Skip to main content
Log in

A review of the development of surface burnishing process technique based on bibliometric analysis and visualization

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The surface burnishing process (SBP), by which the surface layer with high hardness, residual compressive pressure, and nanocrystalline structure are obtained, is a practical approach to enhance the metal/alloy surface. The present paper collects a data set in the SBP field from 1990 to 2020 through the Science Citation Index Expanded (Web of Science Core Collection) database to identify and describe the research history, hotspots, and frontiers based on bibliometric analysis and visualization. Firstly, the temporal and spatial distribution of publications are summarized, and the corresponding countries, institutions, journals, and influential authors are also described. Secondly, the keystone publications are identified and analyzed based on a citation network. Thirdly, cluster analysis representing a hot research region field is carried out for all keywords. Finally, after analyzing the evolution route of the SBP field, the future development direction and trend are discussed. This paper is hopefully to help scholars understanding the research patterns of SBP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46

Similar content being viewed by others

Data availability

All data, models, and materials generated or used during the study appear in the submitted article.

References

  1. Piao ZY, Xu BS, Wang HD, Yu XX (2020) Rolling Contact Fatigue Behavior of Thermal-Sprayed Coating: A Review. Critical Reviews in Solid State and Materials Sciences 45(6):429–456. https://doi.org/10.1080/10408436.2019.1671798

    Article  Google Scholar 

  2. John MRS, Banerjee N, Shrivastava K, Vinayagam BK (2017) Optimization of roller burnishing process on EN-9 grade alloy steel using response surface methodology. J Braz Soc Mech Sci Eng 39(8):3089–3101. https://doi.org/10.1007/s40430-016-0674-8

    Article  Google Scholar 

  3. Trung-Thanh N, Le-Hai C, Truong-An N, Xuan-Phuong D (2020) Multi-response optimization of the roller burnishing process in terms of energy consumption and product quality. J Clean Prod 245:119328. https://doi.org/10.1016/j.jclepro.2019.119328

    Article  Google Scholar 

  4. Maximov JT, Duncheva GV, Anchev AP, Ichkova MD (2019) Slide burnishing-review and prospects. Int J Adv Manuf Technol 104(1-4):785–801. https://doi.org/10.1007/s00170-019-03881-1

    Article  Google Scholar 

  5. Primee SY, Juijerm P (2020) Optimization of Deep Rolling Temperature for Fatigue Lifetime Enhancement of Martensitic Stainless Steel AISI 440C. Chiang Mai Journal of Science 47(2):304–311

    Google Scholar 

  6. Hadadian A, Sedaghati R (2020) Analysis and design optimization of double-sided deep cold rolling process of a Ti-6Al-4V blade. Int J Adv Manuf Technol 108(7-8):2103–2120. https://doi.org/10.1007/s00170-020-05481-w

    Article  Google Scholar 

  7. Hua Y, Liu ZQ, Wang B, Hou X (2019) Surface modification through combination of finish turning with low plasticity burnishing and its effect on fatigue performance for Inconel 718. Surf Coat Technol 375:508–517. https://doi.org/10.1016/j.surfcoat.2019.07.057

    Article  Google Scholar 

  8. Ramesh S, Anne G, Kumar G, Jagadeesh C, Nayaka HS (2020) Influence of Ball Burnishing Process on Equal Channel Angular Pressed Mg-Zn-Si Alloy on the Evolution of Microstructure and Corrosion Properties. Silicon. https://doi.org/10.1007/s12633-020-00541-y

  9. Nguyen TT, Cao LH, Nguyen TA, Dang XP (2020) Multi-response optimization of the roller burnishing process in terms of energy consumption and product quality. J Clean Prod 245:119328. https://doi.org/10.1016/j.jclepro.2019.119328

    Article  Google Scholar 

  10. Tian Y, Shin YC (2007) Laser-assisted burnishing of metals. Int J Mach Tools Manuf 47(1):14–22. https://doi.org/10.1016/j.ijmachtools.2006.03.002

    Article  MathSciNet  Google Scholar 

  11. Qu SG, Pan YX, Li G, Li XQ, Yang C (2016) Warming-assisted burnishing and fretting wear performance of Ti-6Al-4V alloys. J South China Univ Technol, Nat Sci Ed (China) 44(3):1–7. https://doi.org/10.3969/j.issn.1000-565X.2016.03.001

    Article  Google Scholar 

  12. Zhou ZY, Yu GL, Zheng QY, Ma GZ, Ye SB, Ding C, Piao ZY (2020) Wear behavior of 7075-aluminum after ultrasonic-assisted surface burnishing. J Manuf Process 51:1–9. https://doi.org/10.1016/j.jmapro.2020.01.026

    Article  Google Scholar 

  13. Zhou Z, Zheng Q, Ding C, Yu G, Peng G, Piao Z (2021) Investigation of Two-Dimensional Ultrasonic Surface Burnishing Process on 7075-T6 Aluminum. Chin J Mech Eng 34(1):1–17. https://doi.org/10.1186/s10033-021-00540-z

    Article  Google Scholar 

  14. Ding C, Sun G, Zhou Z, Piao Z (2021) Investigation of the optimum surface roughness of AISI 5120 steel by using a running-in attractor. Journal of Tribology -Transactions of the ASME 143(9):094501. https://doi.org/10.1115/1.4049267

