Skip to main content
Log in

Finite element methods used in clinching process

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Mechanical clinching technology, with the ability to join dissimilar, coated, and hard-to-weld materials, has been widely adopted in the automotive field. The finite element method has been proved to be an efficient and effective approach for investigating the clinching process. This paper comprehensively overviewed the recent advances in the application of finite element methods on the clinching process. The modeling methodologies of clinching process, such as material modeling, meshing operation, and contact definition, were summarized and discussed. The advances regarding finite element method used in various types of clinching processes were also reviewed respectively. Subsequently, the finite element methods used to conduct parameter study and strength prediction in the clinching process were introduced and reviewed. Finally, some outlooks about FEM used in the clinching process were proposed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68
Fig. 69

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. Dean A, Rolfes R, Grbic N, Hübner S, Behrens B (2019) A FEM-based virtual test-rig for hybrid metal-composites clinching joints. Mater Werkst 50(8):973–986. https://doi.org/10.1002/mawe.201800198

    Article  Google Scholar 

  2. Mori KI, Bay N, Fratini L, Micari F, Tekkaya AE (2013) Joining by plastic deformation. CIRP Ann Manuf Technol 62(2):673–694. https://doi.org/10.1016/j.cirp.2013.05.004

    Article  Google Scholar 

  3. Varis JP, Lepistö J (2003) A simple testing-based procedure and simulation of the clinching process using finite element analysis for establishing clinching parameters. Thin-Walled Struct 41(8):691–709. https://doi.org/10.1016/s0263-8231(03)00026-0

    Article  Google Scholar 

  4. Zakirov IM, Sosov AV, Nikitin AV (2014) On influence of tooling geometry and setup parameters on the clinch connection characteristics. Russ Aeronaut (Iz VUZ) 56(4):390–395. https://doi.org/10.3103/s1068799813040119

    Article  Google Scholar 

  5. Eshteyah M, Hrairi M, Dawood MS, Mohiuddin AKM (2015) Finite element modeling of clinching process for joining dissimilar materials. Adv Mater Res 1115:109–112. https://doi.org/10.4028/www.scientific.net/AMR.1115.109

    Article  Google Scholar 

  6. Lambiase F, Di Ilio A (2014) An experimental study on clinched joints realized with different dies. Thin-Walled Struct 85:71–80. https://doi.org/10.1016/j.tws.2014.08.004

    Article  Google Scholar 

  7. Behrens B-A, Bouguecha A, Vucetic M, Grbic N (2016) FEA of the clinching process of short fiber reinforced thermoplastic with an aluminum sheet using LS-DYNA. AIP Conf Proc 1769(1):100012. https://doi.org/10.1063/1.4963506

    Article  Google Scholar 

  8. Kaščák L, Spišák E, Kubik R, Mucha J (2016) FEM analysis of clinching tool load in a joint of dual-phase steels. Strength Mater 48(4):533–539. https://doi.org/10.1007/s11223-016-9795-7

    Article  Google Scholar 

  9. He X (2009) Recent development in finite element analysis of clinched joints. Int J Adv Manuf Technol 48(5-8):607–612. https://doi.org/10.1007/s00170-009-2306-2

    Article  Google Scholar 

  10. Eshtayeh MM, Hrairi M, Mohiuddin AKM (2015) Clinching process for joining dissimilar materials: state of the art. Int J Adv Manuf Technol 82(1-4):179–195. https://doi.org/10.1007/s00170-015-7363-0

    Article  Google Scholar 

  11. Jayasekara V, Min KH, Noh JH, Kim MT, Seo JM, Lee HY, Hwang BB (2010) Rigid-plastic and elastic-plastic finite element analysis on the clinching joint process of thin metal sheets. Met Mater Int 16(2):339–347. https://doi.org/10.1007/s12540-010-0427-7

    Article  Google Scholar 

  12. Varis J (2006) Economics of clinched joint compared to riveted joint and example of applying calculations to a volume product. J Mater Process Technol 172(1):130–138. https://doi.org/10.1016/j.jmatprotec.2005.09.009

    Article  Google Scholar 

  13. Ali B, Benabderrahmane B (2016) Finite element simulation of the hybrid clinch joining. Int J Adv Manuf Technol 89(1-4):439–449. https://doi.org/10.1007/s00170-016-9094-2

    Article  Google Scholar 

  14. Hamel V, Roelandt JM, Gacel JN, Schmit F (2000) Finite element modeling of clinch forming with automatic remeshingi. Comput Struct 77(2):185–200. https://doi.org/10.1016/S0045-7949(99)00207-2

    Article  Google Scholar 

  15. Béres G, Danyi J, Végvári F (2015) Clinching of steel sheets used in automotive industry. Appl Mech Mater 808:75–79. https://doi.org/10.4028/www.scientific.net/AMM.808.75

    Article  Google Scholar 

  16. Malý P, Lopot F, Sojka J (2017) FEM model and experimental measurement of clinched joint. IOP Conf Ser: Mater Sci Eng 179:1–6. https://doi.org/10.1088/1757-899x/179/1/012051

    Article  Google Scholar 

  17. Jónás S, Tisza M (2020) Effect of the friction coefficient on clinch joints. Int J Eng Manag Sci 5(2):86–90. https://doi.org/10.21791/ijems.2020.2.11

    Article  Google Scholar 

  18. Benabderrahmane B, Ali B (2013) Finite element analysis of the parameters affect the mechanical strength of a point clinched. Int J Eng Res Technol (IJERT) 02(08):795–799

    Google Scholar 

  19. Breda A, Coppieters S, Debruyne D (2017) Equivalent modelling strategy for a clinched joint using a simple calibration method. Thin-Walled Struct 113:1–12. https://doi.org/10.1016/j.tws.2016.12.002

    Article  Google Scholar 

  20. Džupon M, Kaščák Ľ, Spišák E, Kubík R, Majerníková J (2017) Wear of shaped surfaces of PVD coated dies for clinching. Metals 7(11). https://doi.org/10.3390/met7110515

  21. Varis JP (2003) The suitability of clinching as a joining method for high-strength structural steel. J Mater Process Technol 132(1-3):242–249. https://doi.org/10.1016/S0924-0136(02)00933-0

    Article  Google Scholar 

  22. Peng H, Chen C, Zhang HY, Ran XK (2020) Recent development of improved clinching process. Int J Adv Manuf Technol 110(11-12):3169–3199. https://doi.org/10.1007/s00170-020-05978-4

    Article  Google Scholar 

  23. Eshtayeh MM, Hrairi M (2016) Recent and future development of the application of finite element analysis in clinching process. Int J Adv Manuf Technol 84(9-12):2589–2608. https://doi.org/10.1007/s00170-015-7781-z

    Article  Google Scholar 

  24. Han SL, Wu YW, Gao Y, Zeng QL (2012) Study on clinching of magnesium alloy sheets with different lower die parameters based on DEFORM 2D. Proceedings of the 2nd International Conference on Electronic & Mechanical Engineering and Information Technology (Emeit-2012) 23:1242–1245

    Google Scholar 

  25. Behrens BA, Bouguecha A, Vucetic M, Hübner S, Yilkiran D, Jin YL, Peshekhodov I (2015) FEA-based optimisation of a clinching process with a closed single-part die aimed at damage minimization in CR240BH-AlSi10MnMg joints. Key Eng Mater 651-653:1487–1492. https://doi.org/10.4028/www.scientific.net/KEM.651-653.1487

