Skip to main content
Log in

Recent development of the novel riveting processes

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Riveting process is widely used to join sheets by using rivets. It can be used in many fields due to its simple process, easy disassembly, and high reliability. In addition, it has incomparable advantage in the joining of light alloy, composite, and dissimilar materials. Conventional riveting belongs to mechanical joining. However, with the advancing of technology, it has been modified and combined to other joining techniques so as to improve mechanical properties of joint. The state-of-art riveting technologies in recent years are reviewed. Modified methods which originate from existing riveting techniques, such as reshaped riveting, restored riveting, self-piercing riveting, clinch riveting, electromagnetic riveting, flow drill screwing, and rivtac, are introduced. Many types of welding have been combined to riveting. Hybrid methods such as laser-arc welding assisted riveting, resistance rivet welding, friction riveting, friction stir blind riveting, friction self-piercing riveting, and friction element welding are also introduced. Latest researches on different riveting techniques have been listed. Forming mechanism of each riveting technique has been discussed. Process parameters that affect mechanical properties of joint have been analyzed. Merits and demerits of each technique have been introduced. Each craft has its own features and can be applied in certain circumstances. Some suggestions on future orientation of riveting are given in text to assist further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations

References

  1. Martinsen K, Hu SJ, Carlson BE (2015) Joining of dissimilar materials. CIRP Ann 64(2):679–699. https://doi.org/10.1016/j.cirp.2015.05.006

    Article  Google Scholar 

  2. Ataş A, Soutis C (2013) Subcritical damage mechanisms of bolted joints in CFRP composite laminates. Compos Part B 54:20–27. https://doi.org/10.1016/j.compositesb.2013.04.071

    Article  Google Scholar 

  3. Chishti M, Wang CH, Thomson RS, Orifici AC (2012) Experimental investigation of damage progression and strength of countersunk composite joints. Compos Struct 94(3):865–873. https://doi.org/10.1016/j.compstruct.2011.10.011

    Article  Google Scholar 

  4. Kelly G, Hallström S (2004) Bearing strength of carbon fibre/epoxy laminates: effects of bolt-hole clearance. Compos Part B 35(4):331–343. https://doi.org/10.1016/j.compositesb.2003.11.001

    Article  Google Scholar 

  5. Chen C, Zhang H, Xu Y, Wu J (2020) Investigation of the flat-clinching process for joining three-layer sheets on thin-walled structures. Thin-Walled Struct 157:157. https://doi.org/10.1016/j.tws.2020.107034

    Article  Google Scholar 

  6. Chen N, Wang H-P, Carlson BE, Sigler DR, Wang M (2017) Fracture mechanisms of Al/steel resistance spot welds in lap shear test. J Mater Process Technol 243:347–354. https://doi.org/10.1016/j.jmatprotec.2016.12.015

    Article  Google Scholar 

  7. Lu Y, Mayton E, Song H, Kimchi M, Zhang W (2019) Dissimilar metal joining of aluminum to steel by ultrasonic plus resistance spot welding-microstructure and mechanical properties. Mater Des 165:107585. https://doi.org/10.1016/j.matdes.2019.107585

    Article  Google Scholar 

  8. Zhang G, Zhao H, Xu X, Qiu G, Li Y, Lin Z (2019) Metallic bump assisted resistance spot welding (MBaRSW) of AA6061-T6 and bare DP590: part I-printing of metallic bump. J Manuf Process 44:427–434. https://doi.org/10.1016/j.jmapro.2019.05.042

    Article  Google Scholar 

  9. Yi R, Chen C, Li Y, Peng H, Zhang H, Ren X (2020) The bonding between glass and metal. Int J Adv Manuf Technol 111(3-4):963–983. https://doi.org/10.1007/s00170-020-06018-x

    Article  Google Scholar 

  10. Yi R, Chen C, Li Y, Shi C, Ren X (2021) Brazing of SiO2 ceramic. Int J Adv Manuf Technol 113(7-8):1799–1816. https://doi.org/10.1007/s00170-021-06685-4

    Article  Google Scholar 

  11. Yi R, Chen C, Shi C, Li Y, Li H, Ma Y (2021) Research advances in residual thermal stress of ceramic/metal brazes. Ceram Int 47:20807–20820. https://doi.org/10.1016/j.ceramint.2021.04.220

    Article  Google Scholar 

  12. Li Y, Chen C, Yi R (2021) Recent development of ultrasonic brazing. Int J Adv Manuf Technol 114(1-2):27–62. https://doi.org/10.1007/s00170-021-06885-y

    Article  Google Scholar 

  13. Li Y, Chen C, Yi R, Ouyang Y (2020) Review: Special brazing and soldering. J Manuf Process 60:608–635. https://doi.org/10.1016/j.jmapro.2020.10.049

    Article  Google Scholar 

  14. Köhler D, Kupfer R, Gude M (2020) Clinching in in-situ CT—a numerical study on suitable tool materials. J Adv Join Process 2:2. https://doi.org/10.1016/j.jajp.2020.100034