    Article  Google Scholar 

  15. Sun YG, Wang HB, Liu W, Song GL, Li QL (2019) Improvement of surface resistance to cavitation corrosion of nickel aluminum bronze by electropulsing-assisted ultrasonic surface rolling process. Surf Coat Technol 368:215–223. https://doi.org/10.1016/j.surfcoat.2019.03.045

    Article  Google Scholar 

  16. Cheng ML, Zhang DY, Chen HW, Qin W (2014) Development of ultrasonic thread root rolling technology for prolonging the fatigue performance of high strength thread. J Mater Process Technol 214(11):2395–2401. https://doi.org/10.1016/j.jmatprotec.2014.05.019

    Article  Google Scholar 

  17. Baecker V, Klocke F, Wegner H, Timmer A, Grzhibovskis R, Rjasanow S (2010) Analysis of the Deep Rolling Process on Turbine Blades using the FEM/BEM-Coupling. In: Khalili N, Valliappan S, Li Q, Russell A (eds) 9th World Congress on Computational Mechanics and 4th Asian Pacific Congress on Computational Mechanics, vol 10. IOP Conference Series-Materials Science and Engineering. doi:https://doi.org/10.1088/1757-899x/10/1/012134, 10

  18. Altenberger I, Nalla RK, Sano Y, Wagner L, Ritchie RO (2012) On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti-6Al-4V at elevated temperatures up to 550 degrees C. Int J Fatigue 44:292–302. https://doi.org/10.1016/j.ijfatigue.2012.03.008

    Article  Google Scholar 

  19. Nestler A, Schubert A (2018) Roller Burnishing of Particle Reinforced Aluminium Matrix Composites. Metals 8(2). https://doi.org/10.3390/met8020095

  20. Ao N, Liu D, Zhang X, Liu C (2019) Enhanced fatigue performance of modified plasma electrolytic oxidation coated Ti-6Al-4V alloy: Effect of residual stress and gradient nanostructure. Appl Surf Sci 489:595–607. https://doi.org/10.1016/j.apsusc.2019.06.006

    Article  Google Scholar 

  21. Zyoud SH, Fuchs-Hanusch D (2017) A bibliometric-based survey on AHP and TOPSIS techniques. Expert Syst Appl 78:158–181. https://doi.org/10.1016/j.eswa.2017.02.016

    Article  Google Scholar 

  22. Randhawa K, Wilden R, Hohberger J (2016) A Bibliometric Review of Open Innovation: Setting a Research Agenda. J Prod Innov Manag 33(6):750–772. https://doi.org/10.1111/jpim.12312

    Article  Google Scholar 

  23. Perianes-Rodriguez A, Waltman L, van Eck NJ (2016) Constructing bibliometric networks: A comparison between full and fractional counting. Journal of Informetrics 10(4):1178–1195. https://doi.org/10.1016/j.joi.2016.10.006

    Article  Google Scholar 

  24. Laengle S, Merigo JM, Miranda J, Slowinski R, Bomze I, Borgonovo E, Dyson RG, Oliveira JF, Teunter R (2017) Forty years of the European Journal of Operational Research: A bibliometric overview. Eur J Oper Res 262(3):803–816. https://doi.org/10.1016/j.ejor.2017.04.027

    Article  MATH  Google Scholar 

  25. Heradio R, de la Torre L, Galan D, Javier Cabrerizo F, Herrera-Viedma E, Dormido S (2016) Virtual and remote labs in education: A bibliometric analysis. Comput Educ 98:14–38. https://doi.org/10.1016/j.compedu.2016.03.010

    Article  Google Scholar 

  26. Blanco-Mesa F, Merigo JM, Gil-Lafuente AM (2017) Fuzzy decision making: A bibliometric-based review. J Intell Fuzzy Syst 32(3):2033–2050. https://doi.org/10.3233/jifs-161640

    Article  Google Scholar 

  27. Aria M, Cuccurullo C (2017) bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics 11(4):959–975. https://doi.org/10.1016/j.joi.2017.08.007

    Article  Google Scholar 

  28. Piao ZY, Zhou ZY, Xu J, Wang HD (2019) Use of X-ray Computed Tomography to Investigate Rolling Contact Cracks in Plasma Sprayed Fe-Cr-B-Si Coating. Tribol Lett 67(1). https://doi.org/10.1007/s11249-018-1126-7

  29. Wang W, Laengle S, Merigo JM, Yu D, Herrera-Viedma E, Cobo MJ, Bouchon-Meunier B (2018) A Bibliometric Analysis of the First Twenty-Five Years of the International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems 26(2):169–193. https://doi.org/10.1142/s0218488518500095

    Article  Google Scholar 

  30. Kumar S, Kamble S, Roy MH (2020) Twenty-five years of Benchmarking:AnInternationalJournal(BIJ). Benchmarking: An International Journal 27(2):760–780. https://doi.org/10.1108/bij-07-2019-0314

    Article  Google Scholar 

  31. Ma Y, Huang XW, Hang W, Liu M, Song YX, Yuan JL, Zhang TH (2020) Nanoindentation size effect on stochastic behavior of incipient plasticity in a LiTaO3 single crystal. Eng Fract Mech 226:106877. https://doi.org/10.1016/j.engfracmech.2020.106877

    Article  Google Scholar 

  32. Mapping S (2017) A Systematic Review of the Literature. Journal of Data and Information Science 2(2):1–40

    Article  Google Scholar 

  33. Chen CM (2006) CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inf Sci Technol 57(3):359–377. https://doi.org/10.1002/asi.20317

