1995:3-17.

  27. Nathal MV. NASA and superalloys: A customer, a participant, and a referee. 2008.

    Google Scholar 

  28. Anderson RE (1998) Titanium matrix composite turbine engine component consortium (TMCTECC). Advanced Materials and Process Technology Information Analysis Center (AMPTIAC) Newsletter, Winter

  29. Munir ZA, Quach DV, Ohyanagi M (2011) Electric current activation of sintering: a review of the pulsed electric current sintering process. J Am Ceram Soc 94(1):1–19

    Article  Google Scholar 

  30. Munir KS, Zheng Y, Zhang D, Lin J, Li Y, Wen C (2017) Microstructure and mechanical properties of carbon nanotubes reinforced titanium matrix composites fabricated via spark plasma sintering. Mater Sci Eng A 688:505–523

    Article  Google Scholar 

  31. Munir KS, Kingshott P, Wen C (2015) Carbon nanotube reinforced titanium metal matrix composites prepared by powder metallurgy—a review. Crit Rev Solid State Mater Sci 40(1):38–55

    Article  Google Scholar 

  32. Liu B, Liu Y, He X, Tang H, Chen L, Huang B (2007) Preparation and mechanical properties of particulate-reinforced powder metallurgy titanium matrix composites. Metall Mater Trans A 38(11):2825–2831

    Article  Google Scholar 

  33. Wang F, Mei J, Wu X (2007) Compositionally graded Ti6Al4V+ TiC made by direct laser fabrication using powder and wire. Mater Des 28(7):2040–2046

    Article  Google Scholar 

  34. Lieberman S, Gokhale A, Tamirisakandala S, Bhat R (2009) Three-dimensional microstructural characterization of discontinuously reinforced Ti64–TiB composites produced via blended elemental powder metallurgy. Mater Charact 60(9):957–963

    Article  Google Scholar 

  35. Patel V, El-Desouky A, Garay J, Morsi K (2009) Pressure-less and current-activated pressure-assisted sintering of titanium dual matrix composites: effect of reinforcement particle size. Mater Sci Eng A 507(1-2):161–166

    Article  Google Scholar 

  36. Selamat M, Watson L, Baker T (2003) XRD and XPS studies on surface MMC layer of SiC reinforced Ti–6Al–4V alloy. J Mater Process Technol 142(3):725–737

    Article  Google Scholar 

  37. M-n YUAN, YANG (2008) Y-q, Huang B, Li J-K, Yan C. Evaluation of interface fracture toughness in SiC fiber reinforced titanium matrix composite. Trans Nonferrous Metals Soc China 18(4):925–929

    Article  Google Scholar 

  38. Sivakumar G, Ananthi V, Ramanathan S (2017) Production and mechanical properties of nano SiC particle reinforced Ti–6Al–4V matrix composite. Trans Nonferrous Metals Soc China 27(1):82–90

    Article  Google Scholar 

  39. Han C, Li Y, Wu X, Ren S, San X, Zhu X (2013) Ti/SiO2 composite fabricated by powder metallurgy for orthopedic implant. Mater Des 49:76–80

    Article  Google Scholar 

  40. Shivakumar N, Vasu V, Narasaiah N (2015) Synthesis and characterization of nano-sized Al2O3 particle reinforced ZA-27 metal matrix composites. Procedia Mater Sci 10:159–167

    Article  Google Scholar 

  41. Dougherty T, Xu Y, Hanizan A (2016) Mechanical properties and microstructure of PM Ti-Si 3 N 4 discontinuous fibre composite. TMS 2016 145th Annual Meeting & Exhibition: Springer; pp 721-8

  42. Adegbenjo A, Olubambi P, Potgieter J, Shongwe M, Ramakokovhu M (2017) Spark plasma sintering of graphitized multi-walled carbon nanotube reinforced Ti6Al4V. Mater Des 128:119–129

    Article  Google Scholar 

  43. Jiao Y, Huang L, Geng L (2018) Progress on discontinuously reinforced titanium matrix composites. J Alloys Compd 767:1196–1215