    Article  Google Scholar 

  15. Chu M, He X, Zhang J, Lei L (2018) Clinching of similar and dissimilar sheet materials of galvanized steel, aluminium alloy and titanium alloy. Mater Trans 59(4):694–697. https://doi.org/10.2320/matertrans.M2017319

    Article  Google Scholar 

  16. Lin PC, Lin JW, Li GX (2018) Clinching process for aluminum alloy and carbon fiber-reinforced thermoplastic sheets. Int J Adv Manuf Technol 97(1-4):529–541. https://doi.org/10.1007/s00170-018-1960-7

    Article  Google Scholar 

  17. Wang M, Xiao G, Wang J, Li Z (2019) Optimization of clinching tools by integrated finite element model and genetic algorithm approach. J Shanghai Jiaotong Univ (Science) 24(2):262–272. https://doi.org/10.1007/s12204-018-1995-9

    Article  MathSciNet  Google Scholar 

  18. Schwarz C, Kropp T, Kraus C, Drossel W-G (2019) Optimization of thick sheet clinching tools using principal component analysis. Int J Adv Manuf Technol 106(1-2):471–479. https://doi.org/10.1007/s00170-019-04512-5

    Article  Google Scholar 

  19. Sabra Atia MK, Jain MK (2018) A parametric study of FE modeling of die-less clinching of AA7075 aluminum sheets. Thin-Walled Struct 132:717–728. https://doi.org/10.1016/j.tws.2018.09.001

    Article  Google Scholar 

  20. Lei L, He X, Yu T, Xing B (2019) Failure modes of mechanical clinching in metal sheet materials. Thin-Walled Struct 144:106281. https://doi.org/10.1016/j.tws.2019.106281

  21. Dean A, Rolfes R (2018) FE modeling and simulation framework for the forming of hybrid metal-composites clinching joints. Thin-Walled Struct 133:134–140. https://doi.org/10.1016/j.tws.2018.09.034

    Article  Google Scholar 

  22. Lambiase F, Di Ilio A (2018) Joining aluminum with titanium alloy sheets by mechanical clinching. J Manuf Process 35:457–465. https://doi.org/10.1016/j.jmapro.2018.09.001

    Article  Google Scholar 

  23. Chen C, Zhao S, Han X, Cui M, Fan S (2016) Investigation of mechanical behavior of the reshaped joints realized with different reshaping forces. Thin-Walled Struct 107:266–273. https://doi.org/10.1016/j.tws.2016.06.020

    Article  Google Scholar 

  24. Chen C, Zhang H, Zhao S, Ren X (2021) Effects of sheet thickness and material on the mechanical properties of flat clinched joint. Front Mech Eng 16:410–419. https://doi.org/10.1007/s11465-020-0618-y

    Article  Google Scholar 

  25. Chen C, Zhang H, Ren X, Wu J (2021) Investigation of flat-clinching process using various thicknesses aluminum alloy sheets. Int J Adv Manuf Technol 114(7-8):2075–2084. https://doi.org/10.1007/s00170-021-06981-z

    Article  Google Scholar 

  26. Peng H, Chen C, Zhang H, Ran X (2020) Recent development of improved clinching process. Int J Adv Manuf Technol 110(11-12):3169–3199. https://doi.org/10.1007/s00170-020-05978-4

    Article  Google Scholar 

  27. Sadeghian B, Guilleaume C, Lafarge R, Brosius A (2021) Investigation of Clinched Joints – A Finite Element Simulation of a Non-destructive Approach. In: Production at the leading edge of technology. Lecture Notes in Production Engineering. Springer-Verlag GmbH, Germany, pp 116–124. https://doi.org/10.1007/978-3-662-62138-7_12

  28. Bielak CR, Böhnke M, Beck R, Bobbert M, Meschut G (2021) Numerical analysis of the robustness of clinching process considering the pre-forming of the parts. J Adv Join Process 3:3. https://doi.org/10.1016/j.jajp.2020.100038

    Article  Google Scholar 

  29. Song Y, Yang L, Zhu G, Hua L, Liu R (2019) Numerical and experimental study on failure behavior of steel-aluminium mechanical clinched joints under multiple test conditions. Int J Light Mater Manuf 2(1):72–79. https://doi.org/10.1016/j.ijlmm.2018.12.005

    Article  Google Scholar 

  30. Salamati M, Soltanpour M, Fazli A, Zajkani A (2018) Processing and tooling considerations in joining by forming technologies; part a—mechanical joining. Int J Adv Manuf Technol 101(1-4):261–315. https://doi.org/10.1007/s00170-018-2823-y

    Article  Google Scholar 

  31. Rośkowicz M, Godzimirski J, Jasztal M, Gąsior J (2021) Improvement of fatigue life of riveted joints in helicopter airframes. Eksploatacja Niezawodnosc – Maint Reliab 23(1):167–175. https://doi.org/10.17531/ein.2021.1.17

