Skip to main content
Log in

Compilation method of CNC lathe cutting force spectrum based on kernel density estimation of G-SCE

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The cutting force spectrum of the CNC lathe is the basic data for the reliability design, reliability test, and reliability evaluation of the CNC lathe and its components. Due to the complex and changeable turning conditions and different cutting processes, the cutting load presents multi-peak characteristics. At the same time, grouping the counted load cycles when parameter modeling will produce certain errors. As a result, the parameter distribution model cannot meet the modeling requirements. Thus, a compilation method based on kernel density estimation (KDE) of goodness-smoothness comprehensive evaluation (G-SCE) is proposed. The KDE is used to establish the dynamic cutting force distribution of the CNC lathe in which grouping the counted load cycles is not needed. For the bandwidth-determining methods, the rule of thumb method (ROT) and the least-squares cross-validation method (LCV) do not take into account the influence of different bandwidths on the goodness estimation and the smoothness of the estimated curve, and the G-CSE for KDE is proposed to determining the optimal bandwidth. It includes the estimation accuracy test method based on multiple goodness-of-fit tests and the smoothness test method based on the envelope curve, and the entropy method is used to comprehensively weights the estimated goodness index and the smoothness index to determine the optimal bandwidth. The results of the case analysis indicate that the method proposed can solve the problem of too large estimation error of parameter distribution for multimodal distribution. At the same time, it can better comprehensively evaluate the KDE under different bandwidths. In short, a new method of optimal bandwidth selection is proposed in the original method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

All the data presented and/or analyzed in this study are available upon request to the corresponding author.

References

  1. He J, Wang S, Li G, Yang Z, Hu L, Wu K (2018) Compilation of NC lathe dynamic cutting force spectrum based on two-dimensional mixture models[J]. Int J Adv Manuf Technol 98(1-4):251–262. https://doi.org/10.1007/s00170-018-2067-x

    Article  Google Scholar 

  2. Lu Y, Bi W, Zhang X, Zeng J, Chen T, Wu P (2019) Calculation method of dynamic loads spectrum and effects on fatigue damage of a full-scale carbody for high-speed trains[J]. Veh Syst Dyn 58(7):1037–1056. https://doi.org/10.1080/00423114.2019.1605080

    Article  Google Scholar 

  3. Elsayed EA (2012) Overview of Reliability Testing[J]. IEEE Trans Reliab 61(2):282–291. https://doi.org/10.1109/TR.2012.2194190

    Article  Google Scholar 

  4. He J, Zhao X, Li G, Chen C, Yang Z, Hu L, Xinge Z (2019) Time domain load extrapolation method for CNC machine tools based on GRA-POT model[J]. Int J Adv Manuf Technol 103(9):3799–3812. https://doi.org/10.1007/s00170-019-03774-3

    Article  Google Scholar 

  5. Meddour I, Yallese et al (2018) Prediction of surface roughness and cutting forces using RSM, ANN, and NSGA-II in finish turning of AISI 4140 hardened steel with mixed ceramic tool[J]. Int J Adv Manuf Technol 97(5):1931–1949. https://doi.org/10.1007/s00170-018-2026-6

    Article  Google Scholar 

  6. Li G, Wang S, He J, Wu K, Zhou C (2019) Compilation of load spectrum of machining center spindle and application in fatigue life prediction[J]. J Mech Sci Technol 33(4):1603–1613. https://doi.org/10.1007/s12206-019-0312-3

    Article  Google Scholar 

  7. Wang S, Liu X, Jiang C, Wang X, Wang X (2021) Prediction and evaluation of fatigue life for mechanical components considering anelasticity-based load spectrum[J]. Fatigue Fract Eng Mater Struct 44(1):129–140. https://doi.org/10.1111/ffe.13340

    Article  Google Scholar 

  8. Macea LF, Márquez L, LLinás H (2015) Improvement of axle load spectra characterization by a mixture of three distributions[J]. J Transp Eng 141(12):04015030. https://doi.org/10.1061/(ASCE)TE.19435436.0000801

    Article  Google Scholar 

  9. Letot C, Serra R, Dossevi M, Dehombreux P (2016) Cutting tools reliability and residual life prediction from degradation indicators in turning process[J]. Int J Adv Manuf Technol 86(1-4):495–506. https://doi.org/10.1007/s00170-015-8158-z

    Article  Google Scholar 

  10. Dias JAS, Borges CLT (2014) A non-parametric stochastic model for river inflows based on kernel density estimation[C], IEEE International Conference on probabilistic methods applied to power systems, pp 1-6. https://doi.org/10.1109/PMAPS.2014.6960626

  11. He X, Li T, Li Y, Dong Y, Wang T (2018) Developing an accelerated flight load spectrum based on the nz-N curves of a fleet[J]. Int J Fatigue 117(11):246–256. https://doi.org/10.1016/j.ijfatigue.2018.08.005

    Article  Google Scholar 

  12. Vadgeri S S, Patil S R, Chavan ST. Static and fatigue analysis of lathe spindle for maximum cutting force[J]. Mater Today Proc, 2018, 5(2): 4438-4444.

  13. Zhang X, King ML, Hyndman RJ (2006) A Bayesian approach to bandwidth selection for multivariate kernel density estimation[J]. Comput Stat Data Anal 50(11):3009–3031. https://doi.org/10.1016/j.csda.2005.06.019

    Article  MATH  Google Scholar 

  14. Zhang Z, Qi Y, Cheng Q, Liu Z, Tao Z, Cai L (2019) Machining accuracy reliability during the peripheral milling process of thin-walled components[J]. Robot Comput Integr Manuf 59(10):222–234. https://doi.org/10.1016/j.rcim.2019.04.002

    Article  Google Scholar 

  15. Wang Y, Jia Y, Qiu J et al (2015) Load spectra of CNC machine tools[J]. Qual Reliab Eng Int 16(3):229–234.

  16. P, Heuler, H, et al. Generation and use of standardized load spectra and load-time histories[J]. Int J Fatigue, 2005, 27(8):974-990. https://doi.org/10.1016/j.ijfatigue.2004.09.012.

  17. Kaya B, Oysu C, Ertunc HM (2011) Force-torque based on-line tool wear estimation system for CNC milling of Inconel 718 using neural networks[J]. Adv Eng Softw 42(3):76–84. https://doi.org/10.1016/j.advengsoft.2010.12.002

    Article  Google Scholar 

  18. Geng S, Liu X, Yang X, Meng Z, Wang X, Wang Y (2019) Load spectrum for automotive wheels hub based on mixed probability distribution model[J]. Proc. Inst. Mech. Eng., Part D: Journal of Automobile Engineering 233(14):3707–3720. https://doi.org/10.1177/0954407019832433

  19. Qin Z, Li W, Xiong X (2011) Estimating wind speed probability distribution using kernel density method[J]. Electr Power Syst Res 81(12):2139–2146. https://doi.org/10.1016/j.epsr.2011.08.009

    Article  Google Scholar 

  20. Hu B, Li Y, Yang H et al (2017) Wind speed model based on kernel density estimation and its application in reliability assessment of generating systems[J]. J Mod Power Syst Clean Energy 5(2):220–227. https://doi.org/10.1007/s40565-015-0172-5

    Article  Google Scholar 

  21. Gao G (2011)   A parzen-window-kernel-based CFAR algorithm for   ship detection in SAR images[J]. IEEE GEOSCI REMOTE S 8(3):557–561. https://doi.org/10.1109/LGRS.2010.2090492

    Article  Google Scholar 

  22. Mark J (2000) Brewer. A Bayesian model for local smoothing in kernel density estimation[J]. Stat Comput 10(4):299–309. https://doi.org/10.1023/A:1008925425102

    Article  Google Scholar 

  23. Botev ZI et al (2010) Kernel density estimation via diffusion[J]. Ann Stat 38(5):2916–2957. https://doi.org/10.1214/10-AOS799

    Article  MATH  Google Scholar 

  24. Yin XF, Hao ZF (2007) Adaptive kernel density estimation using beta kernel[C]. ICMLC IEEE (10):3293–3297. https://doi.org/10.1109/ICMLC.2007.4370716

  25. Diez-Olivan A, Pagan JA, Khoa NLD, Sanz R, Sierra B (2017) Kernel-based support vector machines for automated health status assessment in monitoring sensor data[J]. Int J Adv Manuf Technol 95(1):327–340. https://doi.org/10.1007/s00170-017-1204-2

    Article  Google Scholar 

  26. Xu X, Yan Z, Xu S (2015) Estimating wind speed probability distribution by diffusion-based kernel density method[J]. Electr Power Syst Res 121(4):28–37. https://doi.org/10.1016/j.epsr.2014.11.029

    Article  Google Scholar 

  27. Siddharth A, James (2016) Forecasting electricity smart meter data using conditional kernel density estimation[J]. Omega 59:47–59. https://doi.org/10.1016/j.omega.2014.08.008

    Article  Google Scholar 

  28. Duong T, Hazelton M (2003) Plug-in bandwidth matrices for bivariate kernel density estimation[J]. J Nonparametric Stat 15(1):17–30. https://doi.org/10.1080/10485250306039

    Article  MATH  Google Scholar 

  29. Duong T, Hazelton ML (2005) Cross-validation bandwidth matrices for multivariate kernel density estimation[J]. Scand J Stat 32(3):485–506. https://doi.org/10.1111/j.1467-9469.2005.00445.x

    Article  MATH  Google Scholar 

  30. Yin F, Zoubir AM (2012) Robust positioning in NLOS environments using nonparametric adaptive kernel density estimation[C], IEEE International Conference on Acoustics, Speech and Signal Processing. (ICASSP), 2012, pp. 3517-3520. https://doi.org/10.1109/ICASSP.2012.6288675

  31. Wglarczyk S (2018) Kernel density estimation and its application[J]. ITM Web of Conferences, EDP Sciences, 23(2)00037:1-8, https://doi.org/10.1051/itmconf/20182300037

Download references

Funding

This work was supported by the National Natural Science Foundation of China (51905209); Free Exploration Key Project of Natural Science Foundation of Jilin Province Science and Technology Development Plan, China (2020122332JC); Jilin Province Youth Scientific and Technological Talent Support Project(QT202114); and Science and Technology Research Project of Education Department of Jilin Province, China (Grant No. 42180).

Author information

Authors and Affiliations

Authors

Contributions

Shengxu Wang: conceptualization, methodology, literature study and model validation, and writing, reviewing and editing. Guofa Li: methodology, investigation, writing, original draft, and visualization. Jialong He: supervision, investigation, writing, reviewing, and editing, and visualization. Qingbo Hao: reviewing and editing. Hao Huang: investigation and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jialong He.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., He, J., Li, G. et al. Compilation method of CNC lathe cutting force spectrum based on kernel density estimation of G-SCE. Int J Adv Manuf Technol 124, 3713–3724 (2023). https://doi.org/10.1007/s00170-021-07541-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07541-1

Keywords

Navigation