    Article  Google Scholar 

  34. Chen C, Chen Y, Hou J, Liang Y (2009) CiteSpace I : detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the China Society for Scientific and Technical Information 28(3):401–421. https://doi.org/10.3772/j.issn.1000-0135.2009.03.012

    Article  Google Scholar 

  35. Chen CM (2004) Searching for intellectual turning points: Progressive knowledge domain visualization. Proc Natl Acad Sci U S A 101:5303–5310. https://doi.org/10.1073/pnas.0307513100

    Article  Google Scholar 

  36. van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84(2):523–538. https://doi.org/10.1007/s11192-009-0146-3

    Article  Google Scholar 

  37. Garfield E, Pudovkin AI, Istomin VS (2003) Mapping the output of topical searches in the Web of Knowledge and the case of Watson-Crick. Inf Technol Libr 22(4):183–187

    Google Scholar 

  38. Garfield E (2004) Historiographic mapping of knowledge domains literature. J Inf Sci 30(2):119–145. https://doi.org/10.1177/0165551504042802

    Article  Google Scholar 

  39. Garfield E (2009) From the science of science to Scientometrics visualizing the history of science with HistCite software. Journal of Informetrics 3(3):173–179. https://doi.org/10.1016/j.joi.2009.03.009

    Article  Google Scholar 

  40. Chen CM, Leydesdorff L (2014) Patterns of Connections and Movements in Dual-Map Overlays: A New Method of Publication Portfolio Analysis. J Assoc Inf Sci Technol 65(2):334–351. https://doi.org/10.1002/asi.22968

    Article  Google Scholar 

  41. Kleinberg J (2003) Bursty and hierarchical structure in streams. Data Min Knowl Disc 7(4):373–397. https://doi.org/10.1023/a:1024940629314

    Article  MathSciNet  Google Scholar 

  42. Hassan AM, AlBsharat AS (1996) Improvements in some properties of non-ferrous metals by the application of the ball-burnishing process. J Mater Process Technol 59(3):250–256. https://doi.org/10.1016/0924-0136(95)02149-3

    Article  Google Scholar 

  43. Hassan AM, AlBsharat AS (1996) Influence of burnishing process on surface roughness, hardness, and microstructure of some non-ferrous metals. Wear 199(1):1–8. https://doi.org/10.1016/0043-1648(95)06847-3

    Article  Google Scholar 

  44. Hassan AM (1997) An investigation into the surface characteristics of burnished cast Al-Cu alloys. Int J Mach Tools Manuf 37(6):813–821. https://doi.org/10.1016/s0890-6955(96)00058-2

    Article  Google Scholar 

  45. Hassan AM (1997) The effects of ball- and roller-burnishing on the surface roughness and hardness of some non-ferrous metals. J Mater Process Technol 72(3):385–391. https://doi.org/10.1016/s0924-0136(97)00199-4

    Article  Google Scholar 

  46. Klocke F, Liermann J (1998) Roller burnishing of hard turned surfaces. Int J Mach Tools Manuf 38(5-6):419–423. https://doi.org/10.1016/s0890-6955(97)00085-0

    Article  Google Scholar 

  47. Hassan AM, Al-Jalil HF, Ebied AA (1998) Burnishing force and number of ball passes for the optimum surface finish of brass components. J Mater Process Technol 83(1-3):176–179. https://doi.org/10.1016/s0924-0136(98)00058-2

    Article  Google Scholar 

  48. Yu XB, Wang LJ (1999) Effect of various parameters on the surface roughness of an aluminium alloy burnished with a spherical surfaced polycrystalline diamond tool. Int J Mach Tools Manuf 39(3):459–469. https://doi.org/10.1016/s0890-6955(98)00033-9

    Article  MathSciNet  Google Scholar 

  49. Wagner L (1999) Mechanical surface treatments on titanium, aluminum and magnesium alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 263(2):210–216. https://doi.org/10.1016/s0921-5093(98)01168-x

    Article  Google Scholar 

  50. Altenberger I, Scholtes B, Martin U, Oettel H (1999) Cyclic deformation and near surface microstructures of shot peened or deep rolled austenitic stainless steel AISI 304. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 264(1-2):1–16. https://doi.org/10.1016/s0921-5093(98)01121-6

    Article  Google Scholar 

  51. Hassan AM, Al-Dhifi SZS (1999) Improvement in the wear resistance of brass components by the ball burnishing process. J Mater Process Technol 96(1-3):73–80

    Article  Google Scholar 

  52. Nemat M, Lyons AC (2000) An investigation of the surface topography of ball burnished mild steel and aluminium. Int J Adv Manuf Technol 16(7):469–473. https://doi.org/10.1007/s001700070054

    Article  Google Scholar 

  53. Hassan AM, Maqableh AM (2000) The effects of initial burnishing parameters on non-ferrous components. J Mater Process Technol 102(1-3):115–121. https://doi.org/10.1016/s0924-0136(00)00464-7

    Article  Google Scholar 

  54. Zhuang WZ, Halford GR (2001) Investigation of residual stress relaxation under cyclic load. Int J Fatigue 23:S31–S37

    Article  Google Scholar 

  55. Nalla RK, Altenberger I, Noster U, Liu GY, Scholtes B, Ritchie RO (2003) On the influence of mechanical surface treatments - deep rolling and laser shock peening - on the fatigue behavior of Ti-6Al-4V at ambient and elevated temperatures. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 355(1-2):216–230. https://doi.org/10.1016/s0921-5093(03)00069-8