    Article  Google Scholar 

  44. Dilip JJS, Miyanaji H, Lassell A, Starr TL, Stucker B (2017) A novel method to fabricate TiAl intermetallic alloy 3D parts using additive manufacturing. Defence Technology 13(2):72–76

    Article  Google Scholar 

  45. Clemens H, Mayer S (2016) Intermetallic titanium aluminides in aerospace applications – processing, microstructure and properties. Mater High Temp 33(4-5):560–570

    Article  Google Scholar 

  46. Clemens H, Kestler H (2000) Processing and applications of intermetallic γ-TiAl-based alloys. Adv Eng Mater 2(9):551–570

    Article  Google Scholar 

  47. Huang L, Geng L (2017) Discontinuously reinforced titanium matrix composites. Springer

    Book  Google Scholar 

  48. Mouritz A (2012) P. 9 - Titanium alloys for aerospace structures and engines A2. Introduction to Aerospace Materials. Woodhead Publishing, pp 202–223

    Book  Google Scholar 

  49. Kondoh K (2015) Titanium metal matrix composites by powder metallurgy (PM) routes. Titanium Powder Metallurgy: Elsevier, pp 277–297

    Book  Google Scholar 

  50. Saito T (2004) The automotive application of discontinuously reinforced TiB-Ti composites. JOM. 56(5):33–36

    Article  Google Scholar 

  51. Abkowitz S, Abkowitz SM, Fisher H, Schwartz PJ (2004) CermeTi® discontinuously reinforced Ti-matrix composites: manufacturing, properties, and applications. JOM. 56(5):37–41

    Article  Google Scholar 

  52. Fruhauf J-B, Roger J, Dezellus O, Gourdet S, Karnatak N, Peillon N, Saunier S, Montheillet F, Desrayaud C (2012) Microstructural and mechanical comparison of Ti+ 15% TiCp composites prepared by free sintering, HIP and extrusion. Mater Sci Eng A 554:22–32

    Article  Google Scholar 

  53. Poletti C, Balog M, Schubert T, Liedtke V, Edtmaier C (2008) Production of titanium matrix composites reinforced with SiC particles. Compos Sci Technol 68(9):2171–2177

    Article  Google Scholar 

  54. Alman DE, Hawk JA (1999) The abrasive wear of sintered titanium matrix–ceramic particle reinforced composites. Wear. 225:629–639

    Article  Google Scholar 

  55. Hayat MD, Singh H, He Z, Cao P (2019) Titanium metal matrix composites: an overview. Compos A Appl Sci Manuf

  56. Lu H, Zhang D, Gabbitas B, Yang F, Matthews S (2014) Synthesis of a TiBw/Ti6Al4V composite by powder compact extrusion using a blended powder mixture. J Alloys Compd 606:262–268

    Article  Google Scholar 

  57. Xinghong Z, Qiang X, Jiecai H, Kvanin V (2003) Self-propagating high temperature combustion synthesis of TiB/Ti composites. Mater Sci Eng A 348(1-2):41–46

    Article  Google Scholar 

  58. Gorsse S, Le Petitcorps Y, Matar S, Rebillat F (2003) Investigation of the Young's modulus of TiB needles in situ produced in titanium matrix composite. Mater Sci Eng A 340(1-2):80–87

    Article  Google Scholar 

  59. Ni D, Geng L, Zhang J, Zheng Z (2008) Fabrication and tensile properties of in situ TiBw and TiCp hybrid-reinforced titanium matrix composites based on Ti–B4C–C. Mater Sci Eng A 478(1-2):291–296

    Article  Google Scholar 

  60. Zhang X, Lü W, Zhang D, Wu R, Bian Y, Fang P (1999) In situ technique for synthesizing (TiB+ TiC)/Ti composites. Scr Mater 41(1):39–46

    Article  Google Scholar 

  61. Ni D, Geng L, Zhang J, Zheng Z (2006) Effect of B4C particle size on microstructure of in situ titanium matrix composites prepared by reactive processing of Ti–B4C system. Scr Mater 55(5):429–432

    Article  Google Scholar 

  62. Li S, Sun B, Imai H, Kondoh K (2013) Powder metallurgy Ti–TiC metal matrix composites prepared by in situ reactive processing of Ti-VGCFs system. Carbon. 61:216–228