    Article  Google Scholar 

  32. Min JY, Li YQ, Li JJ, Carlson BE, Lin JP (2015) Mechanics in frictional penetration with a blind rivet. J Mater Process Technol 222:268–279. https://doi.org/10.1016/j.jmatprotec.2015.02.011

    Article  Google Scholar 

  33. Chen C, Zhang H, Peng H, Ran X (2021) Influence of clinching steps and sheet thickness on the mechanical properties of the clinching joint. Proc Inst Mech Eng B J Eng Manuf 09544054211001008:095440542110010. https://doi.org/10.1177/09544054211001008

    Article  Google Scholar 

  34. Chen C, Zhao S, Han X, Cui M, Fan S (2016) Investigation of the height-reducing method for clinched joint with AL5052 and AL6061. Int J Adv Manuf Technol 89(5-8):2269–2276. https://doi.org/10.1007/s00170-016-9266-0

    Article  Google Scholar 

  35. Chen C, Li Y, Zhai Z, Zhao S, Zhang P, Huang M, Li Y (2019) Comparative investigation of three different reforming processes for clinched joint to increase joining strength. J Manuf Process 45:83–91. https://doi.org/10.1016/j.jmapro.2019.06.009

    Article  Google Scholar 

  36. Chen C, Zhao S, Cui M, Han X, Fan S (2016) Mechanical properties of the two-steps clinched joint with a clinch-rivet. J Mater Process Technol 237:361–370. https://doi.org/10.1016/j.jmatprotec.2016.06.024

    Article  Google Scholar 

  37. Kaščák Ľ, Spišák E, Mucha J (2013) Clinchrivet as an alternative method to resistance spot welding. Acta Mech Autom 7(2):79–82. https://doi.org/10.2478/ama-2013-0014

    Article  Google Scholar 

  38. Chen C, Zhao S, Han X, Cui M, Fan S (2016) Optimization of a reshaping rivet to reduce the protrusion height and increase the strength of clinched joints. J Mater Process Technol 234:1–9. https://doi.org/10.1016/j.jmatprotec.2016.03.006

    Article  Google Scholar 

  39. Chen C, Li Y, Zhang H, Li Y, Pan Q, Han X (2020) Investigation of a renovating process for failure clinched joint to join thin-walled structures. Thin-Walled Struct 151:151. https://doi.org/10.1016/j.tws.2020.106686

    Article  Google Scholar 

  40. Chen C, Ran X, Pan Q, Zhang H, Yi R, Han X (2020) Research on the mechanical properties of repaired clinched joints with different forces. Thin-Walled Struct 152:152. https://doi.org/10.1016/j.tws.2020.106752

    Article  Google Scholar 

  41. Chen C, Zhang HY, Peng H, Ran XK, Pan Q (2020) Investigation of the restored joint for aluminum alloy. Metals 10(1):1–13. https://doi.org/10.3390/met10010097

  42. Shi C, Yi R, Chen C, Peng H, Ran X, Zhao S (2020) Forming mechanism of the repairing process on clinched joint. J Manuf Process 50:329–335. https://doi.org/10.1016/j.jmapro.2019.12.025

    Article  Google Scholar 

  43. Ang HQ (2021) An overview of self-piercing riveting process with focus on joint failures, corrosion issues and optimisation techniques. Chin J Mech Eng 34(1):2. https://doi.org/10.1186/s10033-020-00526-3

  44. Haque R, Durandet Y (2017) Investigation of self-pierce riveting (SPR) process data and specific joining events. J Manuf Process 30:148–160. https://doi.org/10.1016/j.jmapro.2017.09.018

    Article  Google Scholar 

  45. Karim MA, Jeong T-E, Noh W, Park K-Y, Kam D-H, Kim C, Nam D-G, Jung H, Park Y-D (2020) Joint quality of self-piercing riveting (SPR) and mechanical behavior under the frictional effect of various rivet coatings. J Manuf Process 58:466–477. https://doi.org/10.1016/j.jmapro.2020.08.038

    Article  Google Scholar 

  46. Abe Y, Maeda T, Yoshioka D, Mori KI (2020) Mechanical clinching and self-pierce riveting of thin three sheets of 5000 series aluminium alloy and 980 MPa grade cold rolled ultra-high strength steel. Materials (Basel) 13(21):4741. https://doi.org/10.3390/ma13214741

  47. Jäckel M, Falk T, Landgrebe D (2016) Concept for further development of self-pierce riveting by using cyber physical systems. Procedia CIRP 44:293–297. https://doi.org/10.1016/j.procir.2016.02.073

    Article  Google Scholar 

  48. Li D, Chrysanthou A, Patel I, Williams G (2017) Self-piercing riveting-a review. Int J Adv Manuf Technol 92(5-8):1777–1824. https://doi.org/10.1007/s00170-017-0156-x

    Article  Google Scholar 

  49. He X, Pearson I, Young K (2008) Self-pierce riveting for sheet materials: state of the art. J Mater Process Technol 199(1-3):27–36. https://doi.org/10.1016/j.jmatprotec.2007.10.071

