Skip to main content
Log in

Milling chatter monitoring under variable cutting conditions based on time series features

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Chatter monitoring is an important task while ensuring machining quality and improving machining efficiency. Under variable cutting conditions, cutting parameters often change, and the cutting state and traditional time-frequency domain cutting features will also change significantly. In order to achieve precise monitoring of chatter under such cutting conditions, this article proposes a time series method named recurrence plot (RP) that can reflect the non-stationary characteristics and state differences of the signal system to analyze the cutting force signal in the cutting process. Firstly, reconstruct the phase space, generate RP; then use recurrence quantitative analysis (RQA) to extract statistical features in the RP that reflect the current state of the system; thirdly, use affinity propagation (AP) clustering method to find out the exemplar features from the RQA; finally, train the exemplar features using the light gradient boosting (LGB) method to obtain the classification prediction model. Experimental results show that this method can effectively identify the machining chatter state and stable cutting state under variable cutting conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

Not applicable

References

  1. Quintana G, Ciurana J (2011) Chatter in machining processes: a review. Int J Mach Tools Manuf 51(5):363–376. https://doi.org/10.1016/j.ijmachtools.2011.01.001

    Article  Google Scholar 

  2. Cao H, Zhang X, Chen X (2017) The concept and progress of intelligent spindles: a review. Int J Mach Tools Manuf 112:21–52. https://doi.org/10.1016/j.ijmachtools.2016.10.005

    Article  Google Scholar 

  3. Zhu L, Liu C (2020) Recent progress of chatter prediction, detection and suppression in milling. Mech Syst Signal Process 143:106840. https://doi.org/10.1016/j.ymssp.2020.106840

    Article  Google Scholar 

  4. Chen GS, Zheng QZ (2017) Online chatter detection of the end milling based on wavelet packet transform and support vector machine recursive feature elimination. Int J Adv Manuf Technol 95(1-4):775–784. https://doi.org/10.1007/s00170-017-1242-9

    Article  Google Scholar 

  5. Ye J, Feng P, Xu C, Ma Y, Huang S (2018) A novel approach for chatter online monitoring using coefficient of variation in machining process. Int J Adv Manuf Technol 96(1-4):287–297. https://doi.org/10.1007/s00170-017-1544-y

    Article  Google Scholar 

  6. Vela-Martínez L, Jáuregui-Correa JC, Álvarez-Ramírez J (2009) Characterization of machining chattering dynamics: an R/S scaling analysis approach. Int J Mach Tools Manuf 49(11):832–842. https://doi.org/10.1016/j.ijmachtools.2009.05.010

    Article  Google Scholar 

  7. Cao H, Lei Y, He Z (2013) Chatter identification in end milling process using wavelet packets and Hilbert–Huang transform. Int J Mach Tools Manuf 69:11–19. https://doi.org/10.1016/j.ijmachtools.2013.02.007

    Article  Google Scholar 

  8. Wang G, Dong H, Guo Y, Ke Y (2017) Early chatter identification of robotic boring process using measured force of dynamometer. Int J Adv Manuf Technol 94(1-4):1243–1252. https://doi.org/10.1007/s00170-017-0941-6

    Article  Google Scholar 

  9. Moradi H, Movahhedy MR, Vossoughi G (2012) Dynamics of regenerative chatter and internal resonance in milling process with structural and cutting force nonlinearities. J Sound Vib 331(16):3844–3865. https://doi.org/10.1016/j.jsv.2012.03.003

    Article  Google Scholar 

  10. Liu Y, Wang X, Lin J, Zhao W (2015) Early chatter detection in gear grinding process using servo feed motor current. Int J Adv Manuf Technol 83(9-12):1801–1810. https://doi.org/10.1007/s00170-015-7687-9

    Article  Google Scholar 

  11. Liu H, Chen Q, Li B, Mao X, Mao K, Peng F (2011) On-line chatter detection using servo motor current signal in turning. Sci China Technol Sci 54(12):3119–3129. https://doi.org/10.1007/s11431-011-4595-6

    Article  MATH  Google Scholar 

  12. Caliskan H, Kilic ZM, Altintas Y (2018) On-line energy-based milling chatter detection. J Manuf Sci Eng 140(11). https://doi.org/10.1115/1.4040617

  13. Vashisht RK, Peng Q (2021) Online chatter detection for milling operations using LSTM neural networks assisted by motor current signals of ball screw drives. J Manuf Sci Eng 143(1). https://doi.org/10.1115/1.4048001

  14. Schmitz TL (2003) Chatter recognition by a statistical evaluation of the synchronously sampled audio signal. J Sound Vib 262(3):721–730. https://doi.org/10.1016/s0022-460x(03)00119-6

    Article  Google Scholar 

  15. Chiou RY, Liang SY (2000) Analysis of acoustic emission in chatter vibration with tool wear effect in turning. Int J Mach Tool Manu 40(7):927–941

    Article  Google Scholar 

  16. Wang X, Song Q, Liu Z (2020) Precise chatter monitoring of thin-walled component milling process based on parametric time-frequency transform method. J Mater Process Technol 283:283. https://doi.org/10.1016/j.jmatprotec.2020.116712

    Article  Google Scholar 

  17. Kuljanic E, Sortino M, Totis G (2008) Multisensor approaches for chatter detection in milling. J Sound Vib 312(4-5):672–693. https://doi.org/10.1016/j.jsv.2007.11.006

    Article  Google Scholar 

  18. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N-C, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond Ser A Math Phys Eng Sci 454(1971):903–995

    Article  MathSciNet  Google Scholar 

  19. Huang NE, Wu Z (2008) A review on Hilbert-Huang transform: method and its applications to geophysical studies. Rev Geophys 46(2). https://doi.org/10.1029/2007rg000228

  20. Yang Z, Yu Z, Xie C, Huang Y (2014) Application of Hilbert–Huang transform to acoustic emission signal for burn feature extraction in surface grinding process. Measurement 47:14–21. https://doi.org/10.1016/j.measurement.2013.08.036

    Article  Google Scholar 

  21. Litak G, Kecik K, Rusinek R (2013) Cutting force response in milling of inconel: analysis by wavelet and Hilbert-Huang transforms. Latin Am J Solids Struct 10(1):133–140

    Article  Google Scholar 

  22. Wolszczak P, Litak G, Łygas K (2017) Monitoring of cutting conditions with the empirical mode decomposition. Adv Sci Technol Res J 11(1):96–103. https://doi.org/10.12913/22998624/68467

    Article  Google Scholar 

  23. Peng ZK, Tse PW, Chu FL (2005) A comparison study of improved Hilbert–Huang transform and wavelet transform: application to fault diagnosis for rolling bearing. Mech Syst Signal Process 19(5):974–988. https://doi.org/10.1016/j.ymssp.2004.01.006

    Article  Google Scholar 

  24. Rafal R, Pawel L, Krzysztof K, Bogdan K, Jerzy W (2015) Chatter identification methods on the basis of time series measured during titanium superalloy milling. Int J Mech Sci 99:196–207. https://doi.org/10.1016/j.ijmecsci.2015.05.013

    Article  Google Scholar 

  25. Trulla LL, Giuliani A, Zbilut JP, Webber CL (1996) Recurrence quantification analysis of the logistic equation with transients. Phys Lett A 223(4):255–260

    Article  MathSciNet  Google Scholar 

  26. Eckmann JP, Kamphorst SO, Ruelle D (1987) Recurrence plots of dynamical systems. Europhys Lett (EPL) 4(9):973–977. https://doi.org/10.1209/0295-5075/4/9/004

    Article  Google Scholar 

  27. Webber CL Jr, Zbilut JP (1994) Dynamical assessment of physiological systems and states using recurrence plot strategies. J Appl Physiol (1985) 76(2):965–973. https://doi.org/10.1152/jappl.1994.76.2.965

    Article  Google Scholar 

  28. Lydic R (1987) State-dependent aspects of regulatory physiology. FASEB J 1(1):6–15. https://doi.org/10.1096/fasebj.1.1.3301498

    Article  Google Scholar 

  29. Thaler T, Krese B, Govekar E (2015) Stability diagrams and chatter avoidance in horizontal band sawing. CIRP Ann 64(1):81–84. https://doi.org/10.1016/j.cirp.2015.04.081

    Article  Google Scholar 

  30. Rusinek R, Lajmert P (2020) Chatter detection in milling of carbon fiber-reinforced composites by improved Hilbert-Huang transform and recurrence quantification analysis. Materials (Basel) 13(18). https://doi.org/10.3390/ma13184105

  31. Fu Y, Zhang Y, Zhou H, Li D, Liu H, Qiao H, Wang X (2016) Timely online chatter detection in end milling process. Mech Syst Signal Process 75:668–688. https://doi.org/10.1016/j.ymssp.2016.01.003

    Article  Google Scholar 

  32. Yao Z, Mei D, Chen Z (2010) On-line chatter detection and identification based on wavelet and support vector machine. J Mater Process Technol 210(5):713–719. https://doi.org/10.1016/j.jmatprotec.2009.11.007

    Article  Google Scholar 

  33. Li K, He S, Li B, Liu H, Mao X, Shi C (2020) A novel online chatter detection method in milling process based on multiscale entropy and gradient tree boosting. Mech Syst Signal Process 135:135. https://doi.org/10.1016/j.ymssp.2019.106385

    Article  Google Scholar 

  34. Frey BJ, Dueck D (2007) Clustering by passing messages between data points. Science 315(5814):972–976

    Article  MathSciNet  Google Scholar 

  35. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y (2017) Lightgbm: a highly efficient gradient boosting decision tree. In: Advances in neural information processing systems, pp 3146-3154

  36. Cao L (1997) Practical method for determining the minimum embedding dimension of a scalar time series. Physica D: Nonlinear Phenomena 110(1-2):43–50

    Article  Google Scholar 

  37. Spiegel S, Marwan N (2016) Time and again. In: Machine Learning and Knowledge Discovery in Databases. Lecture Notes in Computer Science. pp 258-262. https://doi.org/10.1007/978-3-319-46131-1_30

  38. Hou Y, Aldrich C, Lepkova K, Machuca LL, Kinsella B (2017) Analysis of electrochemical noise data by use of recurrence quantification analysis and machine learning methods. Electrochim Acta 256:337–347. https://doi.org/10.1016/j.electacta.2017.09.169

    Article  Google Scholar 

  39. Voss HU, Kurths J (1997) Reconstruction of nonlinear time delay models from data by the use of optimal transformations. Phys Lett A 234(5):336–344

    Article  MathSciNet  Google Scholar 

  40. Eckmann JP, Ruelle D (1985) Ergodic theory of chaos and strange attractors. Rev Mod Phys 57(3):617–656. https://doi.org/10.1103/RevModPhys.57.617

    Article  MathSciNet  MATH  Google Scholar 

  41. Marwan N, Carmenromano M, Thiel M, Kurths J (2007) Recurrence plots for the analysis of complex systems. Phys Rep 438(5-6):237–329. https://doi.org/10.1016/j.physrep.2006.11.001

    Article  MathSciNet  Google Scholar 

  42. Marwan N, Donges JF, Zou Y, Donner RV, Kurths J (2009) Complex network approach for recurrence analysis of time series. Phys Lett A 373(46):4246–4254. https://doi.org/10.1016/j.physleta.2009.09.042

    Article  MATH  Google Scholar 

  43. Altintas Y (2012) Manufacturing automation : metal cutting mechanics, machine tool vibrations, and CNC design, 2nd edn. Cambridge University Press

  44. Shao Q, Feng CJ (2011) Pattern recognition of chatter gestation based on hybrid PCA-SVM. Appl Mech Mater 120:190–194. https://doi.org/10.4028/www.scientific.net/AMM.120.190

    Article  Google Scholar 

  45. Cao H, Zhou K, Chen X, Zhang X (2017) Early chatter detection in end milling based on multi-feature fusion and 3σ criterion. Int J Adv Manuf Technol 92(1–4):4387–4397

    Article  Google Scholar 

Download references

Materials availability

Not applicable

Code availability

Not applicable

Funding

This work was financially supported by the National Natural Science Foundation (No. 51905410), the China Postdoctoral Science Foundation (No. BX20180253, 219945), the Fundamental Research Funds for the Central Universities (No. xzy012019009, xxj022019025), and the Major Science and Technology Project of Shaanxi Province (No. 2019zdzx01-01-02).

Author information

Authors and Affiliations

Authors

Contributions

Kunhong Chen: methodology, formal analysis, writing—original draft.

Xing Zhang: conceptualization, writing—review and editing.

Zhao Zhao: data selection

Jia Yin: conceptualization.

Wanhua Zhao: conceptualization.

Corresponding author

Correspondence to Xing Zhang.

Ethics declarations

Ethical approval

Not applicable

Consent to participate

Not applicable

Consent to publish

Not applicable

Competing interests

The authors declare no competing interests

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Zhang, X., Zhao, Z. et al. Milling chatter monitoring under variable cutting conditions based on time series features. Int J Adv Manuf Technol 113, 2595–2613 (2021). https://doi.org/10.1007/s00170-021-06746-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-06746-8

Keywords

Navigation