Skip to main content
Log in

Numerical analysis of the Ti6Al4V behavior based on the definition of a new phenomenological model

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The finite element modeling is significantly dependent on the accurate prediction of the material behavior. In order to increase the accuracy of numerical simulations, a new phenomenological model is proposed in this study. Its mathematical formulation allows suitable predictions of the Ti6Al4V sensitivity to strain rates and temperatures, while maintaining a low identification cost of its constitutive coefficients. A subroutine VUMAT is developed, and its reliability is investigated in the case of the modeling of uniaxial tensile and impact tests. In addition, the 3D numerical analysis of the machining process is investigated based on the definition of the rheological Johnson-Cook model and the proposed one. Experimental orthogonal machining tests are also established for several cutting conditions. The significant sensitivity of the chip serration, the segments geometry, and the cutting forces to the feed rate is pointed out. Comparisons of the numerical results corresponding to different constitutive models are carried out. High-correlation levels with the experimental results are reached with the definition of the proposed phenomenological model, which is not the case of the Johnson-Cook empirical law. Moreover, intuitive insights about the effect of cutting conditions on the material flow towards the workpiece edges are provided with the 3D modeling. A pronounced increase of the width of side burrs with the feed rate rise was underlined. The results presented in this study point out the inability of 2D numerical simulations to accurately predict the phenomena induced during the machining process, even in the case of an orthogonal machining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data availability

The data presented and analyzed in this study are available from the corresponding author on reasonable request.

Code availability

The code used in this study is available from the corresponding author on a reasonable request.

References

  1. Veiga C, Paulo Davim J, Loureiro AJR (2013) Review on machinability of titanium alloys: the process perspective. Rev Adv Mater Sci 34:148–164. https://doi.org/10.3945/jn.109.108399

    Article  Google Scholar 

  2. Arrazola PJ, Garay A, Iriarte LM, Armendia M, Marya S, le Maître F (2009) Machinability of titanium alloys (Ti6Al4V and Ti555.3). J Mater Process Technol 209:2223–2230. https://doi.org/10.1016/j.jmatprotec.2008.06.020

    Article  Google Scholar 

  3. Harzallah M, Pottier T, Senatore J, Mousseigne M, Germain G, Landon Y (2017) Numerical and experimental investigations of Ti-6Al-4V chip generation and thermo-mechanical couplings in orthogonal cutting. Int J Mech Sci 134:189–202. https://doi.org/10.1016/j.ijmecsci.2017.10.017

    Article  Google Scholar 

  4. Pottier T, Germain G, Calamaz M, Morel A, Coupard D (2014) Sub-millimeter measurement of finite strains at cutting tool tip vicinity. Exp Mech 54:1031–1042. https://doi.org/10.1007/s11340-014-9868-0

    Article  Google Scholar 

  5. Chen G, Ge J, Lu L, Liu J, Ren C (2021) Mechanism of ultra-high-speed cutting of Ti-6Al-4V alloy considering time-dependent microstructure and mechanical behaviors. Int J Adv Manuf Technol 113:193–213. https://doi.org/10.1007/s00170-021-06589-3

    Article  Google Scholar 

  6. Ali MH, Ansari MNM, Khidhir BA, Mohamed B, Oshkour AA (2014) Simulation machining of titanium alloy (Ti-6Al-4V) based on the finite element modeling. J Braz Soc Mech Sci Eng 36:315–324. https://doi.org/10.1007/s40430-013-0084-0

    Article  Google Scholar 

  7. Arrazola PJ, Barbero O, Urresti I (2010) Influence of material parameters on serrated chip prediction in finite element modeling of chip formation process. Int J Mater Form 3:519–522. https://doi.org/10.1007/s12289-010-0821-1

    Article  Google Scholar 

  8. Yaich M, Ayed Y, Bouaziz Z, Germain G (2017) Numerical analysis of constitutive coefficients effects on FE simulation of the 2D orthogonal cutting process: application to the Ti6Al4V. Int J Adv Manuf Technol 93:283–303. https://doi.org/10.1007/s00170-016-8934-4