    Article  Google Scholar 

  26. Chen C, Han X, Zhao S, Xu F, Zhao X, Ishida T (2017) Influence of sheet thickness on mechanical clinch–compress joining technology. Proc Inst Mech Eng E J Process Mech Eng 232(6):662–673. https://doi.org/10.1177/0954408917735717

    Article  Google Scholar 

  27. Zheng C, Zhang Y, Zhao G, Ji Z, Sun Y (2020) Influence of process parameters on forming quality of Cu-Fe joints by laser shock hole-clinching. Int J Adv Manuf Technol 110(3-4):887–898. https://doi.org/10.1007/s00170-020-05915-5

    Article  Google Scholar 

  28. Shi C, Yi R, Chen C, Peng H, Ran X, Zhao S (2020) Forming mechanism of the repairing process on clinched joint. J Manuf Process 50:329–335. https://doi.org/10.1016/j.jmapro.2019.12.025

    Article  Google Scholar 

  29. Kumma P, Soranansri P (2020) Effect of blank holder force and edge radius on joining strength in flat-clinching process. Key Eng Mater:856. https://doi.org/10.4028/www.scientific.net/KEM.856.175

  30. Coppieters S, Cooreman S, Lava P, Sol H, Van Houtte P, Debruyne D (2011) Reproducing the experimental pull-out and shear strength of clinched sheet metal connections using FEA. Int J Mater Form 4(4):429–440. https://doi.org/10.1007/s12289-010-1023-6

    Article  Google Scholar 

  31. Oudjene M, Ben-Ayed L, Batoz JL (2007) Geometrical optimization of clinch forming process using the response surface method. AIP Conf Proc 908(1):531–536. https://doi.org/10.1063/1.2740865

    Article  Google Scholar 

  32. Oudjene M, Ben-Ayed L (2008) On the parametrical study of clinch joining of metallic sheets using the Taguchi method. Eng Struct 30(6):1782–1788. https://doi.org/10.1016/j.engstruct.2007.10.017

    Article  Google Scholar 

  33. Saberi S, Enzinger N, Vallant R, Cerjak H, Hinterdorfer J, Rauch R (2008) Influence of plastic anisotropy on the mechanical behavior of clinched joint of different coated thin steel sheets. Int J Mater Form 1:273–276. https://doi.org/10.1007/s12289-008-0349-9

    Article  Google Scholar 

  34. Oudjene M, Ben-Ayed L, Delameziere A, Batoz JL (2009) Shape optimization of clinching tools using the response surface methodology with Moving Least-Square approximation. J Mater Process Technol 209(1):289–296. https://doi.org/10.1016/j.jmatprotec.2008.02.030

    Article  Google Scholar 

  35. Pirondi A, Moroni F (2010) Science of clinch–adhesive joints. In: Hybrid adhesive joints. Advanced Structured Materials, pp 109–147. https://doi.org/10.1007/8611_2010_36

  36. Balawender T, Sadowski T, Golewski P (2012) Numerical analysis and experiments of the clinch-bonded joint subjected to uniaxial tension. Comput Mater Sci 64:270–272. https://doi.org/10.1016/j.commatsci.2012.05.014

    Article  Google Scholar 

  37. Behrens BA, Bouguecha A, Eckold CP, Peshekhodov I (2012) A new clinching process especially for thin metal sheets and foils. Key Eng Mater 504-506:783–788. https://doi.org/10.4028/www.scientific.net/KEM.504-506.783

    Article  Google Scholar 

  38. Coppieters S, Lava P, Van Hecke R, Cooreman S, Sol H, Van Houtte P, Debruyne D (2013) Numerical and experimental study of the multi-axial quasi-static strength of clinched connections. Int J Mater Form 6(4):437–451. https://doi.org/10.1007/s12289-012-1097-4

    Article  Google Scholar 

  39. Sadowski T, Balawender T, Sliwa R, Golewski P, Knec M (2013) Modern hybrid joints in aerospace: modelling and testing. Arch Metall Mater 58(1):163–169. https://doi.org/10.2478/v10172-012-0168-3

    Article  Google Scholar 

  40. Sadowski T, Golewski P (2013) Numerical study of the prestressed connectors and their distribution on the strength of a single lap, a double lap and hybrid joints subjected to uniaxial tensile test. Arch Metall Mater 58(2):579–585. https://doi.org/10.2478/amm-2013-0041

    Article  Google Scholar 

  41. Breda A, Coppieters S, Debruyne D (2016) Modeling strategy for clinched joints in assemblies. In: Numisheet 2016: 10th International Conference and Workshop on Numerical Simulation of 3d Sheet Metal Forming Processes, Pts a and B 734. https://doi.org/10.1088/1742-6596/734/3/032001

    Chapter  Google Scholar 

  42. Coppieters S, Zhang H, Xu F, Vandermeiren N, Breda A, Debruyne D (2017) Process-induced bottom defects in clinch forming: simulation and effect on the structural integrity of single shear lap specimens. Mater Des 130:336–348. https://doi.org/10.1016/j.matdes.2017.05.077

    Article  Google Scholar 

  43. Jäckel M, Coppieters S, Hofmann M, Vandermeiren N, Landgrebe D, Debruyne D, Wallmersberger T, Faes K (2017) Mechanical joining of materials with limited ductility: analysis of process-induced defects. AIP Conf Proc 1896(1):110009. https://doi.org/10.1063/1.5008136

    Article  Google Scholar 

  44. Dean A, Rolfes R, Behrens BA, Hübner S, Chugreev A, Grbic N (2018) Parametric study of hybrid metal-composites clinching joints. Key Eng Mater 767:413–420. https://doi.org/10.4028/www.scientific.net/KEM.767.413

    Article  Google Scholar 

  45. Jónás S, Tisza M (2018) Finite element modelling of clinched joints. Adv Technol Mater 43(1):1–6. https://doi.org/10.24867/atm-2018-1-001\

    Article  Google Scholar 

  46. Moraes JFC, Jordon JB, Su XM, Brewer LN, Fay BJ, Bunn JR, Sochalski-Kolbus L, Barkey ME (2018) Residual stresses and plastic deformation in self-pierce riveting of dissimilar aluminum-to-magnesium alloys. Sae Int J Mater Manuf 11(2):139–149. https://doi.org/10.4271/05-11-02-0015

    Article  Google Scholar 

  47. Sabra Atia MK, Jain MK (2018) A parametric study of FE modeling of die-less clinching of AA7075 aluminum sheets. Thin-Walled Struct 132:717–728. https://doi.org/10.1016/j.tws.2018.09.001

    Article  Google Scholar 

  48. Shi B, Zhang Z, Yang M, Zhong J (2018) Simulation and optimization analysis of clinching joint performance based on mould parameters. In: DEStech Transactions on Computer Science and Engineering (icmsie), pp 537–584. https://doi.org/10.12783/dtcse/icmsie2017/18797

    Chapter  Google Scholar 

  49. Xu F, Zhang H, Zhao S, Chen C, Cao M, Chen W (2018) Optimized calibration procedure of the damage parameters of AA6082-T6 sheets. Materials (Basel) 11(2). https://doi.org/10.3390/ma11020248

  50. Song Y, Yang L, Zhu G, Hua L, Liu R (2019) Numerical and experimental study on failure behavior of steel-aluminium mechanical clinched joints under multiple test conditions. Int J Lightweight Mater Manuf 2(1):72–79. https://doi.org/10.1016/j.ijlmm.2018.12.005