    Article  Google Scholar 

  56. Shiou FJ, Chen CH (2003) Freeform surface finish of plastic injection mold by using ball-burnishing process. J Mater Process Technol 140:248–254. https://doi.org/10.1016/s0924-0136(03)00750-7

    Article  Google Scholar 

  57. Bouzid W, Tsoumarev O, Sai K (2004) An investigation of surface roughness of burnished AISI 1042 steel. Int J Adv Manuf Technol 24(1-2):120–125. https://doi.org/10.1007/s00170-003-1761-4

    Article  Google Scholar 

  58. Prevey PS, Cammett JT (2004) The influence of surface enhancement by low plasticity burnishing on the corrosion fatigue performance of AA7075-T6. Int J Fatigue 26(9):975–982. https://doi.org/10.1016/j.ijfatigue.2004.01.010

    Article  Google Scholar 

  59. Yen YC, Sartkulvanich P, Altan T (2005) Finite element modeling of roller burnishing process. CIRP Ann-Manuf Technol 54(1):237–240. https://doi.org/10.1016/s0007-8506(07)60092-4

    Article  Google Scholar 

  60. Luo HY, Liu JY, Wang LJ, Zhong QP (2005) Investigation of the burnishing process with PCD tool on non-ferrous metals. Int J Adv Manuf Technol 25(5-6):454–459. https://doi.org/10.1007/s00170-003-1959-5

    Article  Google Scholar 

  61. Luca L, Neagu-Ventzel S, Marinescu I (2005) Effects of working parameters on surface finish in ball-burnishing of hardened steels. Precis Eng-J Int Soc Precis Eng Nanotechnol 29(2):253–256. https://doi.org/10.1016/j.precisioneng.2004.02.002

    Article  Google Scholar 

  62. Hamadache H, Laouar L, Zeghib NE, Chaoui K (2006) Characteristics of Rb40 steel superficial layer under ball and roller burnishing. J Mater Process Technol 180(1-3):130–136. https://doi.org/10.1016/j.jmatprotec.2006.05.013

    Article  Google Scholar 

  63. Korzynski M (2007) Modeling and experimental validation of the force-surface roughness relation for smoothing burnishing with a spherical tool. Int J Mach Tools Manuf 47(12-13):1956–1964. https://doi.org/10.1016/j.ijmachtools.2007.03.002

    Article  Google Scholar 

  64. Li WL, Tao NR, Lu K (2008) Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surface mechanical grinding treatment. Scr Mater 59(5):546–549. https://doi.org/10.1016/j.scriptamat.2008.05.003

    Article  Google Scholar 

  65. Majzoobi GH, Azadikhah K, Nemati J (2009) The effects of deep rolling and shot peening on fretting fatigue resistance of Aluminum-7075-T6. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 516(1-2):235–247. https://doi.org/10.1016/j.msea.2009.03.020

    Article  Google Scholar 

  66. Fang TH, Li WL, Tao NR, Lu K (2011) Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-Grained Copper. Science 331(6024):1587–1590. https://doi.org/10.1126/science.1200177

    Article  Google Scholar 

  67. Rodriguez A, Lopez de Lacalle LN, Celaya A, Lamikiz A, Albizuri J (2012) Surface improvement of shafts by the deep ball-burnishing technique. Surf Coat Technol 206(11-12):2817–2824. https://doi.org/10.1016/j.surfcoat.2011.11.045

    Article  Google Scholar 

  68. Aviles R, Albizuri J, Rodriguez A, Lopez de Lacalle LN (2013) Influence of low-plasticity ball burnishing on the high-cycle fatigue strength of medium carbon AISI 1045 steel. Int J Fatigue 55:230–244. https://doi.org/10.1016/j.ijfatigue.2013.06.024

    Article  Google Scholar 

  69. Liu XC, Zhang HW, Lu K (2013) Strain-Induced Ultrahard and Ultrastable Nanolaminated Structure in Nickel. Science 342(6156):337–340. https://doi.org/10.1126/science.1242578

    Article  Google Scholar 

  70. Revankar GD, Shetty R, Rao SS, Gaitonde VN (2014) Analysis of surface roughness and hardness in ball burnishing of titanium alloy. Measurement 58:256–268. https://doi.org/10.1016/j.measurement.2014.08.043

    Article  Google Scholar 

  71. Trung-Thanh N, Xuan-Ba L (2018) Optimization of interior roller burnishing process for improving surface quality. Mater Manuf Process 33(11):1233–1241. https://doi.org/10.1080/10426914.2018.1453159

    Article  Google Scholar 

  72. Tajane RS, Pawar PJ (2020) Investigation into burnishing to minimize heat treatment in drill manufacturing. Mater Manuf Process 35(7):817–825. https://doi.org/10.1080/10426914.2020.1743848

    Article  Google Scholar 

  73. Kumar S, Mitra B, Kumar N (2019) Application of GRA method for multi-objective optimization of roller burnishing process parameters using a carbide tool on high carbon steel (AISI-1040). Grey Systems-Theory and Application 9(4):449–463. https://doi.org/10.1108/gs-03-2019-0006