    Article  Google Scholar 

  9. Biermann D, Höhne F, Sieben B, Zabel A (2010) Finite element modeling and three-dimensional simulation of the turning process incorporating the material hardness. Int J Mater Form 3:459–462. https://doi.org/10.1007/s12289-010-0806-0

    Article  Google Scholar 

  10. Franchi R, Del Prete A, Umbrello D (2017) Inverse analysis procedure to determine flow stress and friction data for finite element modeling of machining. Int J Mater Form 10:685–695. https://doi.org/10.1007/s12289-016-1311-x

    Article  Google Scholar 

  11. Haddag B, Atlati S, Nouari M, Znasni M (2010) Finite element formulation effect in three-dimensional modeling of a chip formation during machining. Int J Mater Form 3:527–530. https://doi.org/10.1007/s12289-010-0823-z

    Article  Google Scholar 

  12. Rizzuti S, Umbrello D, Filice L, Settineri L (2010) Finite element analysis of residual stresses in machining. Int J Mater Form 3:431–434. https://doi.org/10.1007/s12289-010-0799-8

    Article  Google Scholar 

  13. Parida AK, Maity K (2017) Effect of nose radius on forces, and process parameters in hot machining of Inconel 718 using finite element analysis. Eng Sci Technol an Int J 20:687–693. https://doi.org/10.1016/j.jestch.2016.10.006

    Article  Google Scholar 

  14. Lurdos O (2008) Lois de comportement et recristallisation dynamique: approches empirique et physique. Thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne

  15. Hor A (2011) Simulation physique des conditions thermomécaniques de forgeage et d'usinage - Caractérisation et modélisation de la rhéologie et de l'endommagement. Thesis, Ecole Nationale Supérieure d"Arts et Métiers _ Centre d'Angers

  16. Ayed Y (2013) Approches expérimentales et numériques de l'usinage assisté jet d'eau haute pression: étude des mécaniques d'usure et contribution à la modélisation multi-physiques de la coupe. Thesis, Ecole Nationale Supérieure d'Arts et Métiers - Centre d'Angers

  17. Hor A, Morel F, Lebrun JL, Germain G (2013) Modelling, identification and application of phenomenological constitutive laws over a large strain rate and temperature range. Mech Mater 64:91–110. https://doi.org/10.1016/j.mechmat.2013.05.002

    Article  Google Scholar 

  18. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures. Proc 7th Int Symp Ballist The Hague, The Netherlands, pp 541–547

  19. Saleem W, Asad M, Zain-ul-abdein M, Ijaz H, Mabrouki T (2016) Numerical investigations of optimum turning parameters—AA2024-T351 aluminum alloy. Mach Sci Technol 20:634–654. https://doi.org/10.1080/10910344.2016.1224019

    Article  Google Scholar 

  20. Molinari A, Cheriguene R, Miguelez H (2012) Contact variables and thermal effects at the tool-chip interface in orthogonal cutting. Int J Solids Struct 49:3774–3796. https://doi.org/10.1016/j.ijsolstr.2012.08.013

    Article  Google Scholar 

  21. Zhang YC, Mabrouki T, Nelias D, Gong YD (2011) Chip formation in orthogonal cutting considering interface limiting shear stress and damage evolution based on fracture energy approach. Finite Elem Anal Des 47:850–863. https://doi.org/10.1016/j.finel.2011.02.016

    Article  Google Scholar 

  22. Yaich M, Ayed Y, Bouaziz Z, Germain G (2020) A 2D finite element analysis of the effect of numerical parameters on the reliability of Ti6Al4V machining modeling. Mach Sci Technol 24:509–543. https://doi.org/10.1080/10910344.2019.1698606

    Article  Google Scholar 

  23. Gavrus A (2012) Constitutive equation for description of metallic materials behavior during static and dynamic loadings taking into account important gradients of plastic deformation. Key Eng Mater 504–506:697–702. https://doi.org/10.4028/www.scientific.net/kem.504-506.697

    Article  Google Scholar 

  24. Ayed Y, Germain G, Ammar A, Furet B (2017) Thermo-mechanical characterization of the Ti17 titanium alloy under extreme loading conditions. Int J Adv Manuf Technol 90:1593–1603. https://doi.org/10.1007/s00170-016-9476-5