    Article  Google Scholar 

  50. Jiang H, Sun LQ, Liang JS, Li GY, Cui JJ (2019) Shear failure behavior of CFRP/Al and steel/Al electromagnetic self-piercing riveted joints subject to high-speed loading. Compos Struct 230:111500. https://doi.org/10.1016/j.compstruct.2019.111500

    Article  Google Scholar 

  51. Li D, Han L, Shergold M, Thornton M, Williams G (2013) Influence of rivet tip geometry on the joint quality and mechanical strengths of self-piercing riveted aluminium joints. Light Met Technol 765:746. https://doi.org/10.4028/www.scientific.net/MSF.765.746

    Article  Google Scholar 

  52. Hoang NH, Porcaro R, Langseth M, Hanssen AG (2010) Self-piercing riveting connections using aluminium rivets. Int J Solids Struct 47(3-4):427–439. https://doi.org/10.1016/j.ijsolstr.2009.10.009

    Article  MATH  Google Scholar 

  53. Li DZ, Han L, Lu ZJ, Thornton M, Shergold M (2012) Influence of die profiles and cracks on joint buttons on the joint quality and mechanical strengths of high strength aluminium alloy joint. Adv Mater Res 548:398–405. https://doi.org/10.4028/www.scientific.net/AMR.548.398

    Article  Google Scholar 

  54. Khanna SK, Long X, Krishnamoorthy S, Agrawal HN (2013) Fatigue properties and failure characterisation of self-piercing riveted 6111 aluminium sheet joints. Sci Technol Weld Join 11(5):544–549. https://doi.org/10.1179/174329306x122820

    Article  Google Scholar 

  55. Zhang J, Yang S (2014) Self-piercing riveting of aluminum alloy and thermoplastic composites. J Compos Mater 49(12):1493–1502. https://doi.org/10.1177/0021998314535456

    Article  Google Scholar 

  56. Liu Y, Zhuang W (2019) Self-piercing riveted-bonded hybrid joining of carbon fibre reinforced polymers and aluminium alloy sheets. Thin-Walled Struct 144:144. https://doi.org/10.1016/j.tws.2019.106340

    Article  Google Scholar 

  57. Gay A, Lefebvre F, Bergamo S, Valiorgue F, Chalandon P, Michel P, Bertrand P (2016) Fatigue performance of a self-piercing rivet joint between aluminum and glass fiber reinforced thermoplastic composite. Int J Fatigue 83:127–134. https://doi.org/10.1016/j.ijfatigue.2015.10.004

    Article  Google Scholar 

  58. Johnson P, Cullen JD, Sharples L, Shaw A, Al-Shamma’a AI (2009) Online visual measurement of self-pierce riveting systems to help determine the quality of the mechanical interlock. Measurement 42(5):661–667. https://doi.org/10.1016/j.measurement.2008.10.013

    Article  Google Scholar 

  59. Spišák E (2016) Alternative joining methods in car body production. Int J Eng Sci 5(11):42–46. https://doi.org/10.9790/1813-0511024246

    Article  Google Scholar 

  60. Ľuboš KAŠČÁKJM, Waldemar WITKOWSKI (2018) Plastic formed and spot welded joints strength of S350GD+Z steel. Tehnicki vjesnik - Tech Gazette 25(6):1623–1630. https://doi.org/10.17559/tv-20170321223648

  61. Spišák E, Kaščák Ľ (2014) Mechanical joining of steel sheets in automotive industry. Acta Mech Slovaca 18(3-4):6–12. https://doi.org/10.21496/ams.2014.025

    Article  Google Scholar 

  62. Mucha J, Witkowski W (2014) The clinching joints strength analysis in the aspects of changes in the forming technology and load conditions. Thin-Walled Struct 82:55–66. https://doi.org/10.1016/j.tws.2014.04.001

    Article  Google Scholar 

  63. Mucha J, Lu K, Spišák E (2013) The experimental analysis of forming and strength of clinch riveting sheet metal joint made of different materials. Adv Mech Eng 5:848973. https://doi.org/10.1155/2013/848973

    Article  Google Scholar 

  64. Niu S, Ma Y, Lou M, Zhang C, Li Y (2020) Joint formation mechanism and performance of resistance rivet welding (RRW) for aluminum alloy and press hardened steel. J Mater Process Technol 286:116830. https://doi.org/10.1016/j.jmatprotec.2020.116830

    Article  Google Scholar 

  65. Li G, Jiang H, Zhang X, Cui J (2017) Mechanical properties and fatigue behavior of electromagnetic riveted lap joints influenced by shear loading. J Manuf Process 26:226–239. https://doi.org/10.1016/j.jmapro.2017.02.022

    Article  Google Scholar 

  66. Jiang H, Sun L, Dong D, Li G, Cui J (2019) Microstructure and mechanical property evolution of CFRP/Al electromagnetic riveted lap joint in a severe condition. Eng Struct 180:181–191. https://doi.org/10.1016/j.engstruct.2018.11.042