    Article  Google Scholar 

  74. Rotella G, Rinaldi S, Filice L (2020) Roller burnishing of Ti6Al4V under different cooling/lubrication conditions and tool design: effects on surface integrity. Int J Adv Manuf Technol 106(1-2):431–440. https://doi.org/10.1007/s00170-019-04631-z

    Article  Google Scholar 

  75. Sagbas A (2011) Analysis and optimization of surface roughness in the ball burnishing process using response surface methodology and desirabilty function. Adv Eng Softw 42(11):992–998. https://doi.org/10.1016/j.advengsoft.2011.05.021

    Article  Google Scholar 

  76. El-Taweel TA, El-Axir MH (2009) Analysis and optimization of the ball burnishing process through the Taguchi technique. Int J Adv Manuf Technol 41(3-4):301–310. https://doi.org/10.1007/s00170-008-1485-6

    Article  Google Scholar 

  77. Revankar GD, Shetty R, Rao SS, Gaitonde VN (2017) Wear resistance enhancement of titanium alloy (Ti-6A1-4V) by ball burnishing process. J Mater Res Technol-JMRT 6(1):13–32. https://doi.org/10.1016/j.jmrt.2016.03.007

    Article  Google Scholar 

  78. Chomienne V, Valiorgue F, Rech J, Verdu C (2016) Influence of ball burnishing on residual stress profile of a 15-5PH stainless steel. CIRP J Manuf Sci Technol 13:90–96. https://doi.org/10.1016/j.cirpj.2015.12.003

    Article  Google Scholar 

  79. Teimouri R, Amini S, Ashrafi H (2019) An analytical model of burnishing forces using slab method. Proceedings of the Institution of Mechanical Engineers Part E-Journal of Process Mechanical Engineering 233(3):630–642. https://doi.org/10.1177/0954408918781481

    Article  Google Scholar 

  80. Teimouri R, Amini S, Guagliano M (2019) Analytical modeling of ultrasonic surface burnishing process: Evaluation of residual stress field distribution and strip deflection. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 747:208–224. https://doi.org/10.1016/j.msea.2019.01.007

    Article  Google Scholar 

  81. Teimouri R, Amini S (2019) Analytical modeling of ultrasonic surface burnishing process: Evaluation of through depth localized strain. Int J Mech Sci 151:118–132. https://doi.org/10.1016/j.ijmecsci.2018.11.008

    Article  Google Scholar 

  82. Teimouri R, Amini S (2019) Analytical modeling of ultrasonic burnishing process: Evaluation of active forces. Measurement 131:654–663. https://doi.org/10.1016/j.measurement.2018.09.023

    Article  Google Scholar 

  83. Randjelovic S, Tadic B, Todorovic PM, Vukelic D, Miloradovic D, Radenkovic M, Tsiafis C (2015) Modelling of the ball burnishing process with a high-stiffness tool. Int J Adv Manuf Technol 81(9-12):1509–1518. https://doi.org/10.1007/s00170-015-7319-4

    Article  Google Scholar 

  84. Li FL, Xia W, Zhou ZY, Zhao J, Tang ZQ (2012) Analytical prediction and experimental verification of surface roughness during the burnishing process. Int J Mach Tools Manuf 62:67–75. https://doi.org/10.1016/j.ijmachtools.2012.06.001

    Article  Google Scholar 

  85. Hiegemann L, Weddeling C, Tekkaya AE (2016) Analytical contact pressure model for predicting roughness of ball burnished surfaces. J Mater Process Technol 232:63–77. https://doi.org/10.1016/j.jmatprotec.2016.01.024

    Article  Google Scholar 

  86. Hiegemann L, Weddeling C, Ben Khalifa N, Tekkaya AE (2015) Prediction of roughness after ball burnishing of thermally coated surfaces. J Mater Process Technol 217:193–201. https://doi.org/10.1016/j.jmatprotec.2014.11.008

    Article  Google Scholar 

  87. Hiegemann L, Weddeling C, Ben Khalifa N, Tekkaya AE (2014) Analytical prediction of roughness after ball burnishing of thermally coated surfaces. In: Ishikawa T, Mori KI (eds) 11th International Conference on Technology of Plasticity, Ictp 2014, vol 81. Procedia Engineering. pp 1921-1926. https://doi.org/10.1016/j.proeng.2014.10.257

  88. Shen X, Gong X, Zhang J, Su G (2019) An investigation of stress condition in vibration-assisted burnishing. Int J Adv Manuf Technol 105(1-4):1189–1207. https://doi.org/10.1007/s00170-019-04128-9

    Article  Google Scholar 

  89. Zhao J, Liu Z (2020) Plastic flow behavior for machined surface material Ti-6Al-4V with rotary ultrasonic burnishing. J Mater Res Technol-JMRT 9(2):2387–2401. https://doi.org/10.1016/j.jmrt.2019.12.071

    Article  Google Scholar 

  90. Liu Y, Wang L, Wang D (2011) Finite element modeling of ultrasonic surface rolling process. J Mater Process Technol 211(12):2106–2113. https://doi.org/10.1016/j.jmatprotec.2011.07.009

    Article  Google Scholar 

  91. He D, Wang B, Zhang J, Liao S, Deng WJ (2018) Investigation of interference effects on the burnishing process. Int J Adv Manuf Technol 95(1-4):1–10. https://doi.org/10.1007/s00170-017-0640-3