    Article  Google Scholar 

  63. Kondoh K, Threrujirapapong T, Umeda J, Fugetsu B (2012) High-temperature properties of extruded titanium composites fabricated from carbon nanotubes coated titanium powder by spark plasma sintering and hot extrusion. Compos Sci Technol 72(11):1291–1297

    Article  Google Scholar 

  64. Threrujirapapong T, Kondoh K, Imai H, Umeda J, Fugetsu B (2009) Mechanical properties of a titanium matrix composite reinforced with low cost carbon black via powder metallurgy processing. Mater Trans:0909280899

  65. Yolton C (2004) The pre-alloyed powder metallurgy of titanium with boron and carbon additions. JOM. 56(5):56–59

    Article  Google Scholar 

  66. Alaneme KK, Sanusi KO (2015) Microstructural characteristics, mechanical and wear behaviour of aluminium matrix hybrid composites reinforced with alumina, rice husk ash and graphite. Eng Sci Technol Int J 18(3):416–422

    Google Scholar 

  67. Oghbaei M, Mirzaee O (2010) Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J Alloys Compd 494(1):175–189

    Article  Google Scholar 

  68. Yadoji P, Peelamedu R, Agrawal D, Roy R (2003) Microwave sintering of Ni–Zn ferrites: comparison with conventional sintering. Mater Sci Eng B 98(3):269–278

    Article  Google Scholar 

  69. Leonelli C, Veronesi P, Denti L, Gatto A, Iuliano L (2008) Microwave assisted sintering of green metal parts. J Mater Process Technol 205(1):489–496

    Article  Google Scholar 

  70. Gupta M, Wong WLE (2005) Enhancing overall mechanical performance of metallic materials using two-directional microwave assisted rapid sintering. Scr Mater 52(6):479–483

    Article  Google Scholar 

  71. Awotunde MA, Adegbenjo AO, Obadele BA, Okoro M, Shongwe BM, Olubambi PA (2019) Influence of sintering methods on the mechanical properties of aluminium nanocomposites reinforced with carbonaceous compounds: a review. J Mater Res Technol 8:2432–2449

    Article  Google Scholar 

  72. Sonber JK, Murthy TSRC, Subramanian C, Hubli RC, Suri AK (2013) Processing methods for ultra high temperature ceramics. MAX Phases and Ultra-High Temperature Ceramics for Extreme Environments, pp 180-202.

  73. Ming Y, Chen Y-l, Mei B-c, Zhu J-q (2008) Synthesis of high-purity Ti2AlN ceramic by hot pressing. Trans Nonferrous Metals Soc China 18(1):82–85

    Article  Google Scholar 

  74. Atkinson H, Davies S (2000) Fundamental aspects of hot isostatic pressing: an overview. Metall Mater Trans A 31(12):2981–3000

    Article  Google Scholar 

  75. Dobrzański LA, Dobrzańska-Danikiewicz AD, Achtelik-Franczak A, Dobrzański LB, Hajduczek E, Matula G (2017) Fabrication technologies of the sintered materials including materials for medical and dental application. Powder Metallurgy–Fundamentals and Case Studies Rijeka, Croatia: InTech, pp 17-52

  76. Zhang K, Mei J, Wain N, Wu X (2010) Effect of hot-isostatic-pressing parameters on the microstructure and properties of powder Ti-6Al-4V hot-isostatically-pressed samples. Metall Mater Trans A 41(4):1033–1045

    Article  Google Scholar 

  77. Xu L, Guo R, Bai C, Lei J, Yang R (2014) Effect of hot isostatic pressing conditions and cooling rate on microstructure and properties of Ti–6Al–4V alloy from atomized powder. J Mater Sci Technol 30(12):1289–1295

    Article  Google Scholar 

  78. Shongwe MB, Ramakokovhu MM, Diouf S, Durowoju MO, Obadele BA, Sule R, Lethabane ML, Olubambi PA (2016) Effect of starting powder particle size and heating rate on spark plasma sintering of FeNi alloys. J Alloys Compd 678:241–248