    Article  Google Scholar 

  25. Laakso SVA, Niemi E (2016) Modified Johnson-Cook flow stress model with thermal softening damping for finite element modeling of cutting. Proc Inst Mech Eng Part B J Eng Manuf 230:241–253. https://doi.org/10.1177/0954405415619873

    Article  Google Scholar 

  26. Liu S, Kouadri-Henni A, Gavrus A (2018) DP600 dual phase steel thermo-elasto-plastic constitutive model considering strain rate and temperature influence on FEM residual stress analysis of laser welding. J Manuf Process 35:407–419. https://doi.org/10.1016/j.jmapro.2018.07.006

    Article  Google Scholar 

  27. Braham Bouchnak T (2010) Etude du comportement en sollicitations extrêmes et de l’usinabilité d’un nouvel alliage de titane aéronautique: Le Ti555-3. Thesis, Ecole Nationale Supérieure d’Arts et Métiers - Centre d’Angers

  28. Ludwik P (1909) Elemente der technologischen Mechanik. Verlag Von Julius Springer, Berlin

  29. Germain G, Morel A, Braham-Bouchnak T (2013) Identification of material constitutive laws representative of machining conditions for two titanium alloys: Ti6Al4V and Ti555-3. J Eng Mater Technol 135(3):1–11. https://doi.org/10.1115/1.4023674

  30. Xu S, Guo YF, Ngan AHW (2013) A molecular dynamics study on the orientation, size, and dislocation confinement effects on the plastic deformation of Al nanopillars. Int J Plast 43:116–127. https://doi.org/10.1016/j.ijplas.2012.11.002

    Article  Google Scholar 

  31. Balogh L, Brown DW, Mosbrucker P, Long F, Daymond MR (2012) Dislocation structure evolution induced by irradiation and plastic deformation in the Zr-2.5Nb nuclear structural material determined by neutron diffraction line profile analysis. Acta Mater 60:5567–5577. https://doi.org/10.1016/j.actamat.2012.06.062

    Article  Google Scholar 

  32. Yang Y, Liu B (2013) Experimental study on formation characteristics and laws of dislocation and stacking fault during cutting of titanium alloy. Adv Mater Sci Eng 1–7. https://doi.org/10.1155/2013/306728

  33. Brett A Bednarcyk, Jacob Aboudi, Steven M Arnold (2008) The equivalence of the radial return and Mendelson methods for integrating the classical plasticity equations. Comput Mech 41:733–737

  34. Pipard J-M (2012) Modélisation du comportement élasto-viscoplastique des aciers multiphasés pour la simulation de leur mise en forme. Thesis, Ecole Nationale Supérieure d’Arts et Métiers - Centre de Metz

  35. Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21:31–48

    Article  Google Scholar 

  36. Johnson GR, Holmquist TJ (1989) Test data and computational strength and fracture model constants for 23 materials subjected to large strains, high strain rates, and high temperatures. Los Alamos National Laboratory Report, LA-11463-MS

  37. Ducobu F, Rivière-Lorphèvre E, Filippi E (2016) Material constitutive model and chip separation criterion influence on the modeling of Ti6Al4V machining with experimental validation in strictly orthogonal cutting condition. Int J Mech Sci 107:136–149. https://doi.org/10.1016/j.ijmecsci.2016.01.008

    Article  Google Scholar 

  38. Zhang XP, Shivpuri R, Srivastava AK (2014) Role of phase transformation in chip segmentation during high speed machining of dual phase titanium alloys. J Mater Process Technol 214:3048–3066. https://doi.org/10.1016/j.jmatprotec.2014.07.007

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided for this work by Arts et Métiers _ Campus d’Angers, France, especially the PMD team, and the National School of Engineers of Sfax, Tunisia.

Funding

This study was funded by Arts et Métiers _ Campus d’Angers, France and the National School of Engineers of Sfax, Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariem Yaich.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

All authors consent to the publication of this research work

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaich, M., Ayed, Y., Germain, G. et al. Numerical analysis of the Ti6Al4V behavior based on the definition of a new phenomenological model. Int J Adv Manuf Technol 116, 3933–3951 (2021). https://doi.org/10.1007/s00170-021-07753-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07753-5

Keywords

Navigation