    Article  Google Scholar 

  67. Zhang X, Yu HP, Li J, Li CF (2014) Microstructure investigation and mechanical property analysis in electromagnetic riveting. Int J Adv Manuf Technol 78(1-4):613–623. https://doi.org/10.1007/s00170-014-6688-4

    Article  Google Scholar 

  68. Jiang H, Li G, Zhang X, Cui J (2017) Fatigue and failure mechanism in carbon fiber reinforced plastics/aluminum alloy single lap joint produced by electromagnetic riveting technique. Compos Sci Technol 152:1–10. https://doi.org/10.1016/j.compscitech.2017.09.004

    Article  Google Scholar 

  69. Jiang H, Zeng C, Li G, Cui J (2021) Effect of locking mode on mechanical properties and failure behavior of CFRP/Al electromagnetic riveted joint. Compos Struct 257:257. https://doi.org/10.1016/j.compstruct.2020.113162

    Article  Google Scholar 

  70. Zhang X, Yu HP, Su H, Li CF (2015) Experimental evaluation on mechanical properties of a riveted structure with electromagnetic riveting. Int J Adv Manuf Technol 83(9-12):2071–2082. https://doi.org/10.1007/s00170-015-7729-3

    Article  Google Scholar 

  71. Dong D, Sun L, Wang Q, Li G, Cui J (2019) Influence of electromagnetic riveting process on microstructures and mechanical properties of 2A10 and 6082 Al riveted structures. Arch Civ Mech Eng 19(4):1284–1294. https://doi.org/10.1016/j.acme.2019.07.006

    Article  Google Scholar 

  72. Cui J, Dong D, Zhang X, Huang X, Lu G, Jiang H, Li G (2018) Influence of thickness of composite layers on failure behaviors of carbon fiber reinforced plastics/aluminum alloy electromagnetic riveted lap joints under high-speed loading. Int J Impact Eng 115:1–9. https://doi.org/10.1016/j.ijimpeng.2018.01.004

    Article  Google Scholar 

  73. Cao Z, Zuo Y (2020) Electromagnetic riveting technique and its applications. Chin J Aeronaut 33(1):5–15. https://doi.org/10.1016/j.cja.2018.12.023

    Article  Google Scholar 

  74. Song D, Zhang X, Liu K, Zhang Y, Yang Z (2020) Experimental evaluation for the interference-fit electromagnetic rveting joint with headless rivet. IOP Conf Ser: Mater Sci Eng 751:012083. https://doi.org/10.1088/1757-899x/751/1/012083

  75. Zhang X, Jiang H, Luo T, Hu L, Li G, Cui J (2019) Theoretical and experimental investigation on interference fit in electromagnetic riveting. Int J Mech Sci 156:261–271. https://doi.org/10.1016/j.ijmecsci.2019.04.002

    Article  Google Scholar 

  76. Cui J, Qi L, Jiang H, Li G, Zhang X (2017) Numerical and experimental investigations in electromagnetic riveting with different rivet dies. Int J Mater Form 11(6):839–853. https://doi.org/10.1007/s12289-017-1394-z

    Article  Google Scholar 

  77. Zhang X, Yu HP, Li CF (2014) Multi-filed coupling numerical simulation and experimental investigation in electromagnetic riveting. Int J Adv Manuf Technol 73(9-12):1751–1763. https://doi.org/10.1007/s00170-014-5983-4

    Article  Google Scholar 

  78. Duprat D (1996) Fatigue life prediction of interference fit fastener and cold worked holes. Int J Fatigue 18(8):515–521. https://doi.org/10.1016/s0142-1123(96)00044-8

    Article  Google Scholar 

  79. Jiang H, Hong Z, Li G, Cui J (2020) Numerical and experiment investigation on joining process and failure behaviors of CFRP/Al electromagnetic riveted joint. Mech Adv Mater Struct 1–17. https://doi.org/10.1080/15376494.2020.1847372

  80. Jiang H, Cong Y, Zhang J, Wu X, Li G, Cui J (2019) Fatigue response of electromagnetic riveted joints with different rivet dies subjected to pull-out loading. Int J Fatigue 129:105238. https://doi.org/10.1016/j.ijfatigue.2019.105238

    Article  Google Scholar 

  81. Duan L, Feng X, Cui J, Li G, Jiang H (2021) Effect of angle deflection on deformation characteristic and mechanical property of electromagnetic riveted joint. Int J Adv Manuf Technol 112(11-12):3529–3543. https://doi.org/10.1007/s00170-021-06621-6

    Article  Google Scholar 

  82. Liang J, Jiang H, Zhang J, Wu X, Zhang X, Li G, Cui J (2019) Investigations on mechanical properties and microtopography of electromagnetic self-piercing riveted joints with carbon fiber reinforced plastics/aluminum alloy 5052. Arch Civ Mech Eng 19(1):240–250. https://doi.org/10.1016/j.acme.2018.11.001