    Article  Google Scholar 

  51. Tenorio MB, Lajarin SF, Gipiela ML, Marcondes PVP (2019) The influence of tool geometry and process parameters on joined sheets by clinching. J Braz Soc Mech Sci Eng 41(2):67. https://doi.org/10.1007/s40430-018-1539-0

    Article  Google Scholar 

  52. Lee CJ, Kim JY, Lee SK, Ko DC, Kim BM (2010) Design of mechanical clinching tools for joining of aluminium alloy sheets. Mater Des 31(4):1854–1861. https://doi.org/10.1016/j.matdes.2009.10.064

    Article  Google Scholar 

  53. Balawender T, Sadowski T, Kneć M (2011) Technological problems and experimental investigation of hybrid: clinched-adhesively bonded joint. Arch Metall Mater 56(2). https://doi.org/10.2478/v10172-011-0047-3

  54. Drossel W, Israel M, Falk T (2013) Robustness evaluation and tool optimization in forming applications. In: 9th Weimarer Optimization and Stochastic Days, pp 1–17

    Google Scholar 

  55. Eckert A, Israel M, Neugebauer R, Rössinger M, Wahl M, Schulz F (2012) Local–global approach using experimental and/or simulated data to predict distortion caused by mechanical joining technologies. Prod Eng 7(2-3):339–349. https://doi.org/10.1007/s11740-012-0431-5

    Article  Google Scholar 

  56. Lee C-J, Lee J-M, Ryu H-Y, Lee K-H, Kim B-M, Ko D-C (2014) Design of hole-clinching process for joining of dissimilar materials—Al6061-T4 alloy with DP780 steel, hot-pressed 22MnB5 steel, and carbon fiber reinforced plastic. J Mater Process Technol 214(10):2169–2178. https://doi.org/10.1016/j.jmatprotec.2014.03.032

    Article  Google Scholar 

  57. Lambiase F, Di Ilio A (2016) Damage analysis in mechanical clinching: experimental and numerical study. J Mater Process Technol 230:109–120. https://doi.org/10.1016/j.jmatprotec.2015.11.013

    Article  Google Scholar 

  58. Jónás S, Tisza M, Felhős D, Kovács PZ (2019) Experimental and numerical study of dissimilar sheet metal clinching. AIP Conf Proc 2113(1):050021. https://doi.org/10.1063/1.5112585

    Article  Google Scholar 

  59. Rusia A, Beck DM, Weihe P-DS (2019) Simulation of self-piercing riveting process and joint failure with focus on material damage and failure modelling. In: 12th European LS-DYNA Conference 2019, Koblenz, Germany, pp 1–12

  60. Behrens BA, Rolfes R, Vucetic M, Peshekhodov I, Reinoso J, Vogler M, Grbic N (2014) Material characterization for FEA of the clinching process of short fiber reinforced thermoplastics with an aluminum sheet. Adv Mater Res 966-967:557–568. https://doi.org/10.4028/www.scientific.net/AMR.966-967.557

    Article  Google Scholar 

  61. Maier B, Klingler M, Böhm S, Awiszus B (2019) Simulation-based investigation of the influence of process parameter deviations on the quality of clinch connections with preformed hole. Mater Sci Forum 949:112–118. https://doi.org/10.4028/www.scientific.net/MSF.949.112

    Article  Google Scholar 

  62. Abe Y, Maeda T, Yoshioka D, Mori KI (2020) Mechanical clinching and self-pierce riveting of thin three sheets of 5000 series aluminium alloy and 980 MPa grade cold rolled ultra-high strength steel. Materials (Basel) 13(21). https://doi.org/10.3390/ma13214741

  63. Flodr J, Lehner P, Krejsa M (2020) Experimental and numerical evaluation of clinch connections of thin-walled building structures. Sustainability 12(14):5691. https://doi.org/10.3390/su12145691

    Article  Google Scholar 

  64. Zheng JC, He XC, Xu JN, Zeng K, Ding YF, Hu YB (2012) Finite element analysis of energy saving jointing method base on energy materials: clinching. Adv Mater Res 577:9–12. https://doi.org/10.4028/www.scientific.net/AMR.577.9

    Article  Google Scholar 

  65. Yang H, He X, Zhou S, Zeng K, Ding Y (2013) Study on clinching for multi-layer metal sheet. Hot Work Technol 42(24):37–40. https://doi.org/10.14158/j.cnki.1001-3814.2013.24.024

    Article  Google Scholar 

  66. He XC, Ding YF, Yang HY, Xing BY (2014) Numerical study on free vibration characteristics of encastre clinched joints. J Vibroeng 16(1):360–368

    Google Scholar 

  67. He XC, Liu FL, Xing BY, Yang HY, Wang YQ, Gu FS, Ball A (2014) Numerical and experimental investigations of extensible die clinching. Int J Adv Manuf Technol 74(9-12):1229–1236. https://doi.org/10.1007/s00170-014-6078-y

    Article  Google Scholar 

  68. Lambiase F (2015) Clinch joining of heat-treatable aluminum AA6082-T6 alloy under warm conditions. J Mater Process Technol 225:421–432. https://doi.org/10.1016/j.jmatprotec.2015.06.022

    Article  Google Scholar 

  69. Szabolcs J (2017) Use of surface response methodology (RSM) in clinching process. Des Mach Struct 7(1):23–31

    Google Scholar 

  70. Ismail MIS, Buang A (2018) Precision joining of steel-aluminum hybrid structure by clinching process. J Adv Manuf Technol 12(1):25–36

    Google Scholar 

  71. Jónás S, Tisza M (2018) Influencers of clinched joints. In: The publications of the MultiScience—XXXII. MicroCAD International Scientific Conference. University of Miskolc. https://doi.org/10.26649/musci.2018.036

  72. Jónás S, Tisza M (2018) Numerical investigation of clinched joints. Mater Sci Eng 43(1):62–70

  73. Maier B, Klingler M, Bohm S, Awiszus B (2018) Influence of material damage during the forming process on the vibration fatigue behaviour of a clinched connection. In: 5th International Conference on New Forming Technology (Icnft 2018), vol 190, p 12002. https://doi.org/10.1051/matecconf/201819012002

    Chapter  Google Scholar 

  74. Flodr J, Pařenica P, Lehner P, Krejsa M (2019) Numerical analysis of double C profile connected by clinching technology. AIP Conf Proc 2116(1):120016. https://doi.org/10.1063/1.5114118

    Article  Google Scholar 

  75. Sz J, Tisza M (2019) Determination of different parameters to high strength steel clinch joints by FEA. Int J Eng Manag Sci 4(1):341–347. https://doi.org/10.21791/ijems.2019.1.42

    Article  Google Scholar 

  76. Bonora N, Testa G, Iannitti G, Ruggiero A, Gentile D (2018) Numerical simulation of self-piercing riveting process (SRP) using continuum damage mechanics modelling. Frat ed Integrita Strutt 12(44):161–172. https://doi.org/10.3221/igf-esis.44.13

    Article  Google Scholar 

  77. Cumin J, Samardzic I, Dunder M (2018) Mechanical clinching process stress and strain in the clinching of EN-AW5754 (AlMg3), and EN AW-5019 (AlMg5) metal plates. Metalurgija 57(1-2):107–110

    Google Scholar 

  78. Cumin J, Stoic A, Duspara M, Samardzic I (2019) FEM numerical simulations of the mechanical clinching process of HC260Y steel. Technical Gazette 26(1):49-55. https://doi.org/10.17559/Tv-20170529143820

  79. Jäckel M, Coppieters S, Vandermeiren N, Kraus C, Drossel W-G, Miyake N, Kuwabara T, Unruh K, Traphöner H, Tekkaya AE, Balan T (2020) Process-oriented flow curve determination at mechanical joining. Procedia Manuf 47:368–374. https://doi.org/10.1016/j.promfg.2020.04.289

    Article  Google Scholar 

  80. Gerstmann T, Awiszus B (2014) Recent developments in flat-clinching. Comput Mater Sci 81:39–44. https://doi.org/10.1016/j.commatsci.2013.07.013

    Article  Google Scholar 

  81. Roux E, Bouchard PO (2013) Kriging metamodel global optimization of clinching joining processes accounting for ductile damage. J Mater Process Technol 213(7):1038–1047. https://doi.org/10.1016/j.jmatprotec.2013.01.018

    Article  Google Scholar 

  82. Khaledi K, Poggenpohl L, Reese S (2019) Application of a locking-free element in modeling of joining by clinching. AIP Conf Proc 2113(1):050030. https://doi.org/10.1063/1.5112594

    Article  Google Scholar 

  83. Kaðèák L, Spiðák E, Kubík R, Mucha J (2017) Finite element calculation of clinching with rigid die of three steel sheets. Strength Mater 49(4):488–499

    Article  Google Scholar 

  84. Köhler D, Kupfer R, Gude M (2020) Clinching in in-situ CT—a numerical study on suitable tool materials. J Adv Join Process:2. https://doi.org/10.1016/j.jajp.2020.100034

  85. Coppieters S, Cooreman S, Sol H, Van Houtte P, Debruyne D (2011) Identification of the post-necking hardening behaviour of sheet metal by comparison of the internal and external work in the necking zone. J Mater Process Technol 211(3):545–552. https://doi.org/10.1016/j.jmatprotec.2010.11.015

    Article  Google Scholar 

  86. Gerstmann T, Awiszus B (2020) Hybrid joining: numerical process development of flat-clinch-bonding. J Mater Process Technol 277. https://doi.org/10.1016/j.jmatprotec.2019.116421

  87. Coppieters S, Lava P, Sol H, van Houtte P, Debruyne D (2011) Identification of post-necking hardening behaviour of sheet metal: a practical application to clinch forming. Key Eng Mater 473:251–258. https://doi.org/10.4028/www.scientific.net/KEM.473.251

    Article  Google Scholar 

  88. Atia MKS, Jain MK (2018) Finite element analysis of material flow in die-less clinching process and joint strength assessment. Thin-Walled Struct 127:500–515. https://doi.org/10.1016/j.tws.2018.03.001

    Article  Google Scholar 

  89. Lambiase F, Di Ilio A (2013) Optimization of the clinching tools by means of integrated FE modeling and artificial intelligence techniques. In: Teti R (ed) Eighth Cirp Conference on Intelligent Computation in Manufacturing Engineering, Procedia CIRP. Elsevier, Amsterdam, pp 163–168. https://doi.org/10.1016/j.procir.2013.09.029

    Chapter  Google Scholar 

  90. Coppieters S, Lava P, Sol H, Van Bael A, Van Houtte P, Debruyne D (2010) Determination of the flow stress and contact friction of sheet metal in a multi-layered upsetting test. J Mater Process Technol 210(10):1290–1296. https://doi.org/10.1016/j.jmatprotec.2010.03.017

    Article  Google Scholar 

  91. Qin Y, Behrens B-A, Bouguecha A, Vucetic M, Hübner S, Yilkiran D, Jin Y, Peshekhodov I, Dean TA, Lin J, Yuan SJ, Vollertsen F (2015) FEA-based optimisation of a clinching process with an open multiple-part die aimed at damage minimisation in CR240BH-AlSi10MnMg joints. MATEC Web Conf 21. https://doi.org/10.1051/matecconf/20152104009

  92. Vucetic M, Bouguecha A, Peshekhodov I, Götze T, Huinink T, Friebe H, Möller T, Behrens B-A (2011) Numerical validation of analytical biaxial true stress—true strain curves from the bulge test. 1383(1):107–114. https://doi.org/10.1063/1.3623599

  93. Dean A, Rolfes R, Behrens A, Bouguecha A, Hübner S, Bonk C, Grbic N (2017) Finite strain anisotropic elasto-plastic model for the simulation of the forming and testing of metal/short fiber reinforced polymer clinch joints at room temperature. AIP Conf Proc 1896(1):030037. https://doi.org/10.1063/1.5008024

    Article  Google Scholar 

  94. Han X, Zhao S, Liu C, Chen C, Xu F (2016) Optimization of geometrical design of clinching tools in clinching process with extensible dies. Proc Inst Mech Eng C J Mech Eng Sci 231(21):3889–3897. https://doi.org/10.1177/0954406216660336

    Article  Google Scholar 

  95. Coppieters S, Cooreman S, Hecke R, Lava P, Debruyne D (2009) Inverse Identification of flow curves and interface friction for FE simulations of clinch forming. Society for Experimental Mechanics - SEM Annual Conference and Exposition on Experimental and Applied Mechanics 2009 3:2052–2057

  96. Xue Z, Pontin MG, Zok FW, Hutchinson JW (2010) Calibration procedures for a computational model of ductile fracture. Eng Fract Mech 77(3):492–509. https://doi.org/10.1016/j.engfracmech.2009.10.007

    Article  Google Scholar 

  97. Wang D, Yang H, Li H (2014) Advance and trend of friction study in plastic forming. Trans Nonferrous Metals Soc China 24(5):1263–1272. https://doi.org/10.1016/s1003-6326(14)63188-5

    Article  Google Scholar 

  98. Joun MS, Moon HG, Choi IS, Lee MC, Jun BY (2009) Effects of friction laws on metal forming processes. Tribol Int 42(2):311–319. https://doi.org/10.1016/j.triboint.2008.06.012

    Article  Google Scholar 

  99. Abe Y, Saito T, Mori KI, Kato T (2018) Mechanical clinching with dies for control of metal flow of ultra-high-strength steel and high-strength steel sheets. Proc Inst Mech Eng B J Eng Manuf 232(4):644–649. https://doi.org/10.1177/0954405416683429

    Article  Google Scholar 

  100. Abe Y, Ishihata S, Maeda T, Mori K (2018) Mechanical clinching process using preforming of lower sheet for improvement of joinability. In: Proceedings of the 17th International Conference on Metal Forming Metal Forming 2018, vol 15, pp 1360–1367. https://doi.org/10.1016/j.promfg.2018.07.347

    Chapter  Google Scholar 

  101. Dean A, Rolfes R (2018) FE modeling and simulation framework for the forming of hybrid metal-composites clinching joints. Thin-Walled Struct 133:134–140. https://doi.org/10.1016/j.tws.2018.09.034

    Article  Google Scholar 

  102. Behrens BA, Rolfes R, Vucetic M, Reinoso J, Vogler M, Grbic N (2014) Material modelling of short fiber reinforced thermoplastic for the FEA of a clinching test. In: Proceedings of the International Conference on Manufacturing of Lightweight Components: Manulight 2014, vol 18, pp 250–255. https://doi.org/10.1016/j.procir.2014.06.140

    Chapter  Google Scholar 

  103. Dean A, Sahraee S, Reinoso J, Rolfes R (2016) Finite deformation model for short fiber reinforced composites: application to hybrid metal-composite clinching joints. Compos Struct 151:162–171. https://doi.org/10.1016/j.compstruct.2016.02.045

    Article  Google Scholar 

  104. Israel M (2014) The suitability of analytical and numerical methods for developing clinching processes with thick sheet metal. Adv Mater Res 907:151–163. https://doi.org/10.4028/www.scientific.net/AMR.907.151

    Article  Google Scholar 

  105. Lin J, Guo T, Su A, Niu Z (2015) Effects of process parameters on sheets warp of clinching based on abaqus. In: 2015 International Conference on Computer Science and Mechanical Automation (CSMA), 23-25 Oct. 2015, pp 308–312. https://doi.org/10.1109/csma.2015.68

    Chapter  Google Scholar 

  106. Bayraktar M, Cerkez V (2020) Experimental and numerical investigation of clinched joint and implementation of the results to design of a tumble dryer. J Braz Soc Mech Sci Eng 42(11). https://doi.org/10.1007/s40430-020-02622-w

  107. Lambiase F (2012) Influence of process parameters in mechanical clinching with extensible dies. Int J Adv Manuf Technol 66(9-12):2123–2131. https://doi.org/10.1007/s00170-012-4486-4

    Article  Google Scholar 

  108. Lambiase F, Di Ilio A (2012) Finite element analysis of material flow in mechanical clinching with extensible dies. J Mater Eng Perform 22(6):1629–1636. https://doi.org/10.1007/s11665-012-0451-5

    Article  Google Scholar 

  109. Flodr J, Kałduński P, Krejsa M, Pařenica P (2017) Numerical modelling of clinching process. ARPN J Eng Appl Sci 12(5):1670–1673

    Google Scholar 

  110. Neugebauer R, Dietrich S, Kraus C (2007) Joining by forming with a flat counter tool—a new way of joining magnesium components. Mater Sci Forum 539-543:3949–3954. https://doi.org/10.4028/www.scientific.net/MSF.539-543.3949

    Article  Google Scholar 

  111. Neugebauer R, Mauermann R, Dietrich S, Kraus C (2007) A new technology for the joining by forming of magnesium alloys. Prod Eng 1(1):65–70. https://doi.org/10.1007/s11740-007-0045-5

    Article  Google Scholar 

  112. Neugebauer R, Kraus C, Dietrich S (2008) Advances in mechanical joining of magnesium. CIRP Ann Manuf Technol 57(1):283–286. https://doi.org/10.1016/j.cirp.2008.03.025

    Article  Google Scholar 

  113. Neugebauer R, Todtermuschke M, Mauermann R, Riedel F (2008) Overview on the state of development and the application potential of dieless mechanical joining processes. Arch Civ Mech Eng 8(4):51–60. https://doi.org/10.1016/S1644-9665(12)60121-6

    Article  Google Scholar 

  114. Wang CC, Kam HK, Cheong WC (2014) Effect of tool eccentricity on the joint strength in mechanical clinching process. Procedia Eng 81:2062–2067. https://doi.org/10.1016/j.proeng.2014.10.286

    Article  Google Scholar 

  115. Chen C, Zhao S, Han X, Zhao X, Ishida T (2017) Experimental investigation on the joining of aluminum alloy sheets using improved clinching process. Materials (Basel) 10(8):887. https://doi.org/10.3390/ma10080887

    Article  Google Scholar 

  116. Lüder S, Härtel S, Binotsch C, Awiszus B (2014) Influence of the moisture content on flat-clinch connection of wood materials and aluminium. J Mater Process Technol 214(10):2069–2074. https://doi.org/10.1016/j.jmatprotec.2014.01.010

    Article  Google Scholar 

  117. Chen C, Zhang H, Xu Y, Wu J (2020) Investigation of the flat-clinching process for joining three-layer sheets on thin-walled structures. Thin-Walled Struct 157:107034. https://doi.org/10.1016/j.tws.2020.107034

    Article  Google Scholar 

  118. Chen C, Zhang H, Ren X, Wu J (2021) Investigation of flat-clinching process using various thicknesses aluminum alloy sheets. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-021-06981-z

  119. Chen C, Zhao S, Han X, Wang Y, Zhao X (2017) Investigation of flat clinching process combined with material forming technology for aluminum alloy. Materials (Basel) 10(12):1433. https://doi.org/10.3390/ma10121433

    Article  Google Scholar 

  120. Han XL, Zhao SD, Chen C, Liu C, Xu F (2017) Optimization of geometrical design of clinching tools in flat-clinching. Proc Inst Mech Eng C J Mech Eng Sci 231(21):4012–4021. https://doi.org/10.1177/0954406216660335

    Article  Google Scholar 

  121. Härtel S, Graf M, Gerstmann T, Awiszus B (2017) Heat generation during mechanical joining processes—by the example of flat-clinching. Procedia Eng 184:251–265. https://doi.org/10.1016/j.proeng.2017.04.093

    Article  Google Scholar 

  122. Borsellino C, Di Bella G, Ruisi VF (2007) Study of new joining technique: flat clinching. Sheet Met 344:685–692. https://doi.org/10.4028/www.scientific.net/KEM.344.685

    Article  Google Scholar 

  123. Chen C, Li YX, Zhai ZY, Zhao SD, Zhang P, Huang MH, Li YB (2019) Comparative investigation of three different reforming processes for clinched joint to increase joining strength. J Manuf Process 45:83–91. https://doi.org/10.1016/j.jmapro.2019.06.009

    Article  Google Scholar 

  124. Chen C, Ran X, Pan Q, Zhang H, Yi R, Han X (2020) Research on the mechanical properties of repaired clinched joints with different forces. Thin-Walled Struct:152. https://doi.org/10.1016/j.tws.2020.106752

  125. Chen C, Li YX, Zhang HY, Li YB, Pan Q, Han XL (2020) Investigation of a renovating process for failure clinched joint to join thin-walled structures. Thin-Walled Struct:151. https://doi.org/10.1016/j.tws.2020.106686

  126. Chen C, Zhang HY, Peng H, Ran XK, Pan Q (2020) Investigation of the restored joint for aluminum alloy. Metals 10(1):1–13. https://doi.org/10.3390/met10010097

    Article  Google Scholar 

  127. Wen T, Wang H, Yang C, Liu LT (2014) On a reshaping method of clinched joints to reduce the protrusion height. Int J Adv Manuf Technol 71(9-12):1709–1715. https://doi.org/10.1007/s00170-014-5612-2

    Article  Google Scholar 

  128. Chen C, Zhao S, Cui M, Han X, Ben N (2016) Numerical and experimental investigations of the reshaped joints with and without a rivet. Int J Adv Manuf Technol 88(5-8):2039–2051. https://doi.org/10.1007/s00170-016-8889-5

    Article  Google Scholar 

  129. Chen C, Zhao S, Cui M, Han X, Zhao X, Ishida T (2016) Effects of geometrical parameters on the strength and energy absorption of the height-reduced joint. Int J Adv Manuf Technol 90(9-12):3533–3541. https://doi.org/10.1007/s00170-016-9619-8

    Article  Google Scholar 

  130. Chen C, Zhao SD, Cui MC, Han XL, Fan SQ (2016) Mechanical properties of the two-steps clinched joint with a clinch-rivet. J Mater Process Technol 237:361–370. https://doi.org/10.1016/j.jmatprotec.2016.06.024

    Article  Google Scholar 

  131. Chen C, Zhao SD, Cui MC, Han XL, Fan SQ, Ishida T (2016) An experimental study on the compressing process for joining Al6061 sheets. Thin-Walled Struct 108:56–63. https://doi.org/10.1016/j.tws.2016.08.007

    Article  Google Scholar 

  132. Chen C, Zhao SD, Han XL, Cui MC, Fan SQ (2016) Investigation of mechanical behavior of the reshaped joints realized with different reshaping forces. Thin-Walled Struct 107:266–273. https://doi.org/10.1016/j.tws.2016.06.020

    Article  Google Scholar 

  133. Chen C, Zhao SD, Han XL, Cui MC, Fan SQ (2016) Optimization of a reshaping rivet to reduce the protrusion height and increase the strength of clinched joints. J Mater Process Technol 234:1–9. https://doi.org/10.1016/j.jmatprotec.2016.03.006

    Article  Google Scholar 

  134. Chen C, Fan S, Han X, Zhao S, Cui M, Ishida T (2017) Experimental research on the compressed joints with different geometrical parameters. Proc Inst Mech Eng B J Eng Manuf 233(1):174–181. https://doi.org/10.1177/0954405417711735

    Article  Google Scholar 

  135. Chen C, Fan S, Han X, Zhao S, Cui M, Ishida T (2017) Experimental study on the height-reduced joints to increase the cross-tensile strength. Int J Adv Manuf Technol 91(5-8):2655–2662. https://doi.org/10.1007/s00170-016-9939-8

    Article  Google Scholar 

  136. Chen C, Han XL, Zhao SD, Xu F, Zhao XZ, Ishida T (2017) Comparative study on two compressing methods of clinched joints with dissimilar aluminum alloy sheets. Int J Adv Manuf Technol 93(5-8):1929–1937. https://doi.org/10.1007/s00170-017-0650-1

    Article  Google Scholar 

  137. Chen C, Zhao S, Han X, Cui M, Zhao X, Ishida T (2017) Experimental investigation of the mechanical reshaping process for joining aluminum alloy sheets with different thicknesses. J Manuf Process 26:105–112. https://doi.org/10.1016/j.jmapro.2017.01.015

    Article  Google Scholar 

  138. Lee C-J, Kim B-M, Kang B-S, Song W-J, Ko D-C (2017) Improvement of joinability in a hole clinching process with aluminum alloy and carbon fiber reinforced plastic using a spring die. Compos Struct 173:58–69. https://doi.org/10.1016/j.compstruct.2017.04.010

    Article  Google Scholar 

  139. Kang DS, Lee BE, Park ET, Kim J, Kang BS, Song WJ (2015) Numerical study for the improvement of tapered-hole clinching joint strength of fiber metal laminates and aluminum 5052 using the Taguchi method. Trans Mater Process 24(1):37–43. https://doi.org/10.5228/kstp.2015.24.1.37

    Article  Google Scholar 

  140. Wen T, Huang Q, Liu Q, Ou WX, Zhang S (2016) Joining different metallic sheets without protrusion by flat hole clinching process. Int J Adv Manuf Technol 85(1-4):217–225. https://doi.org/10.1007/s00170-015-7936-y

    Article  Google Scholar 

  141. Gao LH, Kang GS, Lee K, Kim BM, Ko DC (2017) A study on joining of aluminum and advanced high strength steel using friction stir hole clinching. Trans Mater Process 26(6). https://doi.org/10.5228/KSTP.2017.26.6.348

  142. Ahn N-S, Lee C-J, Lee J-M, Ko D-C, Lee S-B, Kim B-M (2012) Joining high-strength steel and Al6061 sheet using hole clinching process. Trans Korean Soc Mech Eng A 36(6):691–698. https://doi.org/10.3795/ksme-a.2012.36.6.691

    Article  Google Scholar 

  143. Lee CJ, Lee SH, Lee JM, Kim BH, Kim BM, Ko DC (2014) Design of hole-clinching process for joining CFRP and aluminum alloy sheet. Int J Precis Eng Manuf 15(6):1151–1157. https://doi.org/10.1007/s12541-014-0450-6

    Article  Google Scholar 

  144. Lee S-H, Lee C-J, Lee K-H, Lee J-M, Kim B-M, Ko D-C (2015) Influence of tool shape on hole clinching for carbon fiber-reinforced plastic and SPRC440. Adv Mech Eng 6:1–12. https://doi.org/10.1155/2014/810864

    Article  Google Scholar 

  145. Shen G, Lee CJ, Lee JM, Kang GS, Park JH, Kim BM, Ko DC (2016) Prediction of failure mode in hole clinching of Al alloy and advanced high-strength steel. Key Eng Mater 716:481–486. https://doi.org/10.4028/www.scientific.net/KEM.716.481

    Article  Google Scholar 

  146. Lee C-J, Shen G, Kim B-M, Lambiase F, Ko D-C (2018) Analysis of failure-mode dependent joint strength in hole clinching from the aspects of geometrical interlocking parameters. Metals 8(12). https://doi.org/10.3390/met8121020

  147. Hörhold R, Müller M, Merklein M, Meschut G (2016) Fundamental studies on a novel die concept for round-point shear-clinching. AIP Conf Proc 1769:100003. https://doi.org/10.1063/1.4963497

    Article  Google Scholar 

  148. Müller M, Vierzigmann U, Hörhold R, Meschut G, Merklein M (2015) Development of a testing method for the identification of friction coefficients for numerical modeling of the shear-clinching process. Key Eng Mater 639:469–476. https://doi.org/10.4028/www.scientific.net/KEM.639.469

    Article  Google Scholar 

  149. Wiesenmayer S, Merklein M (2021) Potential of shear-clinching technology for joining of three sheets. J Adv Join Process:3. https://doi.org/10.1016/j.jajp.2021.100043

  150. Merklein M, Meschut G, Müller M, Hörhold R (2014) Basic investigations of non-pre-punched joining by forming of aluminium alloy and high strength steel with shear-clinching technology. Key Eng Mater 611-612:1413–1420. https://doi.org/10.4028/www.scientific.net/KEM.611-612.1413

    Article  Google Scholar 

  151. Müller M, Hörhold R, Merklein M, Meschut G (2014) Analysis of material behaviour in experimental and simulative setup of joining by forming of aluminium alloy and high strength steel with shear-clinching technology. Adv Mater Res 966-967:549–556. https://doi.org/10.4028/www.scientific.net/AMR.966-967.549

    Article  Google Scholar 

  152. Müller M, Hörhold R, Meschut G, Merklein M (2015) FE-based study of the cutting operation within joining by forming of dissimilar materials using shear-clinching technology. Appl Mech Mater 794:304–311. https://doi.org/10.4028/www.scientific.net/AMM.794.304

    Article  Google Scholar 

  153. Han D, Hörhold R, Müller M, Wiesenmayer S, Merklein M, Meschut G (2018) Shear-clinching of multi-element specimens of aluminium alloy and ultra-high-strength steel. Key Eng Mater 767:389–396. https://doi.org/10.4028/www.scientific.net/KEM.767.389

    Article  Google Scholar 

  154. Wiesenmayer S, Müller M, Dornberger P, Han D, Hörhold R, Meschut G, Merklein M (2018) Numerical investigation of the tool load in joining by forming of dissimilar materials using shear-clinching technology. Key Eng Mater 767:397–404. https://doi.org/10.4028/www.scientific.net/KEM.767.397

    Article  Google Scholar 

  155. Graser M, Wiesenmayer S, Müller M, Merklein M (2019) Application of tailor heat treated blanks technology in a joining by forming process. J Mater Process Technol 264:259–272. https://doi.org/10.1016/j.jmatprotec.2018.09.006

    Article  Google Scholar 

  156. Han D, Hörhold R, Wiesenmayer S, Merklein M, Meschut G (2018) Investigation of the influence of tool-sided parameters on deformation and occurring tool loads in shear-clinching processes. Procedia Manuf 15:1346–1353. https://doi.org/10.1016/j.promfg.2018.07.349

    Article  Google Scholar 

  157. Wiesenmayer S, Graser M, Merklein M (2020) Influence of the properties of the joining partners on the load-bearing capacity of shear-clinched joints. J Mater Process Technol 283:116696. https://doi.org/10.1016/j.jmatprotec.2020.116696

    Article  Google Scholar 

  158. Hiller M, Benkert T, Vitzthum S, Volk W (2017) Influence of tool elasticity on process forces and joint properties during clinching with rotational tool movement. In: 36th Iddrg Conference—Materials Modelling and Testing for Sheet Metal Forming 896. https://doi.org/10.1088/1742-6596/896/1/012116

    Chapter  Google Scholar 

  159. Rill D, Weiß M, Hoffmann H, Volk W (2014) Simulation assisted analysis of material flow in roller clinched joints. Adv Mater Res 966-967:628–640. https://doi.org/10.4028/www.scientific.net/AMR.966-967.628

    Article  Google Scholar 

  160. Vitzthum S, Hiller M, Dinh DT, Volk W (2018) Tool setup to investigate scalability of roller clinching processes. In: Proceedings of the 17th International Conference on Metal Forming Metal Forming 2018, vol 15, pp 1338–1345. https://doi.org/10.1016/j.promfg.2018.07.350

    Chapter  Google Scholar 

  161. Hiller M, Volk W (2015) Joining aluminium alloy and mild steel sheets by roller clinching. Appl Mech Mater 794:295–303. https://doi.org/10.4028/www.scientific.net/AMM.794.295

    Article  Google Scholar 

  162. Hiller M, Vitzthum S, Hacker M, Benkert T, Volk W (2018) Numerical analysis of the scalability of roller clinching processes. Key Eng Mater 767:377–385. https://doi.org/10.4028/www.scientific.net/KEM.767.377

    Article  Google Scholar 

  163. Vitzthum S, Sturm P, Hiller M, Volk W (2019) Numerical investigation on the robustness of the roller clinching process. AIP Conf Proc 2113(1):050009. https://doi.org/10.1063/1.5112573

    Article  Google Scholar 

  164. Ji Z, Liu R, Wang D, Zhang M, Su Q (2008) A micro clinching method and its device for joining ultra-thin sheets with pulsed laser. Chinese Patent

  165. Wang X, Ji Z, Liu R, Zheng C (2018) Making interlock by laser shock forming. Opt Laser Technol 107:331–336. https://doi.org/10.1016/j.optlastec.2018.06.011

  166. Wang X, Ji Z, Wang J, You S, Zheng C, Liu R (2018) An experimental and numerical study on laser shock clinching for joining copper foil and perforated stainless steel sheet. J Mater Process Technol 258:155–164. https://doi.org/10.1016/j.jmatprotec.2018.03.025

  167. Zheng C, Pan C, Wang J, Zhao G, Ji Z (2020) Mechanical joining behavior of Cu–Fe dissimilar metallic foils in laser shock clinching. Int J Adv Manuf Technol 110(3-4):1001–1014. https://doi.org/10.1007/s00170-020-05920-8

    Article  Google Scholar 

  168. Neugebauer R, Israel M, Mayer B, Fricke H (2012) Numerical and experimental studies on the clinch-bonding and riv-bonding process. Key Eng Mater 504-506:771–776. https://doi.org/10.4028/www.scientific.net/KEM.504-506.771

    Article  Google Scholar 

  169. Lei L, He XC, Zhao DS, Zhang Y, Gu FS, Ball A (2018) Clinch-bonded hybrid joining for similar and dissimilar copper alloy, aluminium alloy and galvanised steel sheets. Thin-Walled Struct 131:393–403. https://doi.org/10.1016/j.tws.2018.07.017

    Article  Google Scholar 

  170. Calabrese L, Galtieri G, Borsellino C, Di Bella G, Proverbio E (2016) Durability of hybrid clinch-bonded steel/aluminum joints in salt spray environment. Int J Adv Manuf Technol 87(9-12):3137–3147. https://doi.org/10.1007/s00170-016-8701-6

    Article  Google Scholar 

  171. Fricke H, Vallée T (2015) Numerical modeling of hybrid-bonded joints. J Adhes 92(7-9):652–664. https://doi.org/10.1080/00218464.2015.1100995

    Article  Google Scholar 

  172. Abe Y, Saito T, Nakagawa K, Mori K (2018) Rectangular shear clinching for joining of ultra-high strength steel sheets. In: Proceedings of the 17th International Conference on Metal Forming Metal Forming 2018, vol 15, pp 1354–1359. https://doi.org/10.1016/j.promfg.2018.07.348

    Chapter  Google Scholar 

  173. Chen L-W, Cai M-J (2018) Development of a hot stamping clinching tool. J Manuf Process 34:650–658. https://doi.org/10.1016/j.jmapro.2018.06.022

    Article  Google Scholar 

  174. Lin PC, Fang JC, Lin JW, Tran XV, Ching YC (2020) Preheated (heat-assisted) clinching process for Al/CFRP cross-tension specimens. Materials (Basel) 13(18). https://doi.org/10.3390/ma13184170

  175. Lin PC, Lo SM, Wu SP (2018) Fatigue life estimations of alclad AA2024-T3 friction stir clinch joints. Int J Fatigue 107:13–26. https://doi.org/10.1016/j.ijfatigue.2017.10.011

    Article  Google Scholar 

  176. Sônego M, Abibe AB, dos Santos JF, Canto LB, Amancio-Filho ST (2016) Chemical changes in polyetherimide (PEI) joined by friction-based injection clinching joining (F-ICJ) technique. AIP Conf Proc 1779(1):070007. https://doi.org/10.1063/1.4965539

    Article  Google Scholar 

  177. Menghari HG, Babalo V, Fazli A, Soltanpour M, Ziaeipoor H (2020) A study on the electro-hydraulic clinching of aluminum and carbon fiber reinforced plastic sheets. Int J Lightweight Mater Manuf 3(3):239–249. https://doi.org/10.1016/j.ijlmm.2020.01.002

    Article  Google Scholar 

  178. Salamati M, Soltanpour M, Zajkani A, Fazli A (2019) Improvement in joint strength and material joinability in clinched joints by electromagnetically assisted clinching. J Manuf Process 41:252–266. https://doi.org/10.1016/j.jmapro.2019.04.003

    Article  Google Scholar 

  179. Mizushima D, Sato T, Murakami H, Ohtake N (2011) Stirring phenomenon of aluminum sheets by ultrasonic vibrations and its application to clinching. J Solid Mech Mater Eng 5(12):810–824. https://doi.org/10.1299/jmmp.5.810

    Article  Google Scholar 

  180. Zhang Y, Shan H, Li Y, Guo J, Luo Z, Ma CY (2017) Joining aluminum alloy 5052 sheets via novel hybrid resistance spot clinching process. Mater Des 118:36–43. https://doi.org/10.1016/j.matdes.2017.01.017

    Article  Google Scholar 

  181. de Paula AA, Aguilar MTP, Pertence AEM, Cetlin PR (2007) Finite element simulations of the clinch joining of metallic sheets. J Mater Process Technol 182(1-3):352–357. https://doi.org/10.1016/j.jmatprotec.2006.08.014

    Article  Google Scholar 

  182. Kamble P, Mahale R (2016) Simulation and parametric study of clinched joint. Int Res J Eng Technol 3(05):2730–2734

    Google Scholar 

  183. Mucha J, Witkowski W (2014) The clinching joints strength analysis in the aspects of changes in the forming technology and load conditions. Thin-Walled Struct 82:55–66. https://doi.org/10.1016/j.tws.2014.04.001

    Article  Google Scholar 

  184. Lambiase F (2015) Mechanical behaviour of polymer-metal hybrid joints produced by clinching using different tools. Mater Des 87:606–618. https://doi.org/10.1016/j.matdes.2015.08.037

    Article  Google Scholar 

  185. Tadeusz B (2016) Low fatigue strength of clinch joints. Int J Mech Eng Autom 6(6). https://doi.org/10.17265/2159-5275/2016.06.002

  186. Eshtayeh M, Hrairi M (2016) Multi objective optimization of clinching joints quality using Grey-based Taguchi method. Int J Adv Manuf Technol 87(1-4):233–249. https://doi.org/10.1007/s00170-016-8471-1

    Article  Google Scholar 

  187. Schwarz C, Kropp T, Kraus C, Drossel W-G (2019) Optimization of thick sheet clinching tools using principal component analysis. Int J Adv Manuf Technol 106(1-2):471–479. https://doi.org/10.1007/s00170-019-04512-5

    Article  Google Scholar 

  188. Wang MH, Xiao GQ, Li Z, Wang JQ (2018) Shape optimization methodology of clinching tools based on Bezier curve. Int J Adv Manuf Technol 94(5-8):2267–2280. https://doi.org/10.1007/s00170-017-0987-5

    Article  Google Scholar 

  189. Tan Y, Hahn O, Du F (2005) Process monitoring method with window technique for clinch Joining. ISIJ Int 45(5):723–729. https://doi.org/10.2355/isijinternational.45.723

    Article  Google Scholar 

  190. Lee CJ, Kim JY, Lee SK, Ko DC, Kim BM (2010) Parametric study on mechanical clinching process for joining aluminum alloy and high-strength steel sheets. J Mech Sci Technol 24(1):123–126. https://doi.org/10.1007/s12206-009-1118-5

    Article  Google Scholar 

  191. Coppieters S, Lava P, Baes S, Sol H, Van Houtte P, Debruyne D (2012) Analytical method to predict the pull-out strength of clinched connections. Thin-Walled Struct 52:42–52. https://doi.org/10.1016/j.tws.2011.12.002

    Article  Google Scholar 

  192. Yang HY, He XC, Wang YQ (2013) Analytical model for strength of clinched joint in aluminium alloy sheet. In: Applied Mechanics and Materials. Trans Tech Publ, pp 578–581. https://doi.org/10.4028/www.scientific.net/AMM.401-403.578

  193. He XC, Gao AF, Yang HY, Xing BY (2016) Mechanical behavior of clinched sheet material joints and strength design procedure. Acta Phys Pol A 129(4):698–700. https://doi.org/10.12693/APhysPolA.129.698

  194. Ge YL, Xia Y (2020) Mechanical characterization of a steel-aluminum clinched joint under impact loading. Thin-Walled Struct 151:106759. https://doi.org/10.1016/j.tws.2020.106759

  195. Carboni M, Beretta S, Monno M (2006) Fatigue behaviour of tensile-shear loaded clinched joints. Eng Fract Mech 73(2):178–190. https://doi.org/10.1016/j.engfracmech.2005.04.004

  196. Yang C, YAO J, Niu Y, Wang RJ, KANG J (2021) Fatigue life analysis of steel-aluminum non-rivet connection. J Plast Eng 28(01):154–162

    Google Scholar 

  197. Xu F, Zhao SD, Han XL (2014) Use of a modified Gurson model for the failure behaviour of the clinched joint on Al6061 sheet. Fatigue Fract Eng Mater Struct 37(3):335–348. https://doi.org/10.1111/ffe.12118

    Article  Google Scholar 

  198. Zhao SD, Xu F, Guo JH, Han XL (2014) Experimental and numerical research for the failure behavior of the clinched joint using modified Rousselier model. J Mater Process Technol 214(10):2134–2145. https://doi.org/10.1016/j.jmatprotec.2014.03.013

    Article  Google Scholar 

  199. Lambiase F, Di Ilio A (2018) Joining Aluminum with Titanium alloy sheets by mechanical clinching. J Manuf Process 35:457–465. https://doi.org/10.1016/j.jmapro.2018.09.001

    Article  Google Scholar 

  200. Kascak L, Mucha J, Spisak E, Kubik R (2017) Wear study of mechanical clinching dies during joining of advanced high-strength steel sheets. Strength Mater 49(5):726–737. https://doi.org/10.1007/s11223-017-9918-9

    Article  Google Scholar 

  201. Breda A, Coppieters S, Kuwabara T, Debruyne D (2018) The effect of sheet metal anisotropy on the calibration of an equivalent model for clinched connections. In: Numisheet 2018: 11th International Conference and Workshop on Numerical Simulation of 3d Sheet Metal Forming Processes, vol 1063, p 012079. https://doi.org/10.1088/1742-6596/1063/1/012079

    Chapter  Google Scholar 

  202. Breda A, Coppieters S, Van de Velde A, Debruyne D (2018) Experimental validation of an equivalent modelling strategy for clinch configurations. Mater Des 157:377–393. https://doi.org/10.1016/j.matdes.2018.07.035

    Article  Google Scholar 

Download references

Code availability

Not applicable.

Funding

This research work is supported by the National Natural Science Foundation of China (Grant No. 51805416), the Young Elite Scientists Sponsorship Program by CAST, the Natural Science Foundation of Hunan Province (Grant No. 2020JJ5716), the Project of State Key Laboratory of High Performance Complex Manufacturing, Central South University (Grant No. ZZYJKT2019-01), Hunan Provincial Natural Science Foundation for Excellent Young Scholars, and the Huxiang High-Level Talent Gathering Project of Hunan Province (Grant No. 2019RS1002).

Author information

Authors and Affiliations

Authors

Contributions

C.C., D.Q., and J.W. analyzed the data; C.C., D.Q., and H.Z. contributed reagents/materials/analysis tools; D.Q., C.C., and Y.O. wrote the paper.

Corresponding author

Correspondence to Chao Chen.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, D., Chen, C., Ouyang, Y. et al. Finite element methods used in clinching process. Int J Adv Manuf Technol 116, 2737–2776 (2021). https://doi.org/10.1007/s00170-021-07602-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07602-5

Keywords

Navigation