    Article  Google Scholar 

  79. Ogunbiyi O, Jamiru T, Sadiku R, Beneke L, Adesina O, Fayomi J (2019) Influence of sintering temperature on the corrosion and wear behaviour of spark plasma–sintered Inconel 738LC alloy. Int J Adv Manuf Technol 104(9):4195–4206

    Article  Google Scholar 

  80. Ogunbiyi O, Jamiru T, Sadiku E, Adesina O, Salifu S, Beneke L (2019) Effect of nickel powder particle size on the microstructure and thermophysical properties of spark plasma sintered NiCrCoAlTiW-Ta superalloy. IOP Conference Series: Materials Science and Engineering: IOP Publishing, pp 012031, 655

  81. Babalola BJ, Salifu S, Olubambi PA (2020) Effect of mechanical milling on the mechanical, Dry sliding wear, and impact response of sintered nickel based superalloy. J Mater Eng Perform 29(12):8348–8358

    Article  Google Scholar 

  82. Lapin J, Klimová A, Gabalcová Z, Pelachová T, Bajana O, Štamborská M (2017) Microstructure and mechanical properties of cast in-situ TiAl matrix composites reinforced with (Ti,Nb)2AlC particles. Mater Des 133:404–415

    Article  Google Scholar 

  83. Liu Y-w, Hu R, Zhang T-b, Kou H-c, Li J-s (2014) Microstructure evolution and nitrides precipitation in in-situ Ti2AlN/TiAl composites during isothermal aging at 900 °C. Trans Nonferrous Metals Soc China 24(5):1372–1378

    Article  Google Scholar 

  84. Jeje SO, Shongwe MB, Maledi N, Ogunmuyiwa EN, Tshabala LC, Babalola BJ et al (2020) Sintering behavior and alloying elements effects on the properties of CP-titanium sintered using pulsed electric current. 123707

  85. Tokita M (2013) Spark plasma sintering (SPS) method, systems and applications. Handbooke of advanced ceramics, pp 1149-1177

  86. Zadra M, Casari F, Girardini L, Molinari A (2008) Microstructure and mechanical properties of cp-titanium produced by spark plasma sintering. Powder Metall 51(1):59–65

    Article  Google Scholar 

  87. Babalola BJ, Shongwe MB, Obadele BA, Olubambi PA, Ayodele OO, Rominiyi AL et al (2018) Comparative study of spark plasma sintering features on the densification of Ni-Cr binary alloys. EDP Sciences MATEC Web of Conferences 249

  88. Jeje SO, Shongwe MB, Maledi N, Olubambi PA, Babalola BJ (2019) Spark plasma sintering of Ti-48Al intermetallic using elemental powder. Int J Adv Manuf Technol 103:3025–3032

    Article  Google Scholar 

  89. Munir Z, Anselmi-Tamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci 41(3):763–777

    Article  Google Scholar 

  90. Makino Y (2006) Crystallographic behaviors of nano-powder anatase consolidated by SPS method. Pulse Electric Current Synthesis and Processing of Materials, pp 301-312

  91. Sharma N, Alam S, Ray B (2019) Fundamentals of spark plasma sintering (SPS): an ideal processing technique for fabrication of metal matrix nanocomposites. Spark Plasma Sintering of Materials: Springer, pp 21–59

    Book  Google Scholar 

  92. Garay J (2010) Current-activated, pressure-assisted densification of materials. Annu Rev Mater Res 40:445–468

    Article  Google Scholar 

  93. Borkar T, Banerjee R (2014) Influence of spark plasma sintering (SPS) processing parameters on microstructure and mechanical properties of nickel. Mater Sci Eng A 618:176–181

    Article  Google Scholar 

  94. Han C, Li Y-c, Liang X-g, Chen L-P, Zhao N, Zhu X-k. Effect of composition and sintering temperature on mechanical properties of ZrO2 particulate-reinforced titanium-matrix composite. Trans Nonferrous Metals Soc China 2012;22(8):1855-1859.