    Article  Google Scholar 

  83. Jiang H, Gao S, Li G, Cui J (2019) Structural design of half hollow rivet for electromagnetic self-piercing riveting process of dissimilar materials. Mater Des 183:108141. https://doi.org/10.1016/j.matdes.2019.108141

    Article  Google Scholar 

  84. Wang H, Yang F, Zhang Z, Liu L (2020) Bonding mechanism of Al/steel interface formed by laser-TIG welding assisted riveting technology. Mater Today Commun 25:25. https://doi.org/10.1016/j.mtcomm.2020.101487

    Article  Google Scholar 

  85. Meili ZHU, Liming LIU, Fan Y, Hongyang W, Ruibo HAN (2020) Research on riveting-laser arc welding hybrid joining mechanism of aluminum alloy and high strength steel. J Mech Eng 56(6):57. https://doi.org/10.3901/jme.2020.06.057

    Article  Google Scholar 

  86. Wang H, Zhang Z, Liu L (2021) Prediction and fitting of weld morphology of Al alloy-CFRP welding-rivet hybrid bonding joint based on GA-BP neural network. J Manuf Process 63:109–120. https://doi.org/10.1016/j.jmapro.2020.04.010

    Article  Google Scholar 

  87. Niu S, Lou M, Ma Y, Yang B, Shan H, Li Y (2021) Resistance rivet welding of magnesium/steel dissimilar materials. Mater Lett 282:128876. https://doi.org/10.1016/j.matlet.2020.128876

    Article  Google Scholar 

  88. Borba NZ, Blaga L, dos Santos JF, Amancio-Filho ST (2018) Direct-friction riveting of polymer composite laminates for aircraft applications. Mater Lett 215:31–34. https://doi.org/10.1016/j.matlet.2017.12.033

    Article  Google Scholar 

  89. Altmeyer J, dos Santos JF, Amancio-Filho ST (2014) Effect of the friction riveting process parameters on the joint formation and performance of Ti alloy/short-fibre reinforced polyether ether ketone joints. Mater Des 60:164–176. https://doi.org/10.1016/j.matdes.2014.03.042

    Article  Google Scholar 

  90. Borba NZ, dos Santos JF, Amancio-Filho ST (2021) Hydrothermal aging of friction riveted thermoplastic composite joints for aircraft applications. Compos Struct 255:112871.https://doi.org/10.1016/j.compstruct.2020.112871

  91. Cipriano GP, de Carvalho WS, Vilaça P, Amancio-Filho ST (2021) Thermomechanical modeling of the metallic rivet in friction riveting of amorphous thermoplastics. Weld World 65(5):855–864. https://doi.org/10.1007/s40194-020-01049-0

    Article  Google Scholar 

  92. Gagliardi F, Conte R, Ciancio C, Simeoli G, Pagliarulo V, Ambrogio G, Russo P (2018) Joining of thermoplastic structures by friction riveting: a mechanical and a microstructural investigation on pure and glass reinforced polyamide sheets. Compos Struct 204:268–275. https://doi.org/10.1016/j.compstruct.2018.07.092

    Article  Google Scholar 

  93. Borges MF, Amancio-Filho ST, dos Santos JF, Strohaecker TR, Mazzaferro JAE (2012) Development of computational models to predict the mechanical behavior of Friction Riveting joints. Comput Mater Sci 54:7–15. https://doi.org/10.1016/j.commatsci.2011.10.031

    Article  Google Scholar 

  94. Borba NZ, Kötter B, Fiedler B, dos Santos JF, Amancio-Filho ST (2020) Mechanical integrity of friction-riveted joints for aircraft applications. Compos Struct 232:232. https://doi.org/10.1016/j.compstruct.2019.111542

    Article  Google Scholar 

  95. Li SX, Khan H, Hihara LH, Li JJ (2016) Marine atmospheric corrosion of Al-Mg joints by friction stir blind riveting. Corros Sci 111:793–801. https://doi.org/10.1016/j.corsci.2016.05.009

    Article  Google Scholar 

  96. Wang P.C., Stevenson R. (2007) Friction stir rivet and method of joining. In: US Patent 7862271

  97. Min JY, Li JJ, Li YQ, Carlson BE, Lin JP, Wang WM (2015) Friction stir blind riveting for aluminum alloy sheets. J Mater Process Technol 215:20–29. https://doi.org/10.1016/j.jmatprotec.2014.08.005

    Article  Google Scholar 

  98. Khan HA, Pei S, Chen N, Miller S, Li J (2020) Evaluation of μFSBR joint performance by process-physics based quality criteria and online monitoring algorithm. J Mater Process Technol 278:278. https://doi.org/10.1016/j.jmatprotec.2019.116508

    Article  Google Scholar 

  99. Min JY, Li JJ, Carlson BE, Li YQ, Quinn JF, Lin JP, Wang WM (2015) Friction stir blind riveting for joining dissimilar cast Mg AM60 and Al alloy sheets. J Manuf Sci E-T Asme 137(5):051022. https://doi.org/10.1115/1.4030156