    Article  Google Scholar 

  92. Maximov JT, Duncheva GV, Anchev AP, Dunchev VP, Ichkova MD (2020) Improvement in fatigue strength of 41Cr4 steel through slide diamond burnishing. J Braz Soc Mech Sci Eng 42(4). https://doi.org/10.1007/s40430-020-02276-8

  93. Sayahi M, Sghaier S, Belhadjsalah H (2013) Finite element analysis of ball burnishing process: comparisons between numerical results and experiments. Int J Adv Manuf Technol 67(5-8):1665–1673. https://doi.org/10.1007/s00170-012-4599-9

    Article  Google Scholar 

  94. Amini C, Jerez-Mesa R, Antonio Travieso-Rodriguez J, Lluma J, Estevez-Urra A (2020) Finite Element Analysis of Ball Burnishing on Ball-End Milled Surfaces Considering Their Original Topology and Residual Stress. Metals 10(5). https://doi.org/10.3390/met10050638

  95. Zheng J, Liu H, Ren Y, Zhu L (2020) Effect of two-dimensional ultrasonic rolling on grain size and micro-hardness of 7075 aluminum alloy. Int J Adv Manuf Technol 106(1-2):503–510. https://doi.org/10.1007/s00170-019-04640-y

    Article  Google Scholar 

  96. Kuznetsov VP, Tarasov SY, Dmitriev AI (2015) Nanostructuring burnishing and subsurface shear instability. J Mater Process Technol 217:327–335. https://doi.org/10.1016/j.jmatprotec.2014.11.023

    Article  Google Scholar 

  97. Huang HW, Wang ZB, Lu J, Lu K (2015) Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer. Acta Mater 87:150–160. https://doi.org/10.1016/j.actamat.2014.12.057

    Article  Google Scholar 

  98. Ao N, Liu DX, Zhang XH, Liu CS, Yang J, Liu D (2019) Surface nanocrystallization of body-centered cubic beta phase in Ti-6Al-4V alloy subjected to ultrasonic surface rolling process. Surf Coat Technol 361:35–41. https://doi.org/10.1016/j.surfcoat.2019.01.045

    Article  Google Scholar 

  99. Ao N, Liu DX, Xu XC, Zhang XH, Liu D (2019) Gradient nanostructure evolution and phase transformation of alpha phase in Ti-6Al-4V alloy induced by ultrasonic surface rolling process. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 742:820–834. https://doi.org/10.1016/j.msea.2018.10.098

    Article  Google Scholar 

  100. Ao N, Liu DX, Liu CS, Zhang XH, Liu D (2018) Face-centered titanium induced by ultrasonic surface rolling process in Ti-6Al-4V alloy and its tensile behavior. Mater Charact 145:527–533. https://doi.org/10.1016/j.matchar.2018.09.004

    Article  Google Scholar 

  101. Liu D, Liu DX, Zhang XH, Liu CS, Ao N (2018) Surface nanocrystallization of 17-4 precipitation-hardening stainless steel subjected to ultrasonic surface rolling process. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 726:69–81. https://doi.org/10.1016/j.msea.2018.04.033

    Article  Google Scholar 

  102. Liu D, Liu D, Zhang X, Liu C, Ao N (2018) Surface nanocrystallization of 17-4 precipitation-hardening stainless steel subjected to ultrasonic surface rolling process. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 726:69–81. https://doi.org/10.1016/j.msea.2018.04.033

    Article  Google Scholar 

  103. Wang HB, Song GL, Tang GY (2016) Evolution of surface mechanical properties and microstructure of Ti-6Al-4V alloy induced by electropulsing-assisted ultrasonic surface rolling process. J ALLOY COMPD 681:146–156. https://doi.org/10.1016/j.jallcom.2016.04.067

    Article  Google Scholar 

  104. Wang H, Song G, Tang G (2016) Evolution of surface mechanical properties and microstructure of Ti-6Al-4V alloy induced by electropulsing-assisted ultrasonic surface rolling process. J ALLOY COMPD 681:146–156. https://doi.org/10.1016/j.jallcom.2016.04.067

    Article  Google Scholar 

  105. Ye Y, Kure-Chu S-Z, Sun Z, Li X, Wang H, Tang G (2018) Nanocrystallization and enhanced surface mechanical properties of commercial pure titanium by electropulsing-assisted ultrasonic surface rolling. Mater Des 149:214–227. https://doi.org/10.1016/j.matdes.2018.04.027

    Article  Google Scholar 

  106. Zhao J, Liu Z, Chen L, Hua Y (2020) Ultrasonic-Induced Phase Redistribution and Acoustic Hardening for Rotary Ultrasonic Roller Burnished Ti-6Al-4V. Metall Mater Trans A-Phys Metall Mater Sci 51(3):1320–1333. https://doi.org/10.1007/s11661-019-05594-2

    Article  Google Scholar 

  107. Fu CH, Sealy MP, Guo YB, Wei XT (2014) Austenite-martensite phase transformation of biomedical Nitinol by ball burnishing. J Mater Process Technol 214(12):3122–3130. https://doi.org/10.1016/j.jmatprotec.2014.07.019

    Article  Google Scholar 

  108. Fu CH, Guo YB, Wei XT, Asme (2013) AUSTENITE-MARTENSITE PHASE TRANSFORMATION OF BIOMEDICAL NI50.8TI49.2 ALLOY BY BALL BURNISHING. Proceedings of the Asme 8th International Manufacturing Science and Engineering Conference - 2013, Vol 1

  109. Pang C, Luo H, Zhang Z, Ma Y (2018) Precipitation behavior and grain refinement of burnishing Al-Zn-Mg alloy. Progress in Natural Science-Materials International 28(1):54–59. https://doi.org/10.1016/j.pnsc.2017.11.006

    Article  Google Scholar 

  110. Liu C, Liu D, Zhang X, Ao N, Xu X, Liu D, Yang J (2019) Fretting fatigue characteristics of Ti-6Al-4V alloy with a gradient nanostructured surface layer induced by ultrasonic surface rolling process. Int J Fatigue 125:249–260. https://doi.org/10.1016/j.ijfatigue.2019.03.042

    Article  Google Scholar 

  111. Cheng M, Zhang D, Chen H, Qin W, Li J (2016) Surface nanocrystallization and its effect on fatigue performance of high-strength materials treated by ultrasonic rolling process. Int J Adv Manuf Technol 83(1-4):123–131. https://doi.org/10.1007/s00170-015-7485-4

    Article  Google Scholar 

  112. Yang J, Liu DX, Zhang XH, Liu MX, Zhao WD, Liu CS (2020) The effect of ultrasonic surface rolling process on the fretting fatigue property of GH4169 superalloy. Int J Fatigue 133. https://doi.org/10.1016/j.ijfatigue.2019.105373

  113. Liu CS, Liu DX, Zhang XH, Liu D, Ma AM, Ao N, Xu XC (2019) Improving fatigue performance of Ti-6Al-4V alloy via ultrasonic surface rolling process. J Mater Sci Technol 35(8):1555–1562. https://doi.org/10.1016/j.jmst.2019.03.036

    Article  Google Scholar 

  114. Maximov JT, Anchev AP, Duncheva GV, Ganev N, Selimov KF, Dunchev VP (2019) Impact of slide diamond burnishing additional parameters on fatigue behaviour of 2024-T3 Al alloy. Fatigue Fract Eng Mater Struct 42(1):363–373. https://doi.org/10.1111/ffe.12915

    Article  Google Scholar 

  115. Bertini L, Santus C (2015) Fretting fatigue tests on shrink-fit specimens and investigations into the strength enhancement induced by deep rolling. Int J Fatigue 81:179–190. https://doi.org/10.1016/j.ijfatigue.2015.08.007

    Article  Google Scholar 

  116. Uddin MS, Rosman H, Hall C, Murphy P (2017) Enhancing the corrosion resistance of biodegradable Mg-based alloy by machining-induced surface integrity: influence of machining parameters on surface roughness and hardness. Int J Adv Manuf Technol 90(5-8):2095–2108. https://doi.org/10.1007/s00170-016-9536-x

    Article  Google Scholar 

  117. Lv J, Luo H, Xie J (2013) Experimental study of corrosion behavior for burnished aluminum alloy by EWF, EBSD, EIS and Raman spectra. Appl Surf Sci 273:192–198. https://doi.org/10.1016/j.apsusc.2013.02.012

    Article  Google Scholar 

  118. Krishna KG, Sivaprasad K, Narayanan TSNS, Kumar KCH (2012) Localized corrosion of an ultrafine grained Al-4Zn-2Mg alloy produced by cryorolling. Corros Sci 60:82–89. https://doi.org/10.1016/j.corsci.2012.04.009

    Article  Google Scholar 

  119. Ye H, Sun X, Liu Y, Rao X-x GQ (2019) Effect of ultrasonic surface rolling process on mechanical properties and corrosion resistance of AZ31B Mg alloy. Surf Coat Technol 372:288–298. https://doi.org/10.1016/j.surfcoat.2019.05.035

    Article  Google Scholar 

  120. Xu X, Liu D, Zhang X, Liu C, Liu D, Ma A (2020) Effects of Ultrasonic Surface Rolling on the Localized Corrosion Behavior of 7B50-T7751 Aluminum Alloy. Materials 13(3). https://doi.org/10.3390/ma13030738

  121. Jun T, Hongyun L, Yameng Q, Pingwei X, Sha M, Zheng Z, Yue M (2018) The effect of cryogenic burnishing on the formation mechanism of corrosion product film of Ti-6Al-4V titanium alloy in 0.9% NaCl solution. Surf Coat Technol 345:123–131. https://doi.org/10.1016/j.surfcoat.2018.03.102

    Article  Google Scholar 

  122. Tang J, Luo HY, Zhang YB (2017) Enhancing the surface integrity and corrosion resistance of Ti-6Al-4V titanium alloy through cryogenic burnishing. Int J Adv Manuf Technol 88(9-12):2785–2793. https://doi.org/10.1007/s00170-016-9000-y

    Article  Google Scholar 

  123. Zhang P, Liu Z (2017) Enhancing surface integrity and corrosion resistance of laser cladded Cr-Ni alloys by hard turning and low plasticity burnishing. Appl Surf Sci 409:169–178. https://doi.org/10.1016/j.apsusc.2017.03.028

    Article  Google Scholar 

  124. Zhang Q, Hu Z, Su W, Zhou H, Liu C, Yang Y, Qi X (2017) Microstructure and surface properties of 17-4PH stainless steel by ultrasonic surface rolling technology. Surf Coat Technol 321:64–73. https://doi.org/10.1016/j.surfcoat.2017.04.052

    Article  Google Scholar 

  125. Xu X, Liu D, Zhang X, Liu C, Liu D, Zhang W (2019) Influence of ultrasonic rolling on surface integrity and corrosion fatigue behavior of 7B50-T7751 aluminum alloy. Int J Fatigue 125:237–248. https://doi.org/10.1016/j.ijfatigue.2019.04.005

    Article  Google Scholar 

  126. Xu X, Liu D, Zhang X, Liu C, Liu D (2020) Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling. J Mater Sci Technol 40:88–98. https://doi.org/10.1016/j.jmst.2019.08.030

    Article  Google Scholar 

  127. Li J, Li SJ, Hao YL, Huang HH, Bai Y, Hao YQ, Guo Z, Xue JQ, Yang R (2014) Electrochemical and surface analyses of nanostructured Ti-24Nb-4Zr-8Sn alloys in simulated body solution. Acta Biomater 10(6):2866–2875. https://doi.org/10.1016/j.actbio.2014.02.032

    Article  Google Scholar 

  128. Li J, Bai Y, Fan Z, Li S, Hao Y, Yang R, Gao Y (2018) Effect of fluoride on the corrosion behavior of nanostructured Ti-24Nb-4Zr-8Sn alloy in acidulated artificial saliva. J Mater Sci Technol 34(9):1660–1670. https://doi.org/10.1016/j.jmst.2018.01.008

    Article  Google Scholar 

  129. Li L, Kim M, Lee S, Kim J, Kim H, Lee D (2018) Study on surface modification of aluminum 6061 by multiple ultrasonic impact treatments. Int J Adv Manuf Technol 96(1-4):1255–1264. https://doi.org/10.1007/s00170-018-1666-x

    Article  Google Scholar 

  130. Ren Z, Lai F, Qu S, Zhang Y, Li X, Yang C (2020) Effect of ultrasonic surface rolling on surface layer properties and fretting wear properties of titanium alloy Ti5Al4Mo6V2Nb1Fe. Surf Coat Technol 389:125612. https://doi.org/10.1016/j.surfcoat.2020.125612

    Article  Google Scholar 

  131. Liu X, Zheng Y-h, Guo Y, Kong H (2020) Study on the rolling friction and wear properties of surface densified powder metallurgy Fe-2Cu-0.6C material. Surface Topography-Metrology and Properties 8(1). https://doi.org/10.1088/2051-672X/ab58b8

  132. Liu X, Zy X, Hj G, Zhang W, Fl L (2016) Friction and wear behaviours of surface densified powder metallurgy Fe-2Cu-0.6C material. Powder Metall 59(5):329–334. https://doi.org/10.1080/00325899.2016.1242880

    Article  Google Scholar 

  133. Munoz-Cubillos J, Coronado JJ, Rodriguez SA (2019) On the cavitation resistance of deep rolled surfaces of austenitic stainless steels. Wear 428:24–31. https://doi.org/10.1016/j.wear.2019.03.001

    Article  Google Scholar 

  134. Wang C, Han J, Zhao J, Song Y, Man J, Zhu H, Sun J, Fang L (2019) Enhanced Wear Resistance of 316 L Stainless Steel with a Nanostructured Surface Layer Prepared by Ultrasonic Surface Rolling. Coatings 9(4). https://doi.org/10.3390/coatings9040276

  135. Wang Z, Liu Z, Gao C, Wong K, Ye S, Xiao Z (2020) Modified wear behavior of selective laser melted Ti6Al4V alloy by direct current assisted ultrasonic surface rolling process. Surf Coat Technol 381. https://doi.org/10.1016/j.surfcoat.2019.125122

  136. Ma C, Andani MT, Qin H, Moghaddam NS, Ibrahim H, Jahadakbar A, Amerinatanzi A, Ren Z, Zhang H, Doll GL, Dong Y, Elahinia M, Ye C (2017) Improving surface finish and wear resistance of additive manufactured nickel-titanium by ultrasonic nano-crystal surface modification. J Mater Process Technol 249:433–440. https://doi.org/10.1016/j.jmatprotec.2017.06.038

    Article  Google Scholar 

  137. Yang Z, Zhu L, Zhang G, Ni C, Lin B (2020) Review of ultrasonic vibration-assisted machining in advanced materials. Int J Mach Tools Manuf 156:156. https://doi.org/10.1016/j.ijmachtools.2020.103594

    Article  Google Scholar 

Download references

Funding

This article was financially supported by National Natural Science Foundation of China (NSFC) (51675483, 52075047, 51705028), and Fundamental Research Funds for the Provincial Universities of Zhejiang (Grant No. RF-A2019008)

Author information

Authors and Affiliations

Authors

Contributions

Zhou Zhen-Yu: writing—original draft, software, conceptualization

Zheng Qiu-Yang: investigation

Ding Cong: writing—review and editing

Yan Ju-yu: software

Piao Zhong-Yu: investigation, resources, writing—review and editing

Corresponding author

Correspondence to Piao Zhong-yu.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhen-yu, Z., Qiu-yang, Z., Cong, D. et al. A review of the development of surface burnishing process technique based on bibliometric analysis and visualization. Int J Adv Manuf Technol 115, 1955–1999 (2021). https://doi.org/10.1007/s00170-021-06967-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-06967-x

Keyword

Navigation