Skip to main content
Log in

Cutting mechanism of enhanced phase γ' in Inconel 718 based on strain gradient theory

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Inconel 718 is one kind of nickel-based superalloy containing γ precipitates (Ni3Al). It has been widely used in aerospace field due to its high strength, high oxidation resistance, and corrosion resistance at high temperature. Considering the influence of the strengthening phase γ on the cutting deformation, and the inability of traditional classical mechanics to describe the characteristic scale of materials and to accurately explain some phenomena in the machining process, the model of enhanced phase γ with cohesive element in cutting Inconel 718 is established in this paper. Moreover, the strain gradient theory is introduced to establish constitutive model. The effects of γ phase on stress, strain, and temperature and the distribution of stress field at the crack tip are analyzed from the point of view of material micro-plasticity mechanics and material dislocation theory. The strain gradient strengthening effect is studied by changing the size of γ phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Komanduri R, Brown RH (1981) On the Mechanics of Chip Segmentation In Machining. J Eng Ind 103(1):33–51. https://doi.org/10.1115/1.3184458

    Article  Google Scholar 

  2. Ohbuchi Y, Obikawa T (2005) Adiabatic shear in chip formation with negative rake angle. Int J Mech Sci 47(9):1377–1392. https://doi.org/10.1016/j.ijmecsci.2005.05.003

    Article  MATH  Google Scholar 

  3. Johnson GR, Cook WH (1983) A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures. Eng Fract Mech 21:541–548

    Google Scholar 

  4. Sheng J, Yuan WZ (2006, 2006) Numerical Simulation of Orthogonal Cutting Process of a Kind of Difficult-to-Cut Material. Mater Sci Forum. https://doi.org/10.4028/www.scientific.net/MSF.532-533.925

  5. Asad M, Mabrouki T, Rigal JF (2010) Finite-element-based hybrid dynamic cutting model for aluminium alloy milling. Proc Inst Mech Eng B J Eng Manuf 224(B1):1–13. https://doi.org/10.1243/09544054JEM1590

    Article  Google Scholar 

  6. Yu X, Sun XY, Wei DK (2011) Simulation of High-Speed Cutting Process Based on ABAQUS. Adv Mater Res 230-232:1221–1225. https://doi.org/10.4028/www.scientific.net/AMR.230-232.1221

    Article  Google Scholar 

  7. Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42(2):475–487. https://doi.org/10.1016/0956-7151(94)90502-9

    Article  Google Scholar 

  8. Gao H, Huang Y, Nix WD, Hutchinson JW (1999) Mechanism-based strain gradient plasticity-I. theory. J Mech Phys Solids 47(6):1239–1263. https://doi.org/10.1016/S0022-5096(98)00103-3

    Article  MathSciNet  MATH  Google Scholar 

  9. Huang Y, Gao HJ, Nix WD, Hutchinson JW (2000) Mechanism-based strain gradient theory—II. Analysis. J Mech Phys Solids 48(1):99–128. https://doi.org/10.1016/S0022-5096(99)00022-8

    Article  MathSciNet  MATH  Google Scholar 

  10. Aifantis EC (1999) Strain gradient interpretation of size. Effects Int J Fract 95(1-4):299–314. https://doi.org/10.1023/A:1018625006804

    Article  Google Scholar 

  11. Joshi SS, Melkote SN (2004) An explanation for the size-effect in machining based on strain gradient plasticity. J Manuf Sci E T ASME 126(4):679–684. https://doi.org/10.1115/1.1688375

    Article  Google Scholar 

  12. Wu WG, Xiao H, Wang HF, Xiao T (2012) Study of Cutting Forces Models for Micro-Cutting Based on Strain Gradient. Key Eng Mater 499:307–311. https://doi.org/10.4028/www.scientific.net/KEM.499.307

    Article  Google Scholar 

  13. Wu JH, Liu ZQ (2010) Modeling of flow stress in orthogonal micro-cutting process based on strain gradient plasticity theory. Int J Adv Manuf Technol 46(1-4):143–149. https://doi.org/10.1007/s00170-009-2049-0

    Article  Google Scholar 

  14. Lu D, Cai LG, Yang MM (2013) Simulation research of micro-cutting process based on MSG theory. J Syst Simul 25(12):2941–2945 (In Chinese) CNKI:SUN:XTFZ.0.2013-12-024

    Google Scholar 

  15. Liu K, Melkote SN (2006) Material Strengthening Mechanisms and Their Contribution to Size Effect in Micro-Cutting. J Manuf Sci Eng 128(3):1147–1156. https://doi.org/10.1115/1.2193548

    Article  Google Scholar 

  16. Sofuoğlu MA, Çakır FH, Gürgen S, Orak S, Kuşhan MC (2018) Numerical investigation of hot ultrasonic assisted turning of aviation alloys. J Braz Soc Mech Sci Eng 40:122. https://doi.org/10.1007/s40430-018-1037-4

    Article  Google Scholar 

  17. Sofuoğlu MA, Çakır FH, Gürgen S, Orak S, Kuşhan MC (2018) Experimental investigation of machining characteristics and chatter stability for Hastelloy-X with ultrasonic and hot turning. Int J Adv Manuf Technol 95:83–97. https://doi.org/10.1007/s00170-017-1153-9

    Article  Google Scholar 

  18. Cakir FH, Gurgen S, Sofuoglu MA, Celik ON, Kushan MC (2015) Finite Element Modeling of Ultrasonic Assisted Turning of Ti6Al4V Alloy. Procedia Soc Behav Sci 195:2839–2848. https://doi.org/10.1016/j.sbspro.2015.06.404

    Article  Google Scholar 

  19. Gao D, Hao ZP, Han RD (2011) Study of cutting deformation in machining nickel-based alloy Inconel 718. Int J Mach Tools Manuf 51(6):520–527. https://doi.org/10.1016/j.ijmachtools.2011.02.011

    Article  Google Scholar 

  20. Uhlmann E, Schulenburg MGVD, Zettier R (2007) Finite Element Modeling and Cutting Simulation of Inconel 718. CIRP Ann Manuf Technol 56(1):61–64. https://doi.org/10.1016/j.cirp.2007.05.017

    Article  Google Scholar 

  21. Parida AK, Maity K (2016) Effect of nose radius on forces, and process parameters in hot machining of Inconel 718 using finite element analysis. Eng Sci Technol Int J S221509861630578X:687–693. https://doi.org/10.1016/j.jestch.2016.10.006

    Article  Google Scholar 

  22. Hao ZP, Li JN, Fan YH, Ji FF (2019) Study on constitutive model and deformation mechanism in high speed cutting Inconel718. Arch Civ Mech Eng 19(2):439–452. https://doi.org/10.1016/j.acme.2018.11.009

    Article  Google Scholar 

  23. Brunetti G, Settefrati A, Hazotte A, Denis S, Fundenberger J-J, Tidu A, Bouzy E (2012) Determination of γ-γ' lattice misfit in a single-crystal nickel-based superalloy using convergent beam electron diffraction aided by finite element calculations. Micron 43(2-3):396–406. https://doi.org/10.1016/j.micron.2011.10.009

    Article  Google Scholar 

  24. Salin PE, Bandushkin B, Kabrov EH, Hao YQ (1991) Ni3Al intermetallic compound- based structural alloy. J Aviat Mater A09:1–5 (In Chinese)

    Google Scholar 

  25. Lai X, Li H, Li C, Lin Z, Ni J (2008) Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness. Int J Mach Tools Manuf 48(1):1–14. https://doi.org/10.1016/j.ijmachtools.2007.08.011

    Article  Google Scholar 

  26. Nix WD, Gao H (1998) Indentation size effects in crystalline materials: A law for strain gradient plasticity. J Mech Phys Solids 46(3):411–425. https://doi.org/10.1016/S0022-5096(97)00086-0

    Article  MATH  Google Scholar 

  27. Cheng W, Outeiro J, Costes JP, Saoubi RM, Karaouni H, Astakhov V (2019) A constitutive model for Ti6Al4V considering the state of stress and strain rate effects. Mech Mater 137:103103. https://doi.org/10.1016/j.mechmat.2019.103103

    Article  Google Scholar 

  28. Erice B, Gálvez F (2014) A coupled elastoplastic-damage constitutive model with Lode angle dependent failure criterion. Int J Solids Struct 51(1):93–110. https://doi.org/10.1016/j.ijsolstr.2013.09.015

    Article  Google Scholar 

  29. Wang B, Xiao X, Astakhov VP, Liu ZQ (2019) The effects of stress triaxiality and strain rate on the fracture strain of Ti6Al4V. Eng Fract Mech 219:106627. https://doi.org/10.1016/j.engfracmech.2019.106627

    Article  Google Scholar 

  30. Abushawashi Y, Xiao X, Astakhov V (2013) A novel approach for determining material constitutive parameters for a wide range of triaxiality under plane strain loading conditions. Int J Mech Sci 74:133–142. https://doi.org/10.1016/j.ijmecsci.2013.05.007

    Article  Google Scholar 

  31. Shen Q, Liu Z, Hua Y, Lv W, Mohsan AUH (2018) Effects of Cutting Edge Microgeometry on Residual Stress in Orthogonal Cutting of Inconel 718 by FEM. Mater 11(6). https://doi.org/10.3390/ma11061015

  32. Agmell M, Ahadi A, Ståhl J-E (2011) A fully coupled thermomechanical two- dimensional simulation model for orthogonal cutting: Formulation and simulation. Proc Inst Mech Eng B J Eng Manuf 225(10):1735–1745. https://doi.org/10.1177/0954405411407137

    Article  Google Scholar 

  33. Humphreys FJ, Kalu PN (1987) Dislocation-particle interactions during high temperature deformation of two-phase aluminium alloys. Acta Metall 35(12):2815–2829. https://doi.org/10.1016/0001-6160(87)90281-1

    Article  Google Scholar 

  34. Palmert F, Moverare J, Gustafsson D, Busse C (2018) Fatigue crack growth behaviour of an alternative single crystal nickel base superalloy. Int J Fatigue 109(APR):166–181. https://doi.org/10.1016/j.ijfatigue.2017.12.003

    Article  Google Scholar 

  35. Dai LH, Liu LF, Bai YL (2004) Effect of particle size on the formation of adiabatic shear band in particle reinforced metal matrix composites. Mater Lett 58(11):1773–1776. https://doi.org/10.1016/j.matlet.2003.10.050

    Article  Google Scholar 

  36. Dodd B, Bai Y (1985) Width of adiabatic shear bands. Mater Sci Technol 1(1):38–40. https://doi.org/10.1179/mst.1985.1.1.38

    Article  Google Scholar 

  37. Hao ZP, Cui RR, Fan YH (2018) Formation mechanism and characterization of shear band in high-speed cutting Inconel718. Int J Adv Manuf Technol 98:2791–2799. https://doi.org/10.1007/s00170-018-2435-6

    Article  Google Scholar 

  38. Pawade RS, Sonawane HA, Joshi SS (2009) An analytical model to predict specific shear energy in high-speed turning of Inconel 718. Int J Mach Tools Manuf 49(12-13):979–990. https://doi.org/10.1016/j.ijmachtools.2009.06.007

    Article  Google Scholar 

Download references

Funding

The work is support by the Natural Science Foundation of Jilin Province (20200201064JC) and National Natural Science Foundation of China (51605043).

Author information

Authors and Affiliations

Authors

Contributions

Z.P. Hao and J.N. Li conceived the research.

J.N. Li performed the calculations and wrote original draft.

Y.H. Fan completed the experiments and analyzed the data.

All authors discussed and commented on the manuscript.

Corresponding author

Correspondence to YiHang Fan.

Ethics declarations

Ethical approval

The author(s) confirm that the paper has not been published previously in any form or language and that it is not under consideration for publication elsewhere and does not contain material which has been published previously. The results are presented clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation.

Consent to participate

Not applicable

Consent to publish

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Z., Li, J. & Fan, Y. Cutting mechanism of enhanced phase γ' in Inconel 718 based on strain gradient theory. Int J Adv Manuf Technol 113, 2523–2537 (2021). https://doi.org/10.1007/s00170-021-06821-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-06821-0

Keywords

Navigation