  95. Obadele BA, Ige OO, Olubambi PA (2017) Fabrication and characterization of titanium-nickel-zirconia matrix composites prepared by spark plasma sintering. J Alloys Compd 710:825–830

    Article  Google Scholar 

  96. Stanciu L, Kodash V, Groza J (2001) Effects of heating rate on densification and grain growth during field-assisted sintering of α-Al 2 O 3 and MoSi 2 powders. Metall Mater Trans A 32(10):2633–2638

    Article  Google Scholar 

  97. Shen Z, Johnsson M, Zhao Z, Nygren M (2002) Spark plasma sintering of alumina. J Am Ceram Soc 85(8):1921–1927

    Article  Google Scholar 

  98. Skandan G, Hahn H, Kear B, Roddy M, Cannon W (1994) The effect of applied stress on densification of nanostructured zirconia during sinter-forging. Mater Lett 20(5-6):305–309

    Article  Google Scholar 

  99. Eriksson M, Shen Z, Nygren M (2005) Fast densification and deformation of titanium powder. Powder Metall 48(3):231–236

    Article  Google Scholar 

  100. Chaudhari R, Bauri R (2014) Microstructure and mechanical properties of titanium processed by spark plasma sintering (SPS). Metallogr Microstruct Anal 3(1):30–35

    Article  Google Scholar 

  101. Adegbenjoa A, Nsiah-Baafia E, Shongwea M, Olubambia P, Potgieterc J (2017) Low temperature spark plasma sintered irregular shaped Ti-6Al-4V powders with enhanced properties. J Eng Technol ISSN: 0747-9964 6(1):35–48

    Google Scholar 

  102. Jeje SO, Shongwe MB, Maledi N, Rominiyi AL, Adesina OS, Olubambi PA (2021) Synthesis and characterization of TiN nanoceramic reinforced Ti–7Al–1Mo composite produced by spark plasma sintering. Mater Sci Eng A 807:140904

    Article  Google Scholar 

  103. Rominiyi AL, Shongwe MB, Tshabalala LC, Ogunmuyiwa EN, Jeje SO, Babalola BJ et al (2020) Spark plasma sintering of Ti–Ni–TiCN composites: microstructural characterization, densification and mechanical properties. 848:156559

  104. Fan K, Zhang F, Shang C, Saba F, Yu J (2020) Mechanical properties and strengthening mechanisms of titanium matrix nanocomposites reinforced with onion-like carbons. Compos A Appl Sci Manuf 132:105834

    Article  Google Scholar 

  105. Li S, Sun B, Imai H, Mimoto T, Kondoh K (2013) Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite. Compos A Appl Sci Manuf 48:57–66

    Article  Google Scholar 

  106. Singh N, Ummethala R, Karamched PS, Sokkalingam R, Gopal V, Manivasagam G, et al. Spark plasma sintering of Ti6Al4V metal matrix composites: microstructure, mechanical and corrosion properties. 2021:158875.

  107. Vasanthakumar K, Ghosh S, Koundinya N, Ramaprabhu S, Bakshi SR (2019) Synthesis and mechanical properties of TiCx and Ti (C, N) reinforced titanium matrix in situ composites by reactive spark plasma sintering. Mater Sci Eng A 759:30–39

    Article  Google Scholar 

  108. Sabahi Namini A, Delbari SA, Nayebi B, Shahedi Asl M, Parvizi S (2020) Effect of B4C content on sintering behavior, microstructure and mechanical properties of Ti-based composites fabricated via spark plasma sintering. Mater Chem Phys 251:123087

    Article  Google Scholar 

  109. Kgoete FM, Popoola API, Fayomi OSI, Adebiyi ID (2018) Influence of Si3N4 on Ti-6Al-4V via spark plasma sintering: microstructure, corrosion and thermal stability. J Alloys Compd 763:322–328

    Article  Google Scholar 

Download references

Code availability

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

Samson Olaitan Jeje: Conceptualization, writing—original draft. Mxolisi Brendon Shongwe: Conceptualization, writing—review and editing. Azeez Lawan Rominiyi: Writing—review and editing. Peter Apata Olubambi: Writing—review and editing.

Corresponding author

Correspondence to Samson Olaitan Jeje.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeje, S.O., Shongwe, M.B., Rominiyi, A.L. et al. Spark plasma sintering of titanium matrix composite—a review. Int J Adv Manuf Technol 117, 2529–2544 (2021). https://doi.org/10.1007/s00170-021-07840-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07840-7

Keywords

Navigation