    Article  Google Scholar 

  100. Min J, Li Y, Li J, Carlson BE, Lin J (2014) Friction stir blind riveting of carbon fiber-reinforced polymer composite and aluminum alloy sheets. Int J Adv Manuf Technol 76(5-8):1403–1410. https://doi.org/10.1007/s00170-014-6364-8

    Article  Google Scholar 

  101. Lathabai S, Tyagi V, Ritchie D, Kearney T, Finnin B, Christian S, Sansome A, White G (2011) Friction stir blind riveting: a novel joining process for automotive light alloys. SAE Int J Mater Manuf 4(1):589–601. https://doi.org/10.4271/2011-01-0477

    Article  Google Scholar 

  102. Ma YW, Li YB, Carlson BE, Lin ZQ (2018) Effect of process parameters on joint formation and mechanical performance in friction stir blind riveting of aluminum alloys. J Manuf Sci E-T Asme 140(6):061007. https://doi.org/10.1115/1.4039118

    Article  Google Scholar 

  103. Lin D, Lin QI, Qingxin Z, Guotao Z, Ming LOU, Yunwu MA, Yongbing LI (2020) Advances in spot joining technologies of lightweight thin-walled structures. J Mech Eng 56(6):125. https://doi.org/10.3901/jme.2020.06.125

    Article  Google Scholar 

  104. Wang W, Wang K, Khan HA, Li J, Miller S (2018) Numerical Analysis of Magnesium to Aluminum Joints in Friction Stir Blind Riveting. In: Procedia CIRP (2018): 7th CIRP Conference on Assembly Technologies and Systems, vol 76, pp 94–99. https://doi.org/10.1016/j.procir.2018.01.037  

  105. Li SX, Khan HA, Hihara LH, Cong HB, Li JL (2018) Corrosion behavior of friction stir blind riveted Al/CFRP and Mg/CFRP joints exposed to a marine environment. Corros Sci 132:300–309. https://doi.org/10.1016/j.corsci.2018.01.005

    Article  Google Scholar 

  106. Ma Y, Niu S, Liu H, Li Y, Ma N (2021) Microstructural evolution in friction self-piercing riveted aluminum alloy AA7075-T6 joints. J Mater Sci Technol 82:80–95. https://doi.org/10.1016/j.jmst.2020.12.023

    Article  Google Scholar 

  107. Liu X, Lim YC, Li Y, Tang W, Ma Y, Feng Z, Ni J (2016) Effects of process parameters on friction self-piercing riveting of dissimilar materials. J Mater Process Technol 237:19–30. https://doi.org/10.1016/j.jmatprotec.2016.05.022

    Article  Google Scholar 

  108. Ma YW, Li YB, Lin ZQ (2019) Joint formation and mechanical performance of friction self-piercing riveted aluminum alloy AA7075-T6 joints. J Manuf Sci Eng 141(4): 041005. https://doi.org/10.1115/1.4042568

  109. Ma Y, He G, Lou M, Li Y, Lin Z (2018) Effects of process parameters on crack inhibition and mechanical interlocking in friction self-piercing riveting of aluminum alloy and magnesium alloy. J Manuf Sci Eng 140(10): 101015. https://doi.org/10.1115/1.4040729

  110. 110. Ma Y, Shan H, Niu S, Li Y, Lin Z, Ma N (2020) A comparative study of friction self-piercing riveting and self-piercing riveting of aluminum alloy AA5182-O. Engineering. https://doi.org/10.1016/j.eng.2020.06.015

  111. Varma A, Absar S, Zhao X, Choi H, Abke T, Skovron JD, Ruszkiewicz BJ, Mears L Thermal-Mechanical Numerical Modeling of the Friction Element Welding Process. In: ASME 2018 13th International Manufacturing Science and Engineering Conference, 2018. V002T04A045. https://doi.org/10.1115/msec2018-6692

  112. Skovron JD, Ruszkiewicz BJ, Mears L, Abke T, Varma A, Li Y, Choi H, Zhao X Investigation of the Cleaning and Welding Steps From the Friction Element Welding Process. In: ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing, 2017. V001T02A004. https://doi.org/10.1115/msec2017-2786

  113. Ruszkiewicz BJ, Skovron JD, Absar S, Choi H, Zhao X, Mears L, Abke T, Ipekbayrak K (2018) Parameter sensitivity and process time reduction for friction element welding of 6061-T6 aluminum to 1500 MPa press-hardened steel. SAE Int J Mater Manuf 12(1):41–56. https://doi.org/10.4271/05-12-01-0004

    Article  Google Scholar 

  114. Absar S, Ruszkiewicz BJ, Skovron JD, Mears L, Abke T, Zhao X, Choi H (2018) Temperature measurement in friction element welding process with micro thin film thermocouples. Procedia Manuf 26:485–494. https://doi.org/10.1016/j.promfg.2018.07.057

    Article  Google Scholar 

  115. Ling Z, Li Y, Luo Z, Feng Y, Wang Z (2016) Resistance element welding of 6061 aluminum alloy to uncoated 22MnMoB boron steel. Mater Manuf Process 31(16):2174–2180. https://doi.org/10.1080/10426914.2016.1151044

    Article  Google Scholar 

  116. Sønstabø JK, Morin D, Langseth M (2018) Testing and modelling of flow-drill screw connections under quasi-static loadings. J Mater Process Technol 255:724–738. https://doi.org/10.1016/j.jmatprotec.2018.01.007

    Article  Google Scholar 

  117. Nagel P, Meschut G (2017) Flow drill screwing of fibre-reinforced plastic-metal composites without a pilot hole. Weld World 61(5):1057–1067. https://doi.org/10.1007/s40194-017-0493-2

    Article  Google Scholar 

  118. Huang C, Chen W, Sung S, Pan J (2018) Mechanical strength and failure mode of flow drill screw joints in coach-peel specimens of aluminum 6082-T6 sheets of different thicknesses and processing conditions SAE Technical Paper. 2018-01-0116. https://doi.org/10.4271/2018-01-0116

  119. Pan J, Chen W-N, Sung S-J, Su X, Friedman P (2018) Failure mode and fatigue behavior of flow drill screw joints in lap-shear specimens of aluminum 6082-T6 sheets made with different processing conditions. SAE Int J Mater Manuf 11(4):327–340. https://doi.org/10.4271/2018-01-1237

    Article  Google Scholar 

  120. Pan J, Chen W-N, Sung S-J, Su X, Friedman P (2018) Failure mode and fatigue behavior of flow drill screw joints in lap-shear specimens of aluminum 6082-T6 sheets of different thicknesses. SAE Int J Mater Manuf 11(4):315–326. https://doi.org/10.4271/2018-01-1239

    Article  Google Scholar 

  121. Sønstabø JK, Holmstrøm PH, Morin D, Langseth M (2015) Macroscopic strength and failure properties of flow-drill screw connections. J Mater Process Technol 222:1–12. https://doi.org/10.1016/j.jmatprotec.2015.02.031

    Article  Google Scholar 

  122. Morodomi H, Nishihara Y, Matsubara S, Hashimura S, Hori H (2020) A study of high-speed joining method using spiral nails. Journal of Manufacturing Processes 59:500–508. https://doi.org/10.1016/j.jmapro.2020.10.022

  123. Han RB (2020) Research on Riveting-Laser Arc Welding Hybrid Joining of Aluminum Alloy and High Strength Steel. Master, Dalian University of Technology

  124. Meschut G, Janzen V, Olfermann T (2014) Innovative and highly productive joining technologies for multi-material lightweight car body structures. J Mater Eng Perform 23(5):1515–1523. https://doi.org/10.1007/s11665-014-0962-3

    Article  Google Scholar 

  125. Kim J, Lee H, Choi H, Lee B, Kim D (2020) Prediction of load–displacement curves of flow drill screw and RIVTAC joints between dissimilar materials using artificial neural networks. J Manuf Process 57:400–408. https://doi.org/10.1016/j.jmapro.2020.06.039

    Article  Google Scholar 

  126. Meschut G, Hein D, Gerkens M (2019) Numerical simulation of high-speed joining of sheet metal structures. Procedia Manuf 29:280–287. https://doi.org/10.1016/j.promfg.2019.02.173

    Article  Google Scholar 

  127. Ufferman B, Abke T, Barker M, Vivek A, Daehn GS (2018) Mechanical properties of joints in 5052 aluminum made with adhesive bonding and mechanical fasteners. Int J Adhes Adhes 83:96–102. https://doi.org/10.1016/j.ijadhadh.2018.02.030

    Article  Google Scholar 

Download references

Code availability

Not applicable.

Funding

This research work is supported by the National Natural Science Foundation of China (Grant No. 51805416), Young Elite Scientists Sponsorship Program by CAST, Natural Science Foundation of Hunan Province (Grant No. 2020JJ5716), the Project of State Key Laboratory of High Performance Complex Manufacturing, Central South University (Grant No. ZZYJKT2019-01), Huxiang High-Level Talent Gathering Project of HUNAN Province (Grant No. 2019RS1002), and Hunan Provincial Natural Science Foundation for Excellent Young Scholars.

Author information

Authors and Affiliations

Authors

Contributions

Chao Chen, Jinliang Wu, and Denglin Qin analyzed the data; Chao Chen, Jinliang Wu, and Haijun Li contributed reagents/materials/analysis tools; Chao Chen, Jinliang Wu, and Yawen Ouyang wrote the paper.

Corresponding author

Correspondence to Chao Chen.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Chen, C., Ouyang, Y. et al. Recent development of the novel riveting processes. Int J Adv Manuf Technol 117, 19–47 (2021). https://doi.org/10.1007/s00170-021-07689-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07689-w

Keywords

Navigation