Skip to main content
Log in

Influence of machining conditions on tool wear and surface characteristics in hot turning of AISI630 steel

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Hot machining as one of the clean production techniques is used to improve the machinability of hard-to-cut materials. In this technique, an external heat source is used to soften the workpiece material and improves its machinability and sustainability by reducing the machining forces and eliminating cutting fluid application. In the present work, the conventional and hot turning of precipitation-hardened AISI630 stainless steel was evaluated in both numerical and experimental methods. Turning experiments were carried out using PVD-(Ti, Al)N/(Al, Cr)2O3-coated carbide tools, and the flank wear was measured by using scanning electron microscopy (SEM). Numerical analysis was carried out by finite elements method (FEM) to calculate the cutting tool temperature, cutting force values, and cutting force fluctuation. The numerical results showed that the hot turning not only decreases the cutting force but also decreases the amplitude of cutting force fluctuations up to 47%. The experimental results showed that hot turning at 300 °C reduces the tool’s flank wear and machined surface roughness up to 33% and 23%, respectively. Therefore, hot machining could be one of the realistic alternatives that can rise the machining processes on a sustainable level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Availability of data and materials

No datasets.

References

  1. Kara F, Karabatak M, Ayyıldız M, Nasc E (2020) Effect of machinability, microstructure and hardness of deep cryogenic treatment in hard turning of AISI D2 steel with ceramic cutting. J Mater Res Technol 9(1):969–983. https://doi.org/10.1016/j.jmrt.2019.11.037

    Article  Google Scholar 

  2. Özbek O, Saruhan H (2020) The effect of vibration and cutting zone temperature on surface roughness and tool wear in eco-friendly MQL turning of AISI D2. J Mater Res Technol 9(3):2762–2772. https://doi.org/10.1016/j.jmrt.2020.01.010

    Article  Google Scholar 

  3. Shah P, Khanna N, Zadafiya K, Bhalodiya M, Maruda R, Krolczyk G (2020) In-house development of eco-friendly lubrication techniques (EMQL, nanoparticles+EMQL and EL) for improving machining performance of 15–5 PHSS. Tribol Int 151:106476. https://doi.org/10.1016/j.triboint.2020.106476

    Article  Google Scholar 

  4. Maruda R, Krolczyk G, Wojciechowski S, Powalka B, Klos S, Szczotkarz N, Matuszak M, Khanna N (2020) Evaluation of turning with different cooling-lubricating techniques in terms of surface integrity and tribologic properties. Tribol Int 148:106334. https://doi.org/10.1016/j.triboint.2020.106334

    Article  Google Scholar 

  5. Krolczyk G, Maruda R, Krolczyk J, Wojciechowski S, Mia M, Nieslony P, Budzik G (2019) Ecological trends in machining as a key factor in sustainable production - a review. J Clean Prod 218:601–615. https://doi.org/10.1016/j.jclepro.2019.02.017

    Article  Google Scholar 

  6. Parida AK, Maity K (2019) Analysis of some critical aspects in hot machining of Ti-5553 superalloy: experimental and FE analysis. Defence Technol 15:344–352. https://doi.org/10.1016/j.dt.2018.10.005

    Article  Google Scholar 

  7. Bermingham MJ, Palanisamy S, Dargusch MS (2012) Understanding the tool wear mechanism during thermally assisted machining Ti-6Al-4V. Int J Mach Tools Manuf 62:76–87. https://doi.org/10.1016/j.ijmachtools.2012.07.001

    Article  Google Scholar 

  8. Tadavani SA, Shoja Razavi R, Vafaei R (2017) Pulsed laser-assisted machining of Inconel 718 superalloy. Opt Laser Technol 87:72–78. https://doi.org/10.1016/j.optlastec.2016.07.020

    Article  Google Scholar 

  9. Chien WT, Tsai CS (2003) The investigation on the prediction of tool wear and the determination of optimum cutting conditions in machining 17-4PH stainless steel. J Mater Process Technol 140:340–345. https://doi.org/10.1016/S0924-0136(03)00753-2

    Article  Google Scholar 

  10. Mohanty A, Gangopadhyay S, Thakur A (2016) On applicability of multilayer coated tool in dry machining of aerospace grade stainless steel. Mater Manuf Process 31:869–879. https://doi.org/10.1080/10426914.2015.1070413

    Article  Google Scholar 

  11. Sivaiah P, Chakradhar D (2017) Experimental investigation on feasibility of cryogenic, MQL, wet and dry machining environments in turning of 17-4 PH stainless steel. Mater Manuf Process 32:1775–1788. https://doi.org/10.1080/10426914.2017.1339317

    Article  Google Scholar 

  12. Wu JH, Lin CK (2005) Effect of strain rate on high-temperature low-cycle fatigue of 17-4 PH stainless steels. Mater Sci Eng A 390:291–298. https://doi.org/10.1016/j.msea.2004.08.063

    Article  Google Scholar 

  13. Burja J, Sˇuler B, Nagode A (2019) Effect of ageing temperature on reverse austenite content in AISI 630 stainless steel. Mater Sci Eng Technol 50:405–411. https://doi.org/10.1002/mawe.201800045

    Article  Google Scholar 

  14. Khani S, Farahnakian M, Razfar MR (2015) Experimental study on hybrid cryogenic and plasma-enhanced turning of 17-4PH stainless steel. Mater Manuf Process 30:868–874. https://doi.org/10.1080/10426914.2014.984200

    Article  Google Scholar 

  15. Bermingham MJ, Kent D, Dargusch MS (2015) A new understanding of the wear processes during laser assisted milling 17-4 precipitation hardened stainless steel. Wear 328-329:518–530. https://doi.org/10.1016/j.wear.2015.03.025

    Article  Google Scholar 

  16. Moghadasi A, Hadad MJ (2019) Towards sustainable machining of 17-4 PH stainless steel using hybrid MQL-hot turning process. Energy Equip Syst 7:339–352. https://doi.org/10.22059/ees.2019.37670

    Article  Google Scholar 

  17. Anderson A, Shin YC (2006) Laser-assisted machining of an austenitic stainless steel: P550. Proc Inst Mech Eng B J Eng Manuf 220(12):2055–2067. https://doi.org/10.1243/09544054JEM562

    Article  Google Scholar 

  18. Brown WF, Mindlin H, Ho CY (eds) (1997) Aerospace structural metals handbook, vol. 2. Stainless steels. Purdue University, West Lafayette

    Google Scholar 

  19. Ebrahimi SM, Araee AR, Hadad MJ (2019) Investigation of the effects of constitutive law on numerical analysis of turning processes to predict the chip morphology, tool temperature and cutting force. Int J Adv Manuf Technol 105:4245–4264. https://doi.org/10.1007/s00170-019-04502-7

    Article  Google Scholar 

  20. Osovski S, Rittel D, Rodríguez-Martínez JA, Zaera R (2013) Dynamic tensile necking: influence of specimen geometry and boundary conditions. Mech Mater 62:1–13. https://doi.org/10.1016/j.mechmat.2013.03.002

    Article  Google Scholar 

  21. Thakare A, Nordgren A (2015) Experimental study and modeling of steady state temperature distributions in coated cemented carbide tools in turning. Procedia CIRP 31:234–239. https://doi.org/10.1016/j.procir.2015.03.024

    Article  Google Scholar 

  22. Kara F, Aslantaş K, Çiçek A (2016) Prediction of cutting temperature in orthogonal machining of AISI 316L using artificial neural network. Appl Soft Comput 38:64–74. https://doi.org/10.1016/j.asoc.2015.09.034

    Article  Google Scholar 

  23. Kara F, Aslantaş K, Çiçek A (2015) ANN and multiple regression method based modelling of cutting forces in orthogonal machining of AISI 316L stainless steel. Neural Comput & Applic 26(1):237–250. https://doi.org/10.1007/s00521-014-1721-y

    Article  Google Scholar 

  24. Chetan, Behera BC, Ghosh S, Rao PV (2016) Wear behavior of PVD TiN coated carbide inserts during machining of nimonic 90 and Ti6Al4V superalloys under dry and MQL conditions. Ceram Int 42:14873–14885. https://doi.org/10.1016/j.ceramint.2016.06.124

    Article  Google Scholar 

  25. Servant C, Gherbi EH, Cizeron G (1987) TEM investigation of the tempering behaviour of the maraging PH 17.4 Mo stainless steel. J Mater Sci 22:2297–2304. https://doi.org/10.1007/BF01082107

    Article  Google Scholar 

  26. Miyoshi A, Hara A (1965) High temperature hardness of WC, TiC, TaC, NbC and their mixed carbides. J Jpn Soc Powder Powder Metall 12:78–84. https://doi.org/10.2497/jjspm.12.78

    Article  Google Scholar 

  27. Kagawa A, Okamoto T, Saito K, Ohta M (1984) Hot hardness of (Fe, Cr)3C and (Fe, Cr)7C3 carbides. J Mater Sci 19:2546–2554. https://doi.org/10.1007/BF00550808

    Article  Google Scholar 

  28. Jindal PC, Santhanam AT, Schleinkofer U, Shuster AF (1999) Performance of PVD TiN, TiCN, and TiAlN coated cemented carbide tools in turning. Int J Refract Metals Hard Mater 17:163–170. https://doi.org/10.1016/S0263-4368(99)00008-6

    Article  Google Scholar 

  29. Bobzin K, Brögelmann T, Kalscheuer C, Welters M (2018) Thick HS-PVD (Al,Cr)2O3 coatings for challenging cutting and die casting applications. Thin Solid Films 663:131–142. https://doi.org/10.1016/j.tsf.2018.06.061

    Article  Google Scholar 

  30. Pohler M, Franz R, Ramm J, Polcik P, Mitterer C (2015) Influence of pulsed bias duty cycle variations on structural and mechanical properties of arc evaporated (Al,Cr)2O3 coatings. Surf Coat Technol 282:43–51. https://doi.org/10.1016/j.surfcoat.2015.09.055

    Article  Google Scholar 

  31. Lankford J (1983) Comparative study of the temperature dependence of hardness and compressive strength in ceramics. J Mater Sci 18:1666–1674. https://doi.org/10.1007/BF00542061

    Article  Google Scholar 

  32. Koester R, Moak D (1967) Hot hardness of selected borides, oxides, and carbides to 1900 °C. J Am Ceram Soc 60:290–296. https://doi.org/10.1111/j.1151-2916.1967.tb15112.x

    Article  Google Scholar 

  33. Milman Y, Chugunova S, Goncharuck V, Luyckx S, Northrop IT (1997) Low and high temperature hardness of WC-6wt%co alloys. Int J Refract Met Hard Mater 15:97–101. https://doi.org/10.1016/S0263-4368(97)81231-0

    Article  Google Scholar 

  34. Lee M (1983) High temperature hardness of tungsten carbide. Metall Trans A 14:1625–1629. https://doi.org/10.1007/BF02654390

    Article  Google Scholar 

  35. Long Y, Zeng J, Wu S (2014) Cutting performance and wear mechanism of Ti-Al-N/Al-Cr-O coated silicon nitride ceramic cutting inserts. Ceram Int 40:9615–9620. https://doi.org/10.1016/j.ceramint.2014.02.038

    Article  Google Scholar 

  36. Westbrook JH, Stover ER (1967) Carbides for high-temperature applications. In: High temperature materials and technology. Wiley, New York, pp 312–348

    Google Scholar 

  37. Hoier P, Malakizadi A, Klement U, Krajnik P (2019) Characterization of abrasion- and dissolution-induced tool wear in machining. Wear 426–427:1548–1562. https://doi.org/10.1016/j.wear.2018.12.015

    Article  Google Scholar 

  38. Xing Y, Deng J, Zhang K, Wang X, Lian Y, Zhou Y (2015) Fabrication and dry cutting performance of Si3N4/TiC ceramic tools reinforced with the PVD WS2/Zr soft-coatings. Ceram Int 41:10261–10271. https://doi.org/10.1016/j.ceramint.2015.04.153

    Article  Google Scholar 

  39. Pavel R, Marinescu I, Deis M, Pillar J (2005) Effect of tool wear on surface finish for a case of continuous and interrupted hard turning. J Mater Process Technol 170:341–349. https://doi.org/10.1016/j.jmatprotec.2005.04.119

    Article  Google Scholar 

  40. Liu G, Zou B, Huang C, Wang X, Wang J, Liu Z (2016) Tool damage and its effect on the machined surface roughness in high-speed face milling the 17-4PH stainless steel. Int J Adv Manuf Technol 83:257–264. https://doi.org/10.1007/s00170-015-7564-6

    Article  Google Scholar 

  41. Liang X, Liu Z, Yao G, Wang B, Ren X (2019) Investigation of surface topography and its deterioration resulting from tool wear evolution when dry turning of titanium alloy Ti-6Al-4V. Tribol Int 135:130–142. https://doi.org/10.1016/j.triboint.2019.02.049

    Article  Google Scholar 

  42. Calamaz M, Coupard D, Girot F (2008) A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti–6Al–4V. Int J Mach Tools Manuf 48:275–288. https://doi.org/10.1016/j.ijmachtools.2007.10.014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this work.

Corresponding authors

Correspondence to Seyed Mohammad Ebrahimi or Mohammadjafar Hadad.

Ethics declarations

Ethics approval

This research work does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, S.M., Hadad, M., Araee, A. et al. Influence of machining conditions on tool wear and surface characteristics in hot turning of AISI630 steel. Int J Adv Manuf Technol 114, 3515–3535 (2021). https://doi.org/10.1007/s00170-021-07106-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07106-2

Keywords